
Drive Strength Aware Cell Movement Techniques for
Timing Driven Placement

Guilherme Flach, Mateus Fogaça, Jucemar Monteiro, Marcelo Johann and Ricardo Reis
Universidade Federal do Rio Grande do Sul (UFRGS) - Instituto de Informática - PGMicro/PPGC

{gaflach, mpfogaca, jucemar.monteiro, johann, reis}@inf.ufrgs.br

ABSTRACT
As the interconnections dominate the circuit delay in nanome-
ter technologies, placement plays a major role to achieve
timing closure since it is a main step that defines the in-
terconnection lengths. In initial stages of the physical de-
sign flow, the placement goal is to reduce the total wire-
length, however total wirelength minimization only roughly
addresses timing. A timing-driven placement incorporates
timing information to remove or alleviate timing violations.
In this work, we present an incremental Timing-Driven Place-
ment (TDP) flow to further optimize timing violations via
single-cell movements. For late violations, we developed
techniques to reduce the load capacitance on critical nets
and to obtain load capacitance balancing using drive strength.
For early violations, we present techniques that rely on clock
skew optimization, register swap and interconnection in-
crease. Our flow is experimentally evaluated using the Inter-
national Conference on Computer-Aided Design (ICCAD)
2015 Incremental Timing-Driven Contest infrastructure. Ex-
perimental results show that our flow can significantly re-
duce timing violations. On average, for long maximum dis-
placement, the quality of results is improved by 67.8% with
late Worst Negative Slack (WNS) and Total Negative Slack
(TNS) being improved by 2.31% and 10.84%, respectively,
early WNS and TNS improved by 68.92% and 76.42%, re-
spectively and congestion metric Average Bin Utilization
(ABU) improved by 74.9% compared to the 1st place in the
contest. The impact on Steiner Tree Wirelength (STWL) is
less than 2.5%.

Keywords
Microelectronics, EDA, Timing-Driven Placement, Timing
Closure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISPD’16, April 03 - 06, 2016, Santa Rosa, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4039-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2872334.2872359

1. INTRODUCTION
Timing-driven placement incorporates timing information

to reduce timing violations which are only roughly addressed
by total wirelength minimization. A detailed timing-driven
placement works on a globally optimized and legalized so-
lution trying to further improve timing while keeping the
solution legalized. Typically a detailed placement will pro-
cess only a fraction of the total cells of a design, preserving
the global properties of the initial solution.

A pure placement flow can only improve timing by chang-
ing cell positions and hence the length of the wires that
connect them. As the interconnection dominates the circuit
delay in nanometer technologies, placement plays a major
role to achieve timing closure.

Although the length minimization of a single wire typ-
ically improves the local delay, the minimization of total
wirelength does not guarantee the best global delay. The
reason is that the minimization of the sum of wirelength
completely ignores the fact that some wires are more impor-
tant than others in defining the circuit performance. There-
fore a timing-driven placement prioritizes critical intercon-
nections and typically trades-off increase on non-critical in-
terconnection lengths with decrease on critical interconnec-
tion lengths.

In this work, we develop a detailed timing-driven flow that
can incrementally improve the timing of a legalized place-
ment solution. Our flow is composed by several single-cell
movements aiming both early (hold) and late (setup) tim-
ing violations. For late violations, we apply load reduction
and load balancing to accomplish the wirelength trade-offs.
For early violations, we devise methods to increase delay by
moving cells away and by skew optimization.

The main contributions of this work can be summarized
as follows:

• a set of single-cell movement techniques to mitigate
both early and late timing violations;

• load balancing via an analytical formulation to find
the optimal position of a cell w.r.t. its driver and sink
considering drive strengths;

• clock skew exploration to reduce early (hold) viola-
tions;

• a flow for incremental timing-driven placement vali-
dated with ICCAD 2015 contest infrastructure.

Our experimental results show that there is expressive
room for mitigation of timing violations using incremen-
tal local search techniques. The Timing-Driven Placement

73

(TDP) flow was experimentally evaluated using an state-of-
the-art set of circuits provided by International Conference
on Computer-Aided Design (ICCAD) 2015 Contest.

This paper is organized as follows. Section 2 reviews the
state-of-the-art algorithms for TDP optimization. Some def-
initions are provided on Section 3. The proposed algorithms
are discussed in Sections 4, 5 and 6 while in Section 7 we
show our incremental TDP flow. The experimental results
are discussed in Section 8 and the concluding remarks are
made in Section 9.

2. RELATED WORKS
Most of the timing-driven placement techniques are di-

vided into 2 groups: net-based [9, 13, 3] and path-based
approaches [11, 15, 16].

The former group prioritizes nets with timing violations
by assigning them higher weights during global wirelength-
driven placement or by assigning a max wirelength con-
straint. These techniques can deal with a lot of violations at
the same time, keeping a global view of the problem. How-
ever, while these nets are optimized, other violations may
show up and, thereby, the weights need to be updated and
new constraints created. At the end, the problem may be
over constrained, and the solution may be a local minima.
Over constrained solutions also may lead to congestion and
can affect routability.

