
Efficient encoding and decoding algorithms for
variable-length entropy codes

G.R. Higgie and A.C.M. Fong

Abstract: Successive versions of the MPEG and JPEG coding standards have been widely adopted
for compression of moving pictures and still images. Variable-length codes (VLC) such as Huffman
codes are generally employed within the frameworks of these standards to achieve optimal coding
efficiency in the entropy coding stage. Conventional table look-up encoding/decoding techniques
for VLC are inefficient in memory usage. This is a particularly important consideration for hand-
held devices, such as cellular phones with image reception and processing capabilities. The authors
present a series of efficient and simple algorithms for VLC encoding and decoding based on a
pointer look-up approach. They present both software and hardware implementations of these
algorithms, and a comparison of memory requirements associated with the pointer look-up and
conventional techniques.

1 Introduction

There is an increasing demand for efficient and reliable
transport of multimedia data over band-limited and noisy
communication channels such as the Internet and wireless
networks. Video and image compression standards such as
MPEG [1] and JPEG [2] have been developed for effective
data compression. Each of these standards prescribes a
framework in which there is some flexibility in the actual
implementation while remaining standard-compliant [3]. In
this research, we are interested in the implementation of the
entropy coding stage within the compression standards’
frameworks.
Traditionally, variable-to-fixed-length entropy coding or

fixed-length codes (FLCs) [4] are employed to reduce the
uncertainty associated with codeword synchronisation in
situations where data integrity has a high likelihood of
being compromised due to channel-induced errors. Indeed,
there has recently been renewed interest in FLC research,
some of which is specifically geared toward image/video
applications, e.g. [5]. However, variable-length codes
(VLCs) potentially offer coding efficiency unmatched by
FLC. This is a particularly important consideration for
image data, as the probabilities of different symbols
occurring can vary much more greatly than, for example,
in text messages. In fact, VLC is most often used in the
lossless entropy coding stage for practical video and image
data compression.
VLCs that are of practical use are referred to as prefix

codes. Prefix codes are codes that are uniquely and
instantaneously decodable. Thus, with prefix codes, the
decoder can begin decoding as soon as the bit-stream

arrives. From an implementation point of view, this implies
that a decoding tree can be constructed. In addition,
practically useful VLC sets must be exhaustive. A non-
exhaustive code set is one where a decision node on the
binary tree has only one output instead of the usual two.
(We assume that we have a binary information source with
alphabet symbols 0 and 1 only.) This results in an extra
node without a corresponding extra codeword. Non-
exhaustive code sets are of little practical significance, as
they require extra bits to represent the same information as
the corresponding exhaustive code set to which they can be
converted. The conversion can be carried out by removing
the superfluous node along with the corresponding bit of
each codeword that passes through the node, as illustrated
in Fig. 1.
Recently, advances in VLC development have resulted in

two interesting variants: reversible (or bidirectional) VLC
(RVLC), e.g. [6–8], and self-synchronising VLC (SSVLC),
e.g. [9–12]. The chief advantage of RVLC is that decoding
can be performed in the forward and backward directions.
This sometimes provides a means of reconstruction of the
signal from the last data received. However, major

T

S

0

1

0

0

1

non-exhaustive set

0

1

0

1

exhaustive set

T

T

T

T

T

Fig. 1 Conversion from non-exhaustive code set to exhaustive
code set
‘T’ denotes a terminal node and ‘S’ denotes the superfluous node

G.R. Higgie is with the Cecam Consultancy, 2 Kari Street, Grafton, Auckland,
New Zealand

A.C.M. Fong was with the Institute of Information andMathematical Sciences,
Massey University, Albany, Auckland, New Zealand and is now with the
School of Computer Engineering, Nanyang Technological University, Nanyang
Avenue, Singapore 639798

r IEE, 2003

IEE Proceedings online no. 20030540

doi:10.1049/ip-com:20030540

Paper first received 5th August 2002 and in revised form 7th January 2003

IEE Proc.-Commun., Vol. 150, No. 5, October 2003 305

disadvantages with RVLC include decreased compression
efficiency, increased error propagation and increased
decoding complexity [13]. Further, in situations where
multiple bits that are further apart are lost the entire
segment in between them cannot be recovered. Then
SSVLC would be more suitable [7].
In general, the purpose of applying SSVLC is to achieve

