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Abstract—Three-phase ac–dc converters have been devel-
oped to a matured level with improved power quality in terms of
power-factor correction, reduced total harmonic distortion at input
ac mains, and regulated dc output in buck, boost, buck–boost, mul-
tilevel, and multipulse modes with unidirectional and bidirectional
power flow. This paper presents an exhaustive review of three-phase
improved power quality ac–dc converters (IPQCs) configurations,
control strategies, selection of components, comparative factors, re-
cent trends, their suitability, and selection for specific applications.
It is aimed at presenting a state of the art on the IPQC technology
to researchers, designers, and application engineers dealing with
three-phase ac–dc converters. A classified list of around 450
research articles on IPQCs is also appended for a quick reference.

Index Terms—Harmonic reduction, improved power quality,
power-factor correction, switch-mode rectifiers, three-phase
ac–dc converters.

I. INTRODUCTION

THREE-PHASE ac–dc conversion of electric power is
widely employed in adjustable-speeds drive (ASDs),

uninterruptible power supplies (UPSs), HVdc systems, and
utility interfaces with nonconventional energy sources such as
solar photovoltaic systems (PVs), etc., battery energy storage
systems (BESSs), in process technology such as electroplating,
welding units, etc., battery charging for electric vehicles, and
power supplies for telecommunication systems [1]–[25]. Tradi-
tionally, ac–dc converters, which are also known as rectifiers, are
developed using diodes and thyristors to provide controlled and
uncontrolled unidirectional and bidirectional dc power. They
have the problems of poor power quality in terms of injected
current harmonics, resultant voltage distortion and poor power
factor at input ac mains and slowly varying rippled dc output at
load end, low efficiency, and large size of ac and dc filters. In
view of their increased applications, a new breed of rectifiers has
been developed using new solid-state self-commutating devices
such as MOSFETs, insulated gate bipolar transistors (IGBTs),
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gate-turn-off thyristors (GTOs), etc. Such converters are gener-
ally classified as switch-mode rectifiers (SMRs), power-factor
correctors (PFCs), pulsewidth-modulation (PWM) rectifiers,
multilevel rectifiers, multipulse rectifiers, etc. Because of the
strict requirement of power quality at the input ac mains, several
standards [1]–[3] have been developed and enforced on the
consumers. Because of the severity of power quality problems
some other options such as passive filters, active filters (AFs),
and hybrid filters [4], [7]–[9] along with conventional rectifiers
have been extensively developed, especially in large rating and
already existing installations. However, these filters are quite
costly, bulky, and have reasonable losses, which reduce overall
efficiency of the complete system. Even in some cases the rating
of converter used in active filters is almost close to the rating of
the load. Under such circumstances, it is considered better option
to use such converters as an inherent part of the system of AC-DC
conversion, which provides reduced size, high efficiency, and
well controlled and regulated DC to provide comfortable and
flexible operation of the system. Moreover, these new types
of AC-DC converters are being included in the new textbooks
and several comparative topologies are reported in recent
publications [10]–[17]. Therefore, it is considered a timely
attempt to present a broad perspective on the status of ac–dc
converters technology for the engineers using them and dealing
with power quality issues.

This paper presents a comprehensive survey on three-phase
ac–dc converters. More than 450 publications [1]–[477] are re-
viewed and classified into three major categories. Some of them
are further classified into several subcategories. The first one
[1]–[25] is general on power quality standards, other options,
texts, and some surveys and comparative topology publica-
tions. The second and third categories are on unidirectional and
bidirectional power flow ac–dc converters [26]–[477]. These
converters are further subclassified as boost [26]–[245], buck
[246]–[347], buck–boost [348]–[383], multilevel [384]–[430],
and multipulse ac–dc converters [431]–[477]. The total number
of configurations of these converters is divided into ten cate-
gories. The paper is divided into nine parts. Starting with the
introduction (Section I), other sections cover the state of the art
of IPQC technology (Section II), configurations (Section III),
control strategies (Section IV), components selection for IPQCs
(Section V), comparative factors and others options for power
quality improvement (Section VI), selection considerations
of IPQCs for specific applications by the designers (Section
VII), latest trends and future developments in IPQC technology
(Section VIII), and a conclusion (Section IX).