On the other hand, path-based approaches focus on fix-
ing a set of critical or near critical paths. The idea is to
straighten the critical paths in order to reduce their length.
The procedure can be done by heuristic local search or linear
programing techniques.

ITOP [14] proposes various techniques in order to achieve
timing closure. The first one is a netlist transformation in
which virtual 2-pin nets are created linking cells in critical
paths to raise attraction between them in global placement.
Furthermore, an incremental path smoothing algorithm lo-
cally moves critical modules trying to achieve local improve-
ments. Unlike most algorithms, after changing the solution,
small movements are performed to mitigate congestion and
to ensure routability. Finally, the authors combine other
techniques, like buffering and sizing (repowering), to further
improve the solution quality.

A set of local search algorithms was proposed by [2]. Their
work rely on two strategies: path straightening and cluster-
ing. The goals of clustered movement are to speed up the ex-
ecution time and to escape from suboptimal solutions. The
idea is to minimize the euclidean distance between the most
critical upstream and downstream pins of a cluster. A for-
mulation using Lagrangian Relaxation to mitigate TDP tim-
ing violations was proposed by [5]. The proposed technique
updates dynamically net’s weights according to Lagrange
multipliers.

3. DEFINITIONS
In this section, some concepts used throughout this paper

are presented.
An early timing violation occurs whenever a signal propa-

gates too fast reaching a registers before the previous signal
had been captured. An early violation is also referred to as a
hold violation. A late timing violation occurs whenever the
signal takes too long to propagate reaching a register after
the time-frame necessary to store the signal. A late timing

violation is also referred to as a setup violation. In this work
both early and late timing violations are handled.

3.1 Drive Strength
To obtain a measure of the drive strength of cells, more

specifically of timing arcs, we compute a representative driver
resistance R for each timing arc. The delay of a timing arc
is estimated as in Equation (1),

d = RC + p (1)

where C is the load capacitance being driven and p is the
parasitic delay. The drive resistance is then computed via
least square approximation of the delay values for several
different loads.

3.2 Criticality and Centrality
The criticality {criticality ∈ R | 0 ≤ criticality ≤ 1} of

a pin is the negative slack of the pin divided by the worst
negative slack found in the design. The normalized cen-
trality {centrality ∈ R | 0 ≤ centrality ≤ 1} of a pin is a
rough measure of how many critical endpoints are affected
by the pin. It can be seen as the importance of such pin to
the Total Negative Slack (TNS).

The centralities are computed by traversing the design in
the reverse topological order. By definition, the centrality
at endpoints is set as the endpoint’s criticality. The cen-
trality of a driver pin is simply the sum of centralities of
its sink pins. The centrality of the output (driver) pin is
then proportionally distributed among the input pins of the
respective cell according to the input pin criticalities. Cen-
trality values can be seen as the endpoint criticalities flowing
through the circuit, which is a standard technique used by
timing driven optimization methods based on Lagrangian
Relaxation [1] to obey the flow conservation as implied by
the KKT optimally conditions.

4. LATE OPTIMIZATION
In this section, we present a set of techniques that tar-

gets to decrease wire load capacitance and resistance of the
critical nets. We also propose an analytical formulation to
explore driver strength in critical nets to reduce late vio-
lations. We devise an analytical formulation to obtain the
position where the late timing violation is locally minimized.

4.1 Clustered Movement
As demonstrated by [2], moving one cell at a time may

lead to suboptimal solutions. To avoid this problem we
implemented an algorithm that performs a Breadth-First
Search (BFS) finding topological neighbor cells with timing
violations within a given range. For each cluster, we find an
ideal position and shift all cells toward that position. These
two operations are described below.

4.1.1 Cell Clustering
Algorithm 1 presents the proposed clustering algorithm.

Two inputs must be specified: initialCell andmaxDistance.
The former refers to the cell with which the algorithm will
begin the BFS and the latter is the maximum Manhattan
distance a cell can be from initialCell in order to be clus-
tered. At the beginning, the cluster is empty (Line 2) and
the queue that controls the BFS, called neighbors, is initial-
ized with initialCell (Line 3).

74

Lines 4-11 show the algorithm’s main loop. In each iter-
ation, the first element from the queue is stored in current
variable and then removed (Line 5). If the current element
is critical, i.e., has negative slack, it is clustered (Line 9) and
its topological neighbors are added to the queue (Line 10).
The loop continues until neighbors queue is empty (Line
11).

Algorithm 1: Cell clustering

input : initialCell, maxDistance
output: cluster

1 begin

2 cluster = ∅
3 neighbors.push(initialCell)

4 repeat

5 current ← neighbors.pop()

6 if minSlack ≥ 0 or
7 dist(current, intialCell) > maxDistance then
8 continue

9 cluster.insert(current)
10 neighbors.pushAll(current.neighbors())

11 until neighbors.empty();

4.1.2 Clustered Movement
Once a cluster is formed, we must decide in which direc-

tion to move it. In this work, we opted to shift the cluster
towards the center of mass of critical neighbor pins weighted
by their negative slack, as shown in Figure 1.