the dual goal of optimal coding efficiency and providing
enhanced data integrity. The former means selecting
optimally efficient VLCs close to the information source
entropy, whereas the latter implies a strict localisation of
error propagation, typically to within two symbols of an
error occurring.
Among the various SSVLCs reported in the literature,

the families of T-codes [11, 12] appear to be some of the
most promising in terms of their coding efficiency and self-
synchronising properties. All T-codes exhibit exemplary
automatic synchronisation properties by virtue of the
T-augmentation algorithm, which spreads synchronisation
information throughout the codes as a matter of course. It
has also been reported [14] that the T-augmentation
algorithm can be used to obtain codes that were previously
obtained by some transformation techniques, e.g. [10],
applied to improve codes derived from the standard
Huffman algorithm.
A number of techniques have been reported on VLC

encoding and decoding. Some of these are specific hardware
approaches, e.g. [15]. However, software implementations
offer many advantages, such as better scalability and
flexibility, and lower costs. In this paper, we present fast,
efficient and simple algorithms for encoding and decoding
VLCs. Further, our algorithms can be implemented
efficiently using both software and hardware solutions.
Without loss of generality, we illustrate our examples

with T-codes mainly because of the ease of code identifica-
tion and specification. The codes could equally well have
been derived from, for example, the Huffman algorithm
with or without transformation. In fact, the algorithms
described in this paper apply to all instantaneously
decodable and exhaustive codes. Further, we consider only
binary information sources.

2 Conventional look-up table approach

The look-up table approach is conceptually very simple and
is the conventional way of encoding VLCs [16]. In this
method, the entire code set is stored in an array. Each
element of the array contains a bit sequence and a length
indicator for one codeword. The index of each element in
the array is the source symbol.

2.1 Encoding
As illustrated in Fig. 2, the conventional look-up table
approach gives very fast encoding as the bits for each
codeword are simply read out from memory. However, it
has the disadvantage that for a simple array structure each
element in the array structure must be capable of storing the
maximum possible number of bits of any codeword in the
code set.
Thus, the major drawback of the conventional table

look-up approach is that it requires a large storage capacity,

with most of the storage remaining unused. Table 1 shows

the look-up table for the T-code set Sð1;1;1;1Þð0;01;1;11Þ and arbitrary

source symbols s1,y, s17.

2.2 Decoding
To perform decoding, the entire code set is again stored in
an array, along with the length indicators. However, this
time the codes have first to be sorted into order such that all
codewords that start with a zero appear first, followed by all
codewords that start with a ‘1’. Within each group, the
codewords are sorted on their second bits, third bits, etc. in
the same manner. The source symbols are also stored
because the index of the array is no longer valid after the
sort operation. Table 2 gives the sorted look-up table
corresponding to Table 1, and the basic decoding algorithm
is shown in Fig. 3.

for bit_position := 1 to length[symbol]

 output code[symbol].bit[bit_position]

Fig. 2 Basic look-up table encoding algorithm

Table 1: Conventional look-up table

Source symbol VLC Codeword length

s1 00 2

s2 011 3

s3 0100 4

s4 0101 4

s5 100 3

s6 1011 4

s7 10100 5

s8 10101 5

s9 1100 4

s10 11011 5

s11 110100 6

s12 110101 6

s13 1111 4

s14 11100 5

s15 111011 6

s16 1110100 7

s17 1110101 7

Table 2: Sorted look-up table

Source symbol Sorted VLC Codeword length

s1 00 2

s3 0100 4

s4 0101 4

s2 011 3

s5 100 3

s7 10100 5

s8 10101 5

s6 1011 4

s9 1100 4

s11 110100 6

s12 110101 6

s10 11011 5

s14 11100 5

s16 1110100 7

s17 1110101 7

s15 111011 6

s13 1111 4

306 IEE Proc.-Commun., Vol. 150, No. 5, October 2003

A number of attempts have been made to improve the
memory efficiency of this conventional look-up approach,
e.g. [17–19]. Sieminski [17] suggests breaking the variable-
length format of the codewords into short, fixed-length
bytes, but this is only applicable to certain system
implementations involving microprocessors. In [18], a
technique for generating self-synchronising code sets is
presented, along with encoding/decoding techniques pecu-
liar to the structure of those codes. An encoding/decoding
technique based on the structure of Huffman codes has
been proposed by Tanaka [19]. However, although the
technique alleviates the storage requirements required by
the conventional approach, it is achieved at the expense of
increased complexity and reduced speed of operation. In
this research, we propose pointer look-up table algorithms
that boast high speed of operation, simplicity of structure
and optimal memory efficiency.