0278-0046/04$20.00 © 2004 IEEE
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Fig. 1. Converter-based classification of improved power quality converters.

II. STATE OF THE ART

IPQC technology is matured at a reasonable level for ac–dc
conversion with reduced harmonic currents, high power factor,
low electromagnetic interference (EMI) and radio frequency in-
terference (RFI) at input ac mains and well-regulated and good
quality dc output to feed loads ranging from fraction of kilowatt
to megawatt power ratings in a large number of applications.
These were developed in the last couple of decades with varying
configurations, control strategies, solid-state devices, circuit in-
tegration, varying magnetics in topologies such as boost, buck,
buck–boost, and multilevel for unidirectional and bidirectional
power flow. A large number of IPQC configurations have been
evolved to suit vastly varying applications while maintaining a
high level of quality at input ac source and output dc loads.

In some applications, a constant-regulated output dc voltage
is required with unidirectional power flow such as in UPSs,
ASDs in fans, air conditioners, etc., while in some other
applications, a bidirectional power flow is required. Therefore,
these IPQCs are categorized into unidirectional boost con-
verters [26]–[86] and bidirectional boost converters [87]–[245].
Moreover, there are a number of applications which require
widely varying dc voltage, normally fed from a conventional
semiconverter or fully controlled thyristor converter with
unidirectional or bidirectional power flow. To replace the
conventional thyristor-based semi and full converters, a breed
of improved power quality converters has been developed and
classified as unidirectional buck [246]–[263] and bidirectional
buck converters [264]–[347] using PWM switching with
self-commutating solid-state devices. Moreover, there are some
typical applications which require buck and boost operations
in the same converter, therefore, an additional classification of
buck–boost converters is made with unidirectional [348]–[373]
and bidirectional power flow [374]–[383]. However, for
high-voltage and high-power applications, the concept of
multilevel converters is developed which may avoid a low-fre-
quency transformer and reduces the switching frequency of
the devices [384]–[430]. Therefore, the next category of IPQC
is considered as multilevel converters with unidirectional
[384]–[400] and bidirectional power flow [401]–[430].

In high-power applications, ac–dc converters based on the
concept of multipulse, namely, 12, 18, 24, 30, 36, 48 pulses
are used to reduce the harmonics in ac supply currents. These
are named as multipulse converters [431]–[477]. They use ei-
ther a diode bridge or thyristor bridge and a special arrange-
ment of magnetics through transformers and tapped inductors.
Therefore, the last category is multipulse converters with unidi-
rectional [431]–[455] and bidirectional power flow [456]–[477].

One of the important reasons for such an extensive develop-
ment in ac–dc converters is due to self-commutating devices.
At low power rating, MOSFETs are used with unsurpassed per-
formance because of their high switching rate with negligible
losses. At medium power rating, an IGBT is considered an ideal
device for such converters with PWM technology. At a higher
power rating, a GTO is normally used with self-commutating
and reverse voltage-blocking capabilities at only a few kilo-
hertz switching frequency. A number of manufacturers are de-
veloping an intelligent power module (IPM) with several de-
vices to give a cost effectiveness and compact size to the IPQCs.
Another breakthrough in IPQCs has been because of fast re-
sponse Hall-effect voltage and current sensors, and isolation am-
plifiers normally required for the feedback used in the control
of these ac–dc converters result in a high level of dynamic and
steady-state performance. Many manufacturers, such as ABB,
LEM, HEME, Analog Devices, and others are offering the sen-
sors at competitively low prices.