N2

N1

N3N4

(50, 90, -25)

(20, 70, -10)

(20, 30, -50) (120, 30, -15)

(42.5, 49)

Figure 1: The target position for a cluster according to
Equation (2). For each neighbor node N a tuple (x, y, slack)
is specified.

So, the target position of cluster cells is computed as:

target pos(cluster) =

∑n
i=1 pos(Ni)× slack(Ni)∑n

i=1 slack(Ni)
(2)

where n is the number of critical neighbor pins of the cluster,
pos(Ni) and slack(Ni) are the position and the slack of the
pin associated to the neighbor cell i. Then, for each cell in
the cluster we obtain a new position as:

new pos(cell) =pos(cell) + [target pos(cluster)

− center(cluster)]
(3)

where pos(cell) is the current cell position, target pos(cluster)
is the cluster center target position computed in Equation

(2) and center(cluster) is the current central position of the
cluster.

4.2 Buffer Balancing
After buffer insertion, the circuit may contain several buffer

chains. However placement is not always aware of the dif-
ferent drive strengths of cells that compose the chain, which
may degrade timing. The general idea of buffer balancing
is shown in Figure 2 where the delay of the path segment is
reduced if the buffer is placed closer to its sink.

(a) Initial (b) Optimized

Figure 2: Buffer balancing technique finds the buffer posi-
tion that minimizes the segment path delay.

To find the displacement where the delay is minimum,
an analytical formula is devised. This formula takes into ac-
count the cell strengths assuming that the interconnection is
modeled as an RC tree and its delay is computed via Elmore
delay [4]. We assume the buffer’s driver and its sink are fixed
while the buffer can freely move between them. Moreover
the driver is assumed to drive only the buffer and the buffer
to drive only one sink. This idea can be applied iteratively
so that buffer chains with arbitrary number of buffers can
be handled. In our experiments, only a few iterations are
necessary to align all the buffers in the design.

Figure 3: Buffer balancing modeling.

Figure 3 shows a single buffer chain, whose delay, D can be
described as in Equation (4) using the Elmore delay model.

D = R0 (C1 + d0Cw) + d0Rw

(
C1 +

d0Cw

2

)
+ p0

+R1 (C2 + d1Cw) + d1Rw

(
C2 +

d1Cw

2

)
+ p1

(4)

where R0 is the resistance of the buffer’s driver, C1 is the
input pin load capacitance of the buffer, d0 is the wirelength
from driver to buffer, Rw is the wire resistance per unit-
length, Cw is the wire capacitance per unit-length, R1 is the
buffer resistance, d1 is the wire length from the buffer to its
sink, C2 is the load capacitance on the input sink pin, p0 and
p1 are parasitic delays of the driver and buffer, respectively.

75

Considering that d = d0 +a+d1 where a is the distance of
input and output buffer pins, the minimum delay is obtained
by setting ∂D

∂d0
= 0 as described by Equation (5), which for

practical purposes is clamped in the range [0, d].

d0 =
Cw (R1 −R0) +Rw [C2 − C1 + Cw (d− a)]

2CwRw
(5)

Equation (6) defines the optimal position of the buffer w.r.t.
its driver. As Manhattan routing is used, this may lead to
multiple optimal positions. However by placing the buffer
on the straight line connecting the driver and sink may help
straightening the path which is a very common way to im-
prove delay. Therefore, the buffer is placed on the straight
line by setting its position to

Pb = Pd +
d0
d
× (Ps − Pd) (6)

where Pb is the new buffer position, Pd is the driver position
and Ps is the sink position.

4.3 Cell Balancing
In this section, we extend the formulation of buffer bal-

ancing to handle more general cases, i.e, non-buffers cells
with multiple input pins and multiple sinks. To do so, we
first compute the cell position for each timing arc individ-
ually and then combine the results to obtain the best cell
position.

We restrict the region of a cell movement between the
point it connects to its driving tree, here called driver point,
and the point it connects to its sink tree, sink point, as
shown in Figure 4.

driver point

sink point

Figure 4: Cell balancing modeling.

Let Rup be the upstream resistance of the driver point
(i.e. the sum of the resistance from the driver point up to
the root of the tree, which includes the driver resistance).
Let Dup be the delay at the driver point when the branch
from the driver point to the cell is removed. Let Cdown be
the downstream capacitance of the sink point excluding any
capacitance added by the branch connecting the cell to the
sink point (i.e. sum of all capacitances from the sink point
down to all leaf points including pin capacitances). Then
the delay, D, from the driver cell and the sink point is given
by Equation (7)

D = D0 +D1 (7)

where

D0 =Dup +Rup (C1 + Cwd0)

+ d0Rw

(
C1 +

d0Cw

2

)
+ p0

(8)

is the delay from the driver cell to the input of the current
cell and

D1 = R1 [Cdown + d1Cw]+d1Rw

[
Cdown +

d1Cw

2

]
+p1 (9)

is the delay from the current cell to the sink point, C1 is
cell input pin capacitance, d0 is the wirelength between the
driver point and the cell, d1 is wirelength from the cell to
the sink point, R1 is the cell resistance and p0 and p1 are
the driver and cell parasitic delay, respectively.