3 Pointer look-up techniques

Practical applications generally require either a symmetric
distribution of computational load between the encoder and
decoder, or an asymmetric load distribution whereby
encoding can be computationally intensive, as it can be
performed off-line, while decoding should be efficient and
fast. This is a particularly important consideration for hand-
held receiving devices with limited memory and processing
power.
Although the conventional look-up table technique can

achieve reasonably fast encoding, decoding is not particu-
larly fast. This is because every time it receives a ‘1’ it must
scan down through the table to find the next ‘1’ in the
current bit position. If the table position of the next ‘1’ is
stored explicitly in the table, then the decoder can go
directly to this position when required. This forms the basis
for the pointer look-up approach.

3.1 Software decoder
For any instantaneously decodable code, the decoding
process can be represented by a decoding tree by extending
the exhaustive set in Fig. 1 to include all codewords in any
given code set. Each terminal node ‘T’ (or leaf) of the
decoding tree corresponds to one codeword. Non-terminal
nodes are decision nodes. Decoding begins at the far left
node with each received bit causing a transition to the next
node along the ‘0’ or ‘1’ path until a terminal node is
reached.
By arranging the decoding tree as shown in Fig. 4, the ‘0’

transitions are drawn horizontally and the ‘1’ transitions are
drawn vertically. This results in having exactly one terminal
node in each row. The rows can be pointed to by a vertical
pointer (VP). The order of the terminal nodes follows the
order of the codewords in the sorted list. Thus, VP points to
the position in the sorted codeword list. Every decision node
contains a next 1 pointer (NP) that indicates the position in
the code list of the next ‘1’. This corresponds to the position
to which VP must be set whenever a ‘1’ is received. The

columns of the tree can be pointed to by a horizontal
pointer (HP). HP is effectively the number of zeros that
have been received and should be incremented every time a
‘0’ is received.
As shown in Table 3, the table of pointers can be derived

directly from Fig. 4 by taking the NP values from the
decision nodes and placing them in the corresponding
positions of a two-dimensional (2-D) array. The indices of
the array are the VP and HP positions of the decision
nodes. It is important to note that once the table of pointers
has been derived, it is no longer necessary to store the actual
codewords in the array. The decoding algorithm is shown in
Fig. 5.
The algorithm gives very fast decoding as each bit

processed only requires three operations:

� decide whether the bit is ‘0’ or ‘1’

� increment or load a pointer

� check for the end of the codeword

position := 0; bits_used := 0;

repeat

 inc(bits_used);

 if bit_stream[bits_used] = 1 then

 while code[position].bit[bits_used] <> 1

 inc(position);

until bits_used = length[position];

symbol := source_symbol[position];

Fig. 3 Basic look-up table decoding algorithm

4VP = 0 1 T
0 0

3VP = 1 2
00

1

00

0100

1
VP = 2 01011

VP = 3 011

8VP = 4 5
0 0

7VP = 5 6
001

100

10100

1
VP = 6 101011

VP = 7 1011

12VP = 8 9
0 0

11 VP = 9 10
00

1

1100

110100

1
VP = 10 1101011

VP = 11 11011

16VP = 12 13
0 0

15 VP = 13 14
00

1

11100

111010

1
VP = 14 11101011

VP = 15 111011

1

1

1

1

VP = 16
1111

HP = 0 HP = 1 HP = 2 HP = 3

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Fig. 4 Decoding tree arranged for pointer lookup