A major boost to the technology of IPQCs has also been due
to the revolution in microelectronics. Because of the heavy
volume requirement, a number of manufacturers have developed
dedicated ICs for cost-effective and compact control of these
converters. Moreover, high-speed microcontrollers and digital
signal processors (DSPs) are available at reasonable cost. Many
processors have been developed to give direct PWM outputs
with fast software algorithms such as space-vector control (SVC)
[36], [39], [47], [66], [103], [129], [152], [168], [215], [369],
[417], normally used in some of these converters, which reduce
hardware drastically. With these processors it is now possible
to implement new and improved control algorithms to provide
fast dynamic performance of IPQCs. Starting with proportional–
integral (PI) controllers, sliding-mode, fuzzy logic, and neural-
network-based controllers have been employed for the control of
theseconverters.Moreover,anumberof instrumentsareavailable
to measure the performance of these IPQCs, which are named
as power analyzers, power scopes, power monitors, and spec-
trum analyzers. They provide direct harmonic spectrum, total
harmonic distortion (THD) even up to 51st order of harmonics,
power factor, crest factor, displacement factor, kVA, kVAr, kW
and kWh, ripples, surge, swell, notch width, and height.

III. CONFIGURATIONS OF IPQCS

IPQCs are classified into ten categories on the basis of con-
verter circuit topologies such as buck, boost, buck–boost, mul-
tilevel, and multipulse, with unidirectional and bidirectional dc
ouput voltage, current, and power flow. Fig. 1 shows the tree of
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Fig. 2. (a) Single-switch unidirectional boost converter. (b) Two-switch
unidirectional boost converter using zigzag injection transformer (Minnesota
rectifier). (c) Three-switch unidirectional boost converter (Vienna rectifier).
(d) Unidirectional boost converter using isolated Scott connection transformers.

such classification of IPQCs. These converters are developed in
such vastly varying configurations as to fulfill the very close and
exact requirement in a variety of applications. Figs. 2 –11 show
basic circuit configurations of three-phase IPQCs of all ten cat-
egories for ac–dc conversion.

A. Unidirectional Boost Converters [26]–[86]

These types of converters are widely used nowadays as a
replacement of a conventional diode rectifier to provide unity
power factor, reduced THD at ac mains, and constant-regu-
lated dc output voltage even under fluctuations of ac voltage
and dc load. Fig. 2 shows the few circuits of this category
of converters. There is wide variety of configurations with
single-switch, two-switch, three-switch, etc., to improve their
performance toward ideal power quality conditions at ac
input mains and dc output. Single-switch with passive filter
[Fig. 2(a)] [26]–[28], Minnesota rectifier [Fig. 2(b)] using
harmonic current injection through a zigzag transformer [27],
[29], Vienna rectifier [Fig. 2(c)] [41], [72], [78], [84], [86],
and isolated Scott-connected transformer with dual-boost PFC
[Fig. 2(d)] [25] are a few pioneer configurations of these types

(a)

(b)

(c)

(d)

Fig. 3. (a) Four-switch bidirectional boost converter. (b) VSI-bridge-based
bidirectional boost converter. (c) Four-wire bidirectional boost converter.
(d) Four-legged bidirectional boost converter.

of converters. However, large numbers of circuits of these con-
verters are reported using a combination of single-phase boost
converters [34] and other modified topologies and extensively
used in power supplies and motor speed control.

B. Bidirectional Boost Converters [87]–[245]

For the bidirectional power flow from ac mains to dc output
and vice versa, an ideal converter is normally used in hoisst,
cranes, lifts, BESSs, line interactive UPSs, etc. [89], [90], [92],
[93]. Fig. 3 shows the few circuit diagrams of these bidirectional
converters. The closed-loop control of dc-bus voltage decides
the amplitude of supply currents, which are in phase with ac
mains voltages. PWM current control of the voltage-source-in-
verter (VSI)-based converter maintains the ac supply current
close to sinusoidal and in phase with ac mains voltages.

These converters are developed using four switches to reduce
the cost [Fig. 3(a)] for variable-speed induction motor drives
[151]. Ideally, a six-device VSI bridge is used in the majority of
cases [Fig. 3(b)] [92]. However, four-wire topologies [Fig. 3(c)
and (d)] [206], [235] are employed to reduce the dc-link voltage
ripple and balancing the supply currents, even in the case of un-
balance supply voltages. There have been many pioneer devel-
opments in these converters, such as sensorless control to reduce
cost and number of components in the hardware [119], [120],
[163], [188], [211], [213], [228], [230], [233], [234], [245].
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Fig. 4. (a) Single-switch unidirectional buck converter. (b) Two-switch
unidirectional buck converter. (c) Three-switch unidirectional buck converter.
(d) Three-phase CSI-based unidirectional buck converter.