To a reason that will be apparent later D0 and D1 are
weighted by w0 and w1 respectively so that the weighted
delay is given by Equation (10).

D = w0D0 + w1D1 (10)

Considering that d = d0 +a+d1 where a is the distance of
input and output cell pins, the minimum delay is obtained
by setting ∂D

∂d0
= 0 as described by Equation (11) which for

practical purposes is also clamped in the range [0, d].

d0 =
w1CwR1 − w0RwC1 + w1Rw [Cw(d− a) + Cdown)]

RwCw(w0 + w1)

− w0RupCw

RwCw(w0 + w1)
(11)

Note that Equation (11) reduces to Equation (5) for a
single buffer chain. The final position is obtained in the
same way as in the buffer alignment technique.

Since we may have several target positions, one for each
input pin, they are combined by their weighted average.
Where the weight of each position is the importance of the
input pin, which is set to 2× centrality+ criticality in this
work.

The reason to weight the partial delays is due to the effect
on the delay of side cells. By minimizing the delay of a
tuple driver-cell-sink we may degrade the delay of other cells
nearby. For instance, if the critical sink of the driver is not
the cell we are handling and if the cell moves away from
the driver it will probably increase the delay on the critical
cell due to the increased load capacitance. Here we use the
driver’s output pin importance as w0 and the cell’s output
pin importance as w1. Note that if the driver is more critical
than the sink, the cell will likely get close to the driver,
reducing its load capacitance and hence improving its delay.

4.4 Load Optimization
For critical nets with more than two cells, the sink cells

with no late violations (i.e. positive slack) are moved closer
to their driver cells in order to improve timing as shown
in Figure 5. The main idea behind this approach is to re-
duce the interconnection load capacitance of critical nets
and therefore improve the delay of the driver cell. Note
that, by moving non-critical sinks closer to the root of the
tree, besides reducing the total tree capacitance, we also are
reducing the cumulative impact of the sink capacitance in
the downstream nodes of the routing tree. Since the sinks
moved are non-critical, the paths passing through them are
likely to not generate new violations.

Nevertheless the movements are accepted only if they ac-
tually are likely to reduce timing violations in critical nets
and do not cause timing violation in the sink cells. Other-
wise, non-critical sink cells are kept in their initial position.

76

To accomplish that, after routing trees are re-built, the tim-
ing is updated locally.

CS

D

(a) Initial

CS

D

(b) Optimized

Figure 5: Load Reduction applied to a critical net. Non-
critical sinks (lighter cells) are moved closer to their driver
cell (D).

5. EARLY OPTIMIZATION
In this section, techniques for early violation mitigation

during the placement are also presented. We present four
algorithms targeted to minimize early violations. The pro-
posed algorithms explore wire load capacitance and resis-
tance of the critical nets and useful clock skew to minimize
early timing violations.

Let us consider a timing path between two registers. The
register at the beginning of the path is called input register
and the register at the end, output register. The early slack
in a register-to-register path is defined by Equation (12)

slackearlyD = atearlyD − ratearlyD

slackearlyD = learlyi + dearlypath − l
late
o − thold

(12)

where atearlyD and ratearlyD are the early arrival and required
time respectively at the data input pin of the output register,
learlyi and llateo are the early and late clock latency at the

clock pin of input and output registers respectively, dearlypath

is the early delay among the registers and thold is the hold
time of the output register.

According to Equation (12), the early slack can be im-
proved by (i) increasing the path delay, (ii) increasing the
clock latency at the input register, (iii) decreasing the clock
latency on the output register and (iv) decreasing hold time.
In this work, hold time is considered constant. The differ-
ence among the clock latencies is called clock skew.

5.1 Skew Optimization
The early slack can be improved by decreasing the clock

latency on the output register. One way to achieve that is
by moving the register closer to the clock source (e.g. a local
clock buffer) as depicted in Figure 6.

LCB

(a) Initial

LCB

(b) Optimized

Figure 6: Clock skew optimization by moving registers closer
to LCBs.

Although the latency on the moved register is typically
reduced, there might be side effects as latency changes on
other registers and on other data path delay. Also a register
can be both the start and end point of different paths. So
a reduction on the latency may improve the slack on the
incoming path, but may worsen the slack on the outgoing
path. However, our experimental results showed that this
technique is effective to improve early slack, on average.

5.2 Iterative Spreading
The iterative cell spreading tentatively moves all cells with

early timing violation to north, south, east and west. The
displacement from current position is set initially to 10% of
a maximum displacement. If a better position is not found,
the search area is gradually increased. The cost of a posi-
tion is calculated updating timing locally and checking if the
arrival time in the involved pins have increased.

5.3 Register Swap
Register swap tries to avoid the side effect on clock latency

present in clock skew optimization (Section 5.1). Assuming
that the registers are all the same (e.g. same size, Vth),
by swapping the registers driven by a same clock source,
the clock tree and its timing characteristics will not change.
Hence the latency on each tree endpoint can be seen as con-
stant.

The register swap is modeled as an assignment problem
similar to [6], which can be optimally solved in polynomial
time by the Hungarian algorithm [10]. The current register
positions are seen as the slots to where the register should be
assigned as illustrated by Figure 7. The goal is to minimize
the total cost of the assignment.