IEE Proc.-Commun., Vol. 150, No. 5, October 2003 307

3.2 Reducing the 2-D array
One difficulty with the algorithm in Fig. 5 is that the array
containing NP is two dimensional, with a row for every
vertical position and a column for every horizontal position.
In code sets that have codewords with long strings of zeros,
there will be a large number of horizontal positions.
However, there are no entries for rows that have only a
terminal node.
Lemma 1: If there are n NP and q codewords, then

n ¼ q� 1 ð1Þ
Proof: This is by induction, which applies to all instanta-
neously decodable and exhaustive codes. For the trivial
code set that has only one codeword, the decoding tree will
consist of only one terminal node and no decision nodes.
This code set may be extended as follows. First, the terminal
node can be converted into a decision node. Next, two new
terminal nodes are added. The result is one extra codeword,
one extra terminal node and one extra decision node. This
happens every time the code set is extended, with every
extra codeword requiring an extra terminal node and an
extra decision node, starting from the trivial code set. Thus,
(1) is true.
The consequence of lemma 1 is that the 2-D pointer look-

up table can be reduced to 1-D. The corresponding 1-D
pointer look-up decoding algorithm is shown in Fig. 6, and
Table 4 shows the 1-D look-up table for the same code set
as Table 3.

3.3 Tables without codeword lengths
A variation on the 1-D pointer look-up technique is not to
use the array of codeword lengths to indicate when a

codeword has been decoded. An additional pointer is
needed that is initially positioned just beyond the end
of the table. As before, whenever a ‘1’ is processed
VP is loaded with the pointer value. The variation
occurs when a ‘0’ is processed, in which case the
end pointer (EP) is loaded with the pointer value in
addition to HP being incremented. As each ‘0’
or ‘1’ is processed, VP and EP close in on each
other to trap the decoded codeword between them.
When these pointers point to adjacent locations,
VP is positioned at the decoded codeword. The
decoding algorithm is now modified to the one shown
in Fig. 7.

3.4 Software encoder
Having developed a technique for decoding using only a
table of fixed-length pointers, it is advantageous to use the
same table for encoding. The table is essentially a series of
pointers that specify the location of the next ‘1’ in the stored
list. Hence, if the codeword for a particular position in

Table 3: 2-D pointer table

Source
symbol

Vertical
position

Sorted
VLC

NP Codeword
length

HP0 HP1 HP2

s1 0 00 4 1 2

s3 1 0100 3 2 4

s4 2 0101 4

s2 3 011 3

s5 4 100 8 5 3

s7 5 10100 7 6 5

s8 6 10101 5

s6 7 1011 4

s9 8 1100 12 9 4

s11 9 110100 11 10 6

s12 10 110101 6

s10 11 11011 5

s14 12 11100 16 13 5

s16 13 1110100 15 14 7

s17 14 1110101 7

s15 15 111011 6

s13 16 1111 4

VP := 0; HP := 0; bits_used := 0;
repeat
 inc(bits_used);
 if bit_stream[bits_used] = 0 then inc(HP)
 else VP := NP[VP, HP];
 until length[VP] = bits_used;
 symbol := source_symbol[VP];

Fig. 5 Two-dimensional pointer look-up decoding algorithm

VP := 0; HP := 0; bits_used := 0;
repeat
 inc(bits_used);
 if bit_stream[bits_used] = 0 then inc(HP)

else VP := NP[VP + HP];
until length[VP] = bits_used;
symbol := source_symbol[VP];

Fig. 6 One-dimensional pointer look-up decoding algorithm

Table 4: 1-D pointer table

Source
symbol

Vertical
position

Sorted
VLC

NP Codeword
length

s1 0 00 4 2

s3 1 0100 1 4

s4 2 0101 3 4

s2 3 011 2 3

s5 4 100 8 3

s7 5 10100 5 5

s8 6 10101 7 5

s6 7 1011 6 4

s9 8 1100 12 4

s11 9 110100 9 6

s12 10 110101 11 6

s10 11 11011 10 5

s14 12 11100 16 5

s16 13 1110100 13 7

s17 14 1110101 15 7

s15 15 111011 14 6

s13 16 1111 4

VP := 0; HP := 0; bits_used := 0;
EP := end_of_list + 1;
repeat
 inc(bits_used);
 if bit_stream[bits_used] = 0 then

{EP := NP[VP + HP]; inc(HP)}
else VP := NP[VP + HP];

until (EP – VP) = 1;
 symbol := source_symbol[VP];