C. Unidirectional Buck Converters [246]–[263]

This is a replacement of the thyristor semiconverter with
improved power quality at ac mains and output dc bus. It pro-
vides the voltage below the base voltage. Fig. 4 shows the
circuits of these converters. The requirement of the filter is
normally high in this case. Several topologies, namely, using
single device [Fig. 4(a)] [247], two devices [Fig. 4(b)] [251]
with harmonic injection transformers, three devices with dual
diode [Fig. 4(c)] [249], [259], [263], and six devices with free-
wheeling diode [Fig. 4(d)] [258] are reported in the literature
to improve the power factor and reduce the harmonic currents
at input ac mains and well regulated filtered output dc voltage.
High-frequency PWM control of switching devices reduces the
size of input and output filters, weight, and enhances the effi-
ciency of the overall system. These converters are extensively
used in battery charging in automotive applications [252], and
dc motor speed control in a number of applications. In these
converters, the inrush currents are observed to be of low value.
It is because the controlled device (IGBT) is connected in se-
ries path of the current flow. These converters are capable of
giving the output dc voltage from zero to nominal values at
quite a fast rate.

(a)

(b)

(c)

Fig. 5. (a) GTO-based bidirectional buck converter. (b) IGBT-based
bidirectional buck converter. (c) Four-pole bidirectional buck converter.

D. Bidirectional Buck Converters [264]–[347]

Fig. 5 shows the circuits of such converters. It provides a
similar function as a conventional thyristor bridge converter
but with improved power quality in terms of high power factor
and reduced harmonic currents at ac mains and fast regulated
bidirectional output voltage for reversible power flow. These
are developed using GTOs at higher power ratings as shown
in Fig. 5(a) [271], [274] and using IGBTs with series diodes
[Fig. 5(b)] [310] at low power ratings with high switching
frequency, resulting in reduced size of filter components. The
four-leg configuration, as shown in Fig. 5(c) [314], is imple-
mented to reduce the output dc ripple and balanced currents
under unbalance voltage of the mains. IGBTs, bipolar junction
transistors (BJTs), and MOSFETs need series diodes to provide
reverse voltage blocking capability required in this converter.
These two bridges connected in antiparallel provide behavior
similar to a dual converter for four-quadrant operation with
improved power quality and fast response [278].

E. Unidirectional Buck–Boost Converters [348]–[373]

Fig. 6 shows some circuits of these converters. These are used
in a wide variety of applications. They may have either isolated
or nonisolated dc output from input ac mains. It consists of a
combination of buck and boost converters as shown in Fig. 6(a)
[259]. These converters are also realized as a combination of
three-phase diode bridge with filter and buck–boost dc–dc con-
verters such as SEPIC [Fig. 6(b)] [364], flyback [368], [371],
Cuk [360], etc. For the isolated dc output with a high-frequency
transformer to reduce the size, a diode rectifier in conjunction
with flyback [Fig. 6(c)] [366], isolated Cuk [Fig. 6(d)] [360],
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(a)

(b)

(c)

(d)

Fig. 6. (a) Four-switch unidirectional buck–boost converter. (b) SEPIC-
derived unidirectional buck–boost converter. (c) Flyback-derived unidirectional
buck–boost converter. (d) Isolated Cuk-derived unidirectional buck–boost
converter.

and many others, such as Zeta [373], SEPIC [364], bridge, half-
bridge, and push–pull are used with a first stage PFC. Nowa-
days, two-stage conversion is integrated together and even in
single stage it is possible to achieve the same level of perfor-
mance, as shown in Fig. 6(c) and (d) [366], [368] using single
switch. There are such novel configurations to provide compact,
integrated, high-power-density, high-efficiency power supplies
for use in a number of applications such as telecommunication
power supplies, battery charger units, etc.