LCB

3

2

7

4

1

6

5

8

LCB

C

B

G

D

A

F

E

H

LCB

8->C

7->B

2->G

5->D

6->A

4->F

1->E

3->H

C

B

G

D

A

F

E

H

1

2

3

4

5

6

7

8

6

7

8

5

1

4

2

3

.

.

.

Figure 7: Register swap by optimal assignment.

The cost to assign a register i to a slot k is set as in
Equation (13) where criticalityearlyD and criticalityearlyCK are
the criticality of the data and clock pins of the register,
respectively. The maximum displacement constraint can be
modeled by setting an infinity cost whenever an assignment
violates the maximum allowed displacement.

cost(i, k) = llatecriticalityearlyD − learlycriticalityearlyCK (13)

The idea behind this cost function is as follows. When the
register acts as the output register (path ends at the data
pin), according to Equation (12), its clock latency should be
decreased to improve slack. In terms of assignment cost, a
larger latency should imply a larger cost (+llatecriticalityearlyD).
Similarly, when the register acts as the input register (path

77

starts at the clock pin), its clock latency should be increased.
From an assignment cost point of view, a larger latency
should imply a smaller cost (−learlycriticalityearlyCK). The
latencies are weighted by pin criticalities to optimize latency
based on the influence of registers on timing violations.

5.4 Register-to-Register Path Fix
A common source of hold violations is a path connect-

ing directly two registers, i.e. no combinational logical cells
between them, as show Figure 8.

LCB

Figure 8: Register-to-register early violation path fix.

Besides skew optimization, early (hold) violations can be
fixed by increasing the timing path delay. By setting the
early slack to zero in Equation (12), the path delay that
eliminates the violation is given by Equation (14).

dearlypath = llateo + thold − learlyi (14)

In the case of a direct path between registers, the timing
path delay is simply composed by the input register delay
plus the wire delay and it can be increased by moving the
registers apart. Assuming that the cell delay is modeled via
its driver resistance and the wire via Elmore delay, Equation
(14) can be rewritten as in Equation (15) where x is the
distance between the input and output registers and K =
llateo + thold − learlyi .

K = Ri (xCw + Co) + xRw

(
xCw

2
+ Co

)
(15)

Assuming that the latencies do not change as the registers
are moved apart and that the hold time is also constant (i.e.
K is constant), Equation (15) can be solved w.r.t. x as in
Equation (16).

x =

√
2CwRwK + Co

2Rw
2 + Cw

2Ri
2 − CoRw − CwRi

CwRw

(16)
Once the optimum wirelength, x, is calculated, the input

register is moved away from the output register following
the straight line formed by the two registers.

6. ABU REDUCTION
We implemented an algorithm to minimize Average Bin

Utilization (ABU) area violation. All cells with positive
slack inside of bins with ABU violation are ranked. The cells
with highest positive slack are moved first to the nearest bin
with enough room. The source and target bin utilization are
update incrementally after each cell movement. After each
cell is moved, the routing trees are rebuilt and the timing
updated locally. We only accept a cell movement if its es-
timated slack is still positive and the target bin utilization
is lower than the maximum area utilization allowed. The

process continues until all bins reach their target density or
no more cell can be moved.

7. FLOW
The techniques presented in this work are combined in

an incremental flow for timing-driven detailed placement, as
shown in Figure 9. The diamond shape indicates that the
steps are run until the quality of the result is not improved.
The circle shape indicates that the quality of the result can
degrade a certain number of times before exiting. The best
solution found is restored.

Early Optimization Late Optimization

Skew Optimization

Iterative Spreading

Register Swap

Reg-To-Reg Path Fix

Buffer Balancing

Cell Balancing

Load Optimization

Clustered Move

ABU Reduction

Initial Placement

Figure 9: Our incremental timing-driven detailed placement
flow.

The flow is divided into three main phases: early opti-
mization, late optimization and ABU reduction. Early and
late phases are divided into several steps.

In the early optimization phase, all early critical registers
are tentatively moved closer to their local clock buffers in
the Skew Optimization step. Registers are processed in in-
creasing order of criticality. Next the Iterative Spreading is
performed on all early critical cells. This is the only step al-
lowed to degrade the quality of result. The rationale is that
the clock skew has a large influence on early violations which
may introduce a large noise in the estimated timing changes.
Experiments show that it is better to allow degradation and
to keep track of the best solution than to stop immediately
when a degradation occurs. If the Iterative Spreading is not
able to remove all the early violations, the Register Swap
and Register-to-Register Path Fix are executed.

The late optimization phase begins by applying the Clus-
tered Movement on top most late critical cells in increasing
order of criticality. Once a cell is moved, it is not moved
again in the same iteration. Next a loop composed of one
iteration of Buffer Balancing, Cell Balancing and Load Opti-
mization is executed. Buffer and Cell Balancing are applied
for all late critical cells in increasing order of criticality. Load
Optimization is performed for all non-critical sinks of critical
nets. Cells are processed in increasing order of their driver
cell’s criticallity.