Fig. 7 Variation on one-dimensional pointer look-up decoding
algorithm (without codeword lengths)

308 IEE Proc.-Commun., Vol. 150, No. 5, October 2003

the stored list is to be encoded, then the bit to be sent, bi+1,
will be:

biþ1 ¼
‘0’; if ðpositionoNP ½VP þ HP �Þ
‘1’; otherwise

�
ð2Þ

Thus, bi+1 is set to zero if the current position is before the
next ‘1’, and set to one otherwise. Figure 8 shows the
encoding algorithm that corresponds to Fig. 6.
The encoding algorithm that corresponds to Fig. 7 can be

deduced simply be modifying the algorithm in Fig. 8 by
introducing EP in much the same way as the conversion
from Fig. 6 to Fig. 7. At any rate, pointer-based encoding is
as efficient as pointer-based decoding as it consists of
essentially the same three operations:

� decide whether position oNP

� increment and/or load a pointer; output ‘0’ or ‘1’

� check for the end of the codeword

3.5 Pointer table generation
The generation of pointers for the pointer look-up table is
very simple. The variable-length codewords of the code set
must first be generated and sorted. From Fig. 4, it is clear
that there will be a pointer entry for each trailing zero of
every codeword. A simple algorithm for pointer table
generation is shown in Fig. 9.
For example, codeword 0100 has a pointer for each of its

two trailing zeros and codeword 0101 has no pointers as it
has no trailing zeros. The value of the pointer for the
trailing zero at a particular bit position can be derived by
searching down the codeword list until the next ‘1’ is found
at that bit position. When a sorted list of variable-length
codewords is stored in an array code[] and their associated
codeword length is stored in an array length[], the
generating algorithm is as shown in Fig. 9. Once the
pointers have been generated, the original code[] and
length[] arrays can be discarded.

4 Hardware implementation

Hardware implementation of the pointer look-up encoding/
decoding technique follows the same algorithms developed

for software implementation. In this section, we present the
hardware implementation of the algorithm, without code-
word lengths, developed in Section 3.3. The decoder
interprets incoming bits to trap the decoded position
between VP and EP. Figure 10 shows a block diagram of
hardware suitable for implementing the algorithm for up to
257 codewords.
The operation of the hardware shown in Fig. 10 is

summarized in Fig. 11. This hardware implementation is
considerably simpler than that required for conventional
encoding and decoding techniques. Its speed of operation is
also very high because only one operating cycle is required
for each bit of encoded data, with no multiple processing of
incoming encoded bit stream required.

5 Comparison of techniques

The pointer look-up table technique is generally very fast,
especially when compared to the conventional look-up table
technique. In essence, the convention approach wastes time
looking for the ‘next 1’, while the pointer look-up approach
eliminates this need. However, the main disadvantage

position = Translate[symbol];
VP := 0; HP := 0; bits_transmitted := 0;
repeat
 if position < NP[VP + HP] then
 {output a “0”; inc (HP)}
 else
 {output a “1”; VP := NP[VP + HP];}
 inc(bits_transmitted);
until code_length[VP] = bits_transmitted;

Fig. 8 One-dimensional pointer look-up encoding algorithm

pointer_index = 0;
 for code_index = 0 to numer_codewords – 2
 {bit_position := length[code_index] + 1;
 while (code[code_index].bit[bit_position-1] = 0)

and (bit_position>1)
 dec(bit_position);
 for bit_position = bit_position to

length[code_index]
 {next_i_index := code_index + 1;
 while code[next_1_index].bit[bit_position]<> 1
 inc(next_1_index);

NP[pointer_index] := next_1_index; inc(pointer_index);}}

Fig. 9 Algorithm for pointer generation

end pointer
 9-bit

vertical
pointer 9-bit

horizontal
pointer 9-bit

compare

add

symbol
ROM 257×9

bit

next 1
pointers
256×9 bit

EP – VP = 1

translate
ROM

 257×9bit

incoming
symbols

compare
position

NP

position < NP

incoming code bit

outgoing
symbols

position <NP

incoming bit strobe
incoming symbol strobe

EP – VP = 1

outgoing code bit

incoming symbol accepted

outgoing bit strobe

outgoing symbol strobe

incoming bit accepted

clear VP

load EP

set EP 100000001

clear HP

load VP

increment HP

control
logic

EP

VP

HP

Fig. 10 Hardware implementation for pointer look-up table
encoding and decoding

IEE Proc.-Commun., Vol. 150, No. 5, October 2003 309

of all look-up tables is their memory requirements. The
pointer look-up table technique requires the following
arrays, with lengths up to the number of codewords in the
code set q:

� Source symbols[q]

� Translate[q]

� Next 1 Pointer[q�1]

Source Symbols[q] is used by decode to extract the
original symbol after ascertaining the decoded codeword
position. Translate[q] is used by encode and is indexed on
Source Symbol to point to the position in the list of the
codeword for the source symbol. Next 1 Pointer[q–1] stores
the pointers to the position of ‘next 1’ in the list. These
arrays all contain fixed-length data entries. This arrange-
ment is far more memory efficient than the conventional
approach. The conventional look-up table technique uses
the same fixed-length Source Symbols and Translate arrays,
but also stores the length of each codeword in an array,
along with the entire variable-length code set in an array
where each element must be able to contain the longest
possible codeword. The maximum codeword length of an
exhaustive code set with q codewords is q�1. Therefore, the

byte storage requirement M for each entry is given by

M ¼ ðq� 1Þ=8 ð3Þ

For example, for 8-bit codewords M¼ 28/8¼ 32 bytes. It
is possible to reduce this storage requirement by restricting
the system to code sets with a lower maximum codeword
length. However, the implication is that the system will not
be able to handle all possible code sets, some of which may
be important in practical situations.
To illustrate the advantage of the pointer look-up table

technique over the conventional technique, the storage
requirements for code sets with 256 codewords (suitable for
encoding 8-bit source symbols) and code sets with 65536
codewords (suitable for encoding 16-bit source symbols) are
given in Table 5.
For example, encoding using the 8-bit pointer approach

requires 28 (for Translate)+27 (for Next-1-Pointer)¼
384 bytes, while decoding requires 28 (for Source Sym-
bols)+27 (for Next-1-Pointer)¼ 384 bytes. On the other
hand, encoding and decoding using the 8-bit conventional
approach each requires 27	 32+384¼ 4480 bytes. In our
analysis, we included a restricted set for the 16-bit
conventional approach. It is clear from Table 5 that the
pointer look-up table technique offers significant saving in
its memory requirements over the conventional technique.

6 Conclusion

Popular video and image compression standards, such as
MPEG and JPEG, have been widely adopted. The entropy
coding stage within each of the compression standards
generally involves the use of variable-length codes. Con-
ventional look-up table techniques employed for encoding
VLCs is fast, but less so for decoding. Also, conventional
techniques are inefficient in terms of memory requirements.
This is a particularly important consideration for hand-held
devices, such as cellular phones with image data reception
and processing capabilities.
A number of attempts at reducing the conventional look-

up table sizes have been proposed. However, these tend to
be device and/or code specific, and often lead to reduced
speed of operation and increased complexity. In this paper,
we have proposed the use of pointer look-up tables for
encoding and decoding VLCs. This technique achieves
optimal usage of memory storage and can lead to very
simple algorithms. Without loss of generality, we have
illustrated our technique with reference to T-codes, but
there is nothing in our discussion that precludes the
application of our technique to other VLCs. In fact, the
pointer look-up table technique can be applied to all
instantaneously decodable and exhaustive code sets.
Based on the pointer look-up technique, we have

implemented software and hardware solutions that are

Encoding:
Clear VP
 Clear HP
 Set EP 100000001 {EP to 1 past end of list}
wait for Incoming symbol strobe
Incoming symbol accepted {input accepted for encoding}
repeat
 if position < NP then {bit to be output = 0}

Outgoing code bit = 0
 Load EP {move EP to next 1 position}

Increment HP
 else
 Outgoing code bit = 1

Load VP {move VP to next 1 position}
Outgoing bit strobe {output bit available}
until EP – VP = 1 {processed last bit}

Decoding:
Clear VP
Clear HP
Set EP 100000001 {EP to 1 past end of list}

repeat
 wait for Incoming bit strobe
 Incoming bit accepted {bit accepted}
if Incoming code bit = 0 then {bit to be decoded = 0}