F. Bidirectional Buck–Boost Converters [374]–[383]

There are some applications which require output dc voltage
widely varying from low voltage to high voltage with bidirec-
tional dc current as four-quadrant operation and bidirectional
power flow. These converters can be implemented in many
ways, such as cascading the buck and boost converters, but the
simplest way of realizing them is by using a matrix converter
as shown in Fig. 7 [382]. With the high-frequency switching,

Fig. 7. Matrix-converter-based bidirectional buck–boost converter.

the size of the input ac filter and output dc filter is reduced
which allows the fast response of this converter. It is capable
of working as bidirectional buck and bidirectional boost
converters and is an ideal solution for ac–dc conversion. It
is derived from matrix converters normally used for ac–ac
conversion for a wide frequency range at input as well at output.
It can also be realized using GTOs for high power rating but
with restricted switching frequency. Since it (GTO) does not
need an additional series diode, its offers high efficiency.

G. Unidirectional Multilevel Converters [384]–[400]

Fig. 8 shows some of the basic circuits of these converters.
The concept of multilevel is used to reduce the harmonics
and switching losses in the converter through operating the
switching devices at low switching frequency. Three-level
three-phase converters can be implemented using either three
devices [Fig. 8(a)] [398] or six devices [Fig. 8(b)] [400].
However, higher level converters such as a five level shown
in Fig. 8(c) [400] require a higher number of devices but can
avoid PWM switching losses while maintaining the same level
of performance in terms of power quality at input ac mains
and regulated dc output. These converters also offer boost
operation for the output voltage with unidirectional power flow.
It has lower voltage stresses on the devices and avoids PWM
switching of them and, therefore, it is an ideal converter for
high-voltage and high-power applications. These converters
can be developed for a high number of levels to offer reduced
THD and improved power factor of supply current at input ac
mains and reduced ripple and regulated dc output voltage under
varying load conditions.

H. Bidirectional Multilevel Converters [401]–[430]

Fig. 9 shows some circuit diagrams of bidirectional mul-
tilevel converters. These are used at high power ratings at
high voltages with boost voltage for bidirectional power flow.
These are further classified as clamped diode type [Fig. 9(a)]
[400] and (b) [401] for three and five level), flying capacitor
type [Fig. 9(c)] [404], and cascaded type multilevel con-
verters. These converters are recommended for high-power and
bidirectional power flow applications such as battery energy
storage systems [401], four-quadrant variable-speed ac motor
drives [411], [414], HVdc transmissions, flexible alternating
current transmission systems (FACTs) [428], and static var
compensation, to offer high efficiency and low THD of voltage
and currents in the absence of PWM switching. For low- and
medium-power applications, the IGBT is an ideal device,
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(a)

(b)

(c)

Fig. 8. (a) Three-switch unidirectional three-level converter. (b) Six-switch
three-level unidirectional converter. (c) Unidirectional five-level converter.

however, for high-power applications, the GTO is invariably
used. These converters provide a high level of power quality at
input mains with reduced THD, high power factor and reduced
EMI noise and boost, and ripple free, regulated dc output
voltage insensitive to load and supply disturbances. They also
avoid the use of transformers in some applications, which
further enhances the efficiency of these converters.

I. Unidirectional Multipulse Converters [431]–[455]

Fig. 10 shows some of the circuits of these converters.
Normally, diode bridges are used with a higher number of
pulses for reducing harmonics in ac mains and reduced value
of ripple voltage in the dc output. These are developed in 12-,
18-, 24-, 30-, 36-, 48-pulse, etc., converters, through input mul-
tipulse auto/isolation transformers and ripple current injection
employing interphase reactors. It has been reported by many
investigators that it is possible to reduce the THD of supply
current below 2% even in 18-pulse converters [13], [433]. The
rating, size, cost, and weight of different components of these
converters are reduced using novel concepts in autotransformer

(a)

(b)

(c)