Finally, the ABU Reduction is performed to spread non-
critical cells and hence to reduce the number of regions with
high cell density.

7.1 Legalization
After a move is executed, the cell is likely to overlap other

cells and a legalization needs to be performed. Current

78

designs have a lot of free space intentionally added to im-
prove routablity and to make easier to perform incremental
changes such as sizing and detailed placement. Therefore,
to avoid disturbing the position of other cells, the legaliza-
tion, in this work, is performed by searching for the nearest
whitespace available around the intended target position.
Our legalization relies on Jezz [12] legalizer.

7.2 Filtering out Bad Moves
A cell movement may cause the routing trees connected to

the cell to change drastically and hence huge timing varia-
tion may occur, which misleads some optimization methods.
To avoid timing degradation caused by such changes and also
by legalization noise, local timing is evaluated and the move
is optionally committed only if the local timing violation is
reduced.

The degradation is computed as ∆cost where the cost is
the sum of the weighted arrival times of the neighboring
pins of the moved cell. In this work, the weight is set to
2 × centrality + criticality, which gives more importance
to TNS-critical pins. This weighting function also helps to
avoid focusing too much on Worst Negative Slack (WNS)
improvement which may cause side effect degradation on
TNS.

8. EXPERIMENTAL RESULTS
Our flow is implemented in C++11 and executed on an

IntelR© CoreTM i7-4790K CPU @ 4.00GHz × 8 CPU with
32GB running Ubuntu 14.04 LTS (64-bit). Our flow relies
on a built-in timer.

It is empirically validated using the ICCAD 2015 Incre-
mental Timing-Driven Placement Contest infrastructure [7].
Eight mixed-size benchmarks are available ranging from ap-
proximately 700k to 2M elements. Initial placement solu-
tions are provided for all benchmarks and they are optimized
using two configurations for the maximum cell displacement:
short and long. The quality of results is measured using
quality score [8], which takes into account the early and late
slack improvement and the ABU change.

Table 1 presents the benchmark characteristics and the
results of our flow along with the initial solution and the
results from the 1st place in the ICCAD 2015 Contest. The
timing information, Steiner Tree Wirelength (STWL) and
ABU are reported by the evaluation script provided by the
contest organizers. Runtimes were measured in different ma-
chines and they are mostly shown for reference. However it
is worth pointing out that our flow is about 4.6× faster, on
average, than the 1st place.

For long maximum cell displacement, compared to the 1st
place, our flow provides improved quality score results for
all benchmarks. Considering metrics individually, with the
exception of STWL, our flow also provides improved results
in almost all cases. The exceptions are early violations in
superblue7 and late violations in superblue5. Our flow is also
able to achieve zero early violations in 5 out of 8 benchmarks.

For short maximum cell displacement, our flow provides
improved quality score results on average. However results
are mixed for both circuits and metrics. Results from the 1st
place are particularly better on early WNS. This probably
comes from the fact that they perform Local Clock Buffer
(LCB) reallocation where registers can be connected to a
different LCB. Note that for short maximum displacement

the exploration space is reduced, which tends to flatten the
improvements obtained among different approaches.

8.1 Move Gains
Table 2 shows the average impact of each move over all

ICCAD 2015 benchmarks for short and long displacement.
The results were obtained by applying only one pass of each
technique directly to the initial solution. Note that the im-
provements of some moves may be better if they are com-
bined with other moves. Also some moves may benefit more
than others when multiple passes are performed.

As it can be seen the most effective method for early tim-
ing violation reduction is the Iterative Spreading. For late
timing violation reduction, the Cell Balancing technique is
the most effective one. The benefit of the Cell Balancing
over other moves is particularly prominent in the short dis-
placement.

Although very simple, the Load Reduction can achieve
a significant improvement on quality score for this set of
benchmarks. This comes at cost of increased density as mea-
sured by ABU, however such an increase is easily mitigated
by the ABU Reduction step. The step ABU Reduction does
not present quality score gains, in spite of its large gains
in the ABU penalty as the ABU improvement works as a
scaling factor in the quality score metric.

9. CONCLUSIONS
In this paper, we presented an incremental TDP flow com-

posed by several single-cell move techniques able to reduce
early and late timing violations.

Our results show that our drive strength aware load bal-
ancing technique is very effective to reduce late timing vi-
olations. Although load balancing can also be achieved via
cell sizing, by finding a more balanced cell position during
placement, one can reduce delay with no or minor impact
on power. Moreover, our techniques for early slack improve-
ment are able to remove violations for almost every bench-
mark.

Our TDP flow was empirically validated using the IC-
CAD 2015 contest infrastructure. It achieves, on average,
best timing closure compared to the 1st place team on the
contest particularly when cells are allowed to move greater
distances.

10. ACKNOWLEDGMENT
This work is partially supported by Brazilian Coordina-

tion for the Improvement of Higher Education Personnel
(CAPES) and by the National Council for Scientific and
Technological Development (CNPq).

11. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.

Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1993.

[2] A. Bock, S. Held, N. Kämmerling, and U. Schorr.
Local search algorithms for timing-driven placement
under arbitrary delay models. In DAC, pages
29:1–29:6. ACM, 2015.