 Load EP {move EP to next 1 position}
Increment HP
else

 Load VP {move VP to next 1 position}
until EP – VP = 1 {processed last bit}
Outgoing symbol strobe {output available}

Fig. 11 Control logic algorithms for hardware encoding and
decoding

Table 5: Comparison of storage requirements

Fixed length entries
size (bytes)

Variable length
entries size (bytes)

Storage requirements
for encode (bytes)

Storage requirements
for decode (bytes)

8-bit conventional 1 32 4480 4480

8-bit pointer 1 384 384

16-bit conventional
(restricted max
length¼ 128 bits)

2
2

8192
16

268632064
720896

268632064
720896

16-bit pointer 2 196608 196608

310 IEE Proc.-Commun., Vol. 150, No. 5, October 2003

extremely simple, versatile, memory-efficient and fast in
operation.

7 References

1 The MPEG standard. http://www.mpeg.org/MPEG/index.html and
http://mpeg.telecomitalialab.com/

2 The JPEG standard. http://www.jpeg.org/
3 Ortega, A., and Ramchandran, K.: ‘Rate-distortion methods for

image and video compression’, IEEE Signal Process. Mag., 1998,
pp. 23–50

4 Tunstall, A.: ‘Synthesis of noiseless compression codes’. PhD
dissertation, Georgia Inst. Tech., Atlanta, 1968

5 Llados-Beranus, R., and Stevenson, R.L.: ‘Fixed-length coding for
robust video compression’, IEEE Trans. Circuits Syst. Video Technol.,
1998, 8, pp. 745–755

6 Takishima, Y., Wada, M., and Murakami, H.: ‘Reversible variable
length codes’, IEEE Trans. Commun, 1995, 43, (2), pp. 158–162

7 Girod, B.: ‘Bidirectionally decodable streams of prefix code-words’,
IEEE Commun. Lett., 1999, 3, (8), pp. 245–247

8 Tsai, C.-W., andWu, J.-L.: ‘On constructing the Huffman-code-based
reversible variable-length codes’, IEEE Trans. Commun., 2001, 49, (9),
pp. 1506–1509

9 Neumann, P.G.: ‘Efficient error-limiting variable length codes’, IRE
Trans. Inf. Theory, 1962, 8, pp. 292–304

10 Ferguson, T.J., and Rabinowitz, J.H.: ‘Self-synchronising Huffman
codes’, IEEE Trans. Inf. Theory, 1984, 30, pp. 687–693

11 Titchener, M.R.: ‘Digital encoding by means of new T-codes to
provide improved data synchronisation and message integrity’, IEE
Proc., Comput. Digit. Tech., 1984, 131, pp. 151–153

12 Titchener, M.R.: ‘The synchronisation of variable-length codes’, IEEE
Trans. Inf. Theory, 1997, 43, (2), pp. 683–691

13 Webb, J.L.H.: ‘Efficient table access for reversible variable-length
decoding’, IEEE Trans. Circuits Syst. Video Technol., 2001, 11,
pp. 981–985

14 Gunther, U., and Titchener, M.R.: ‘Calculating the expected
synchronisation delay for T-code sets’, IEE Proc., Commun., 1997,
144, pp. 121–128

15 Yang, J.-Y., Lee, Y., Lee, H., and Kim, J.: ‘A variable length coding
ASIC chip for HDTV video encoders’, IEEE Trans. Consum.
Electron., 1997, 43, (3), pp. 633–638

16 Jayant, N.S., and Noll, P.: ‘Digital coding of waveforms- principles
and applications to speech and video’ (Prentice-Hall, 1984)

17 Sieminski, A.: ‘Fast decoding of Huffman codes’, Inf. Process. Lett.,
1988, 26, pp. 237–241

18 Mirkovic, M.D.: ‘Algorithm for obtaining self-synchronising M-ary
code enabling data compression’, IEE Proc., Comput Digit. Tech.,
1987, 134, pp. 112–117

19 Tanaka, H.: ‘Data structure of Huffman codes and its application to
efficient encoding and decoding’, IEEE Trans. Inf. Theory, 1987, 33,
pp. 154–156

IEE Proc.-Commun., Vol. 150, No. 5, October 2003 311

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