Fig. 9. (a) Three-level diode-clamped bidirectional converter. (b) Five-level
diode-clamped bidirectional converter. (c) Five-level flying capacitor bidirec-
tional converter.

configurations to achieve a higher number of phases from input
three-phase AC mains through phase splitting at different an-
gles, some of which are shown in Fig. 10(a) [13], (b) [13], and
(c) [445] for 12-, 18-, and 24-pulse converters. The concepts of
phase shift through input transformers and pulse multiplication
through input tapped reactors and injection transformers at the
dc link are at the heart of these converters. Normally, these con-
verters employ only slow converter grade diodes, thus resulting
in negligible switching losses and high efficiency, high power
factor, low THD at input ac mains, and ripple-free dc output of
high quality.
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(a)

(b)

(c)

Fig. 10. (a) Unidirectional 12-pulse converter. (b) Unidirectional 18-pulse
converter. (c) Unidirectional 24-pulse converter.

J. Bidirectional Multipulse Converters [456]–[477]

These converters normally use thyristors and harmonics
reduction is made effective with pulse multiplication using
magnetics [463]. Fig. 11 shows the two typical circuits of such
converters [477]. The use of fully controlled thyristor bridge
converters offers bidirectional power flow and adjustable output
dc voltage. The use of a higher number of phases through an
input multiple winding transformer and pulse multiplication
using tapped reactor [463], and an injection transformer [456],
reduces THD to input ac currents and ripples in the output
dc voltage. These converters are used in high rating dc motor
drives, HVdc transmission systems, and in some typical power
supplies. Fig. 11(a) [477] shows a typical multipulse converter,
which can be operated as a 6-, 12-, and 24-pulse converter.
Similarly, the converter shown in Fig. 11(b) [458], [463] can
be operated in 12-, 24-, and 48-pulse modes of operation. The
cost and weight of input transformers can be reduced by using
autotransformers in low- and medium-voltage applications.

IV. CONTROL OF IPQCS

The control strategy is the heart of IPQCs and is implemented
in three parts. In the first part of the control algorithm, the
essential variables used in control are sensed and scaled to
feed to the processors for use in the control algorithm as the
feedbacks. These signals are normally input ac mains voltages,
supply currents, output dc voltage and, in some cases, addi-
tional voltages such as capacitor voltages and inductor currents
are used in the intermediate stage of the converters. The ac
voltage signals are sensed using potential transformers (PTs).
Hall-effect voltage sensors, isolation amplifiers, and low-cost

(a)

(b)

Fig. 11. (a) 24-pulse bidirectional midpoint reactor converter. (b) 48-pulse
bidirectional converter.

optocouplers are used to sense dc voltages. These voltage sig-
nals are scaled and conditioned to the proper magnitude to feed
to the processors via ADC channels or as the synchronizing
signals for zero-crossing detection. The current signals are
sensed using current transformers (CTs), Hall-effect current
sensors, and low-cost shunt resistors or tapped isolated winding
in the inductors to reduce the cost. These current signals are
also conditioned and used as feedbacks at different stages of
control either in the control algorithm or in the current control
stage such as in PWM controllers or in both stages of control.
These signals are sometimes filtered either through analog
hardware circuits or through software in the processor to avoid
noise problems in the control. These sensed voltage and current
signals are also used sometimes to monitor, measure, protect,
record, and display the various performance indexes such as
THD, displacement factor, distortion factor, power factor, crest
factor, individual harmonics, ripple factor, percentage ripples,
sag and swell, surges and spikes, components stresses, etc. The
cost of these sensing devices such as Half-effect sensors and
other components used in sensing are being drastically reduced
day by day because of mass manufacturing and competition
among manufacturers. Moreover, some indirect sensing of
these signals is also used through additional feedback nodes
(terminal) in the IPM of MOSFETs and IGBTs to reduce the
cost and to enhance the reliability of the converter.