[3] M. Burstein and M. Youssef. Timing influenced layout
design. In DAC, pages 124–130, June 1985.

79

Table 1: Experimental results of our incremental timing-driven placement flow on ICCAD 2015 contest benchmarks.

Benchmark
Cells / Macros

Max Disp.
Solution

Short Long

ABU
StWL Early (ps) Late (ps) Run-

Quality
Score

ABU
StWL Early (ps) Late (ps) Run-

Quality
Score

(µm) WNS TNS WNS TNS time (µm) WNS TNS WNS TNS time
×107 ×100 ×100 ×103 ×105 (min) ×107 ×100 ×100 ×103 ×105 (min)

superblue1 Initial 0.054 9.59 -9.34 -317 -4.98 -4.6 - - 0.054 9.59 -9.34 -317 -4.98 -4.6 - -
1.21M / 3787 1st Place 0.058 9.6 -3.83 -41.6 -4.67 -3.74 40.5 447.59 0.056 9.61 -16.7 -80.9 -4.57 -3.51 37.4 346.64

40µm / 400µm Ours 0.008 9.72 -9.25 -50.6 -4.61 -3.82 6.5 391.65 0.011 9.9 -9.25 -36.7 -4.46 -3.41 5.4 508.41
superblue3 Initial 0.029 11.4 -78.4 -1460 -10.1 -15 - - 0.029 11.4 -78.4 -1460 -10.1 -15 - -
1.21M / 2074 1st Place 0.031 11.4 -65.7 -684 -9.44 -13.7 19.4 243.18 0.031 11.5 -13.1 -214 -8.71 -11.6 22.4 551.74

40µm / 400µm Ours 0.007 11.5 -30.3 -434 -9.4 -13.4 7.8 351.05 0.008 11.6 -10.7 -91 -8.38 -9.33 7.6 755.54
superblue4 Initial 0.044 7.15 -12.6 -519 -6.22 -34.8 - - 0.044 7.15 -12.6 -519 -6.22 -34.8 - -
796k / 3471 1st Place 0.045 7.15 -6.08 -174 -5.94 -32 16.7 287.55 0.048 7.16 -12.3 -53.8 -5.76 -24.6 18.6 507.31

20µm / 400µm Ours 0.032 7.21 -11.8 -145 -5.98 -31.2 5.2 276.19 0.040 7.55 0 0 -5.68 -23.6 5.7 665.55
superblue5 Initial 0.021 10.8 -36.8 -591 -25.7 -69.7 - - 0.021 10.8 -36.8 -591 -25.7 -69.7 - -
1.09M / 1872 1st Place 0.022 10.8 -36.8 -586 -25.1 -67.8 14.7 40.67 0.021 10.8 -36.8 -618 -24.3 -58.4 15.9 179.53

30µm / 400µm Ours 0.000 10.8 -35.8 -291 -25.3 -67.2 6.3 149.11 0.000 10.9 0 0 -24.6 -59.9 3.2 469.52
superblue7 Initial 0.030 14 -7.65 -1990 -15.2 -18.6 - - 0.030 14 -7.65 -1990 -15.2 -18.6 - -
1.93M / 4910 1st Place 0.031 14 -6.75 -1940 -15.2 -17 42.8 98.48 0.031 14 -6.75 -1960 -15.2 -15.1 53.1 200.72

50µm / 500µm Ours 0.007 14.2 -7.53 -1970 -15.2 -16.1 8.1 141.32 0.007 14.2 -7.53 -1970 -15.2 -13.8 7.8 264.42
superblue10 Initial 0.042 20.5 -8.62 -621 -16.5 -332 - - 0.042 20.5 -8.62 -621 -16.5 -332 - -
1.88M / 1696 1st Place 0.043 20.5 -8.62 -361 -16.2 -325 22.5 111.87 0.043 20.6 -5.15 -374 -16.1 -315 25.3 181.33

20µm / 500µm Ours 0.020 20.6 -6.8 -383 -16.3 -319 11.8 142.67 0.012 21.1 0 0 -15.7 -280 9.3 492.91
superblue16 Initial 0.033 9.33 -10.7 -114 -4.58 -7.76 - - 0.033 9.33 -10.7 -114 -4.58 -7.76 - -

982k / 419 1st Place 0.041 9.36 -8.38 -30.7 -4.36 -5.14 22.8 524.72 0.040 9.37 -7.55 -37.6 -3.85 -2.66 32.0 894.76
30µm / 400µm Ours 0.000 9.4 -0.548 -0.9 -4.34 -4.72 6.5 735.00 0.000 9.54 0 0 -3.46 -1.96 3.8 1,209.42
superblue18 Initial 0.040 5.77 -19 -283 -4.55 -10.3 - - 0.040 5.77 -19 -283 -4.55 -10.3 - -

768k / 653 1st Place 0.043 5.77 -3.81 -69.4 -4.12 -9.44 22.8 365.26 0.045 5.78 -1.95 -6.86 -3.82 -7.76 27.0 613.07
20µm / 400µm Ours 0.013 5.83 -14.7 -81.9 -4.14 -9.48 4.5 302.28 0.010 5.9 0 0 -3.81 -6.45 3.6 780.90

Avg Change Initial -72.82 0.89 -26.41 -60.80 -4.43 -13.24 - - -72.92 2.64 -73.60 -85.36 -10.75 -32.90 - -
(%) 1st Place -74.00 0.79 45.25 -19.13 0.08 -2.31 - 48.55 -74.90 2.43 -68.92 -76.42 -2.31 -10.84 - 67.80

Table 2: Average impact of each technique over all ICCAD 2015 contest benchmarks for short and long maximum displacement.

Move Goal
Short Long

Quality Run-
ABU StWL

Early Late Quality Run-
ABU StWL

Early Late
Score time (s) WNS TNS WNS TNS Score time (s) WNS TNS WNS TNS

Iterative Spreading Early 56.31 0.52 0.0% 0.4% -6.7% -24.8% 0.0% 0.0% 128.71 0.62 0.0% 0.5% -26.2% -51.3% 0.0% 0.0%
Clock Skew Opto Early 43.32 0.03 0.0% 0.4% 5.9% -24.7% 0.0% 0.0% 125.57 0.03 -0.1% 0.5% -27.9% -48.8% 0.0% 0.0%
Register Swap Early 54.32 0.41 0.0% 0.5% -10.3% -22.0% 0.0% 0.0% 71.27 0.41 0.0% 0.5% -14.1% -28.6% 0.0% 0.0%
Reg-to-Reg Path Fix Early 5.13 0.03 0.0% 0.4% 1.6% -3.4% 0.0% 0.0% 29.86 0.04 0.0% 0.5% 0.6% -15.2% 0.0% 0.0%
Clustered Movement Late 15.90 9.29 0.1% 0.4% 0.0% 0.0% -0.7% -1.2% 52.87 9.33 0.1% 0.4% 0.0% 0.0% -2.8% -3.9%
Buffer Balancing Late 44.26 0.58 0.8% 0.5% 0.0% 0.0% -1.8% -3.6% 89.32 0.81 0.0% 0.5% 0.0% 0.0% -3.9% -7.0%
Cell Balancing Late 98.65 8.15 0.6% 0.5% 0.0% 0.0% -3.2% -8.2% 194.86 8.76 -0.2% 0.6% 0.0% 0.0% -6.3% -16.4%
Load Reduction Late 42.65 7.60 2.1% 0.6% 0.0% -0.1% -0.9% -3.8% 116.81 7.65 6.6% 1.8% 0.0% -0.3% -2.3% -10.5%
ABU Reduction ABU -0.03 8.67 -52.4% 0.6% 0.0% 0.0% 0.0% 0.0% -0.02 8.27 -58.5% 0.8% 0.0% 0.0% 0.0% 0.0%

[4] W. C. Elmore. The Transient Response of Damped
Linear Networks with Particular Regard to Wideband
Amplifiers. Journal of Applied Physics, 19(1):55–63,
Jan. 1948.

[5] C. Guth, V. Livramento, R. Netto, R. Fonseca, J. L.
Güntzel, and L. Santos. Timing-driven placement
based on dynamic net-weighting for efficient slack
histogram compression. In ISPD, pages 141–148.
ACM, 2015.

[6] S. Held and U. Schorr. Post-routing latch optimization
for timing closure. In DAC, pages 7:1–7:6. ACM, 2014.

[7] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan.
Iccad-2015 cad contest in incremental timing-driven
placement and benchmark suite. In ICCAD, pages
921–926, Nov 2015.

[8] M.-C. Kim, J. Huj, and N. Viswanathan. Iccad-2014
cad contest in incremental timing-driven placement
and benchmark suite: Special session paper: Cad
contest. In ICCAD, pages 361–366, Nov 2014.

[9] T. Kong. A novel net weighting algorithm for
timing-driven placement. In ICCAD, pages 172–176,
Nov 2002.

[10] H. W. Kuhn. The hungarian method for the
assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

[11] D. Papa, T. Luo, M. Moffitt, C. Sze, Z. Li, G.-J. Nam,
C. Alpert, and I. Markov. Rumble: An incremental
timing-driven physical-synthesis optimization
algorithm. TCAD, 27(12):2156–2168, Dec 2008.

[12] J. Puget, G. Flach, M. Johann, and R. Reis. Jezz: An
effective legalization algorithm forminimum
displacement. In SBCCI, Sept 2015.

[13] R.-S. Tsay and J. Koehl. An analytic net weighting
approach for performance optimization in circuit
placement. In DAC, pages 620–625, June 1991.

[14] N. Viswanathan, G.-J. Nam, J. A. Roy, Z. Li, C. J.
Alpert, S. Ramji, and C. Chu. Itop: Integrating
timing optimization within placement. In ISPD, pages
83–90. ACM, 2010.

[15] Q. B. Wang, J. Lillis, and S. Sanyal. An lp-based
methodology for improved timing-driven placement. In
ASP-DAC, volume 2, pages 1139–1143 Vol. 2, Jan
2005.

[16] C. S. William Swartz. Timing driven placement for
large standard cell circuits. In DAC, pages 211–215,
1995.

80