The second stage of control is the control algorithm re-
sponsible for the transient and steady-state performance of the
IPQCs. The control algorithm is implemented through analog
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controllers or low-cost microcontrollers in low-power-rating
converters. However, the DSPs and application-specific inte-
grated circuits (ASICs) are used to control converters of high
power ratings in sophisticated systems, depending upon the
customer requirements. Normally, the dc output voltage of
converters is the system output used as feedback in outer closed
loop control. Various control approaches such as the PI control,
proportional–integral–derivative (PID) control, sliding-mode
control (SMC) [104], [138], [150], [175], [196], [218], [224],
[318] also known as variable-structure control (VSC), fuzzy
logic controllers (FLCs) [139], [161], [192], [202], [226],
adaptive controllers, neural-network (NN)-based controllers
[140], [149], [300], [302] are employed to provide fast dynamic
response while maintaining the stability of the converter system
over the wide operating range. The output of voltage controller is
normally considered the amplitude of input ac mains current or
indirect derived current such as inductor current and multiplied
with units template in phase with ac voltages to derive the refer-
ence desired unity power factor and sinusoidal supply currents.

The third stage of the control strategy of the IPQCs is to
derive the gating signals for the solid-state devices of the
converters. Reference supply currents along with sensed supply
currents are used in the current controllers, which directly
generate switching signals. A number of current controllers,
namely, hysteresis, PWM current or PWM voltage control
employing proportional, PI-, PID-, SMC-, FLC-, and NN-based
controllers, are implemented either through hardware (analog
and digital ICs) or through software in the same processors
(DSPs or microcontrollers, which are used in the second stage)
to derive gating signals. Nowadays, processors are available
which are developed only for power electronics applications
and have dedicated PWM controllers as a built-in feature to
implement concurrently all three stages of control strategy for
improving transient and steady-state performance of the IPQCs.

Moreover, in some control approaches, the second and
third stage of control strategy of IPQCs are implemented in
the integrated manner using some transformations such as
“ ,” “d-q” over the sensed voltage and current signals. The
transformed voltage and/or current or derived power signals are
used in the closed loop controllers to derive reference current
or voltage signals for generating gating signals. The concurrent
and integrated implementation of three stages of control
algorithm provides cost effective, compact, fast response of the
IPQCs.

V. COMPONENTS SELECTION FOR IPQCS

Selection of components of IPQCs is very important to
achieve a high level of performance of ac–dc converters. The
main and costly component of the IPQCs is the solid-state
power devices. In low-power-rating converters, MOSFETs
are normally used, resulting in reasonably high efficiency
even at high switching frequency, which is responsible for
reducing the size of magnetics. In the medium power rating of
IPQCs, IGBTs are invariably used because of their good gating
characteristics and capability of operating in a wide switching
frequency range to make an optimum balance between mag-
netics, size of filter components, and switching losses. At high

power ratings, GTOs are normally used, with the advantages of
self-commutating and reverse voltage-blocking capability. In
multipulse converters, thyristors and diodes are still employed
with the expected level of performance of IPQCs.

The concepts of power module, IPM, smart devices, etc., have
given a real boost to IPQC technology because of circuit integra-
tion, compactness, cost reduction, reduced noise, and high effi-
ciency. With several power devices in one module along with
their gating and protection integration, it has become possible
to get small-sized and lightweight IPQCs. In many cases, the
complete control of IPQCs is also integrated in the same module
along with the modifications to suit specific applications.

Other components of IPQCs are energy storage elements such
as inductors, capacitors, and other devices used in filters, pro-
tection circuits, and resonating circuits. For example, a series
inductor at the input of a VSI bridge working as a bidirectional
boost converter is normally employed as the buffer element be-
tween ac mains voltage and PWM voltage generated by the con-
verter to shape the input current in a desired manner. The value
of this inductor is quite crucial in the performance of IPQCs.
With the small value of this inductor the large switching rip-
ples are injected into the supply current, and large value does
not allow shaping the ac mains current in a desired fashion.
Therefore, the optimum selection of this inductor is essential
to achieve satisfactory performance of the IPQCs. Similarly,
the value of the capacitor and inductor as the input filter in a
buck converter is also quite important for proper response, sta-
bility, and optimum design of the IPQCs. Moreover, designs
of inductors are also very important to avoid saturation and re-
ducing losses under ac, dc, and mixed excitation. The value of
the dc-bus capacitor in boost converters is quite crucial as it af-
fects the response, cost, stability, size, and efficiency. A small
value of dc-link capacitor results in a large ripple in steady state
and a big dip and rise in dc-link voltage under transient condi-
tions. A high value of it reduces the dc voltage ripple but in-
creases cost, size, and weight.

Transformers operating at low frequency are used in multi-
pulse converters in which transformer connection, weight, size,
and rating are quite important. There are continuous attempts
to reduce their size and cost through new configurations
and with the use of tapped reactors at the dc link. However,
high-frequency transformers are used in isolated topologies
of IPQCs and their design is very important to reduce size,
cost, and losses. The use of newer magnetic materials and
operating frequency plays an important role to revolutionize
the technology of IPQCs.

VI. COMPARATIVE FACTORS OF IPQCS AND OTHER OPTIONS

OF POWER QUALITY IMPROVEMENT

The IPQCs classified in ten categories mentioned in the
previous section do not clash with each other in the way of
ac–dc conversion and have all together different features to
suit a number of applications. Therefore, according to the
requirement of application and/or second-stage conversion,
a particular choice of IPQCs may be considered to provide
the best suitable option. However, within the same category
of IPQCs, there are many circuits which have relative merits
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and demerits toward ideal characteristics. These additional
configurations have improved performance but at higher cost.
Therefore, the designer has to decide on a configuration of par-
ticular IPQCs on the basis of a tradeoff between performance
and cost. Similar comparison exists for other IPQCs within
these different configurations. In some cases, a choice can
also be made among different IPQCs for specific applications.
However, in such case, there are not many options for the
designer to select and one can have a straightforward decision
to opt for the right IPQC, which offers better performance at
comparable cost. There are also some other options for power
quality improvement in ac–dc conversion. For example, one
can choose a series active filter or shunt active filter or hybrid
filter in the input of the diode rectifier with a capacitive filter at
the dc output to feed a number of dc loads [7]–[9]. Moreover,
in IPQCs, also, one can choose a multipulse converter or
three-phase unidirectional boost converter with one device, two
devices, or multilevel configuration. It means one can have a
number of options to select one of the best configurations of the
converter for a particular application. For example, if a diode
bridge rectifier is already working on site, then filters may be
the right option in such a case. Moreover, one has to choose the
best filter configuration among all possible options. However,
if a designer is at the deciding design stage, then IPQCs may
be the better option, which may provide improved performance
in terms of output dc voltage regulation and high power factor
and low THD of mains current. Similar situations may occur in
the number of cases and the design engineer must be aware of
all possible options and their relative features to select the best
converter from an overall point of view.

VII. SELECTION OF IPQCS FOR SPECIFIC APPLICATIONS

Selection of IPQCs for a specific application is an important
decision. The following are some of the factors responsible for
selection of right converter for specific applications:

• required level of power quality in input (permitted PF, CF,
THD);

• Type of output dc voltage (constant, variable, etc.);
• power flow (unidirectional and bidirectional);
• number of quadrants (one, two, or four);
• nature of output DC (isolated, nonisolated);
• requirement of output dc (buck, boost, and buck–boost);
• required level of power quality in output (voltage ripple,

sag, and swell);
• type of dc load (linear, nonlinear, etc.);
• cost, size, and weight;
• efficiency;
• noise level (EMI, RFI, etc.);
• rating (kilowatt, megawatt, etc.);
• reliability;
• environment (ambient temperature, altitude, pollution

level, humidity, types of cooling, etc.)
These are only some factors. There are some more consider-

ations such as comparative features of other options of power
quality improvement, types of device, magnetic components,
protection, etc., in the selection of best IPQCs for a specific ap-
plication.

VIII. LATEST TRENDS AND FURTHER DEVELOPMENTS

IN IPQCS

IPQC technology has developed to a mature level and is
employed in widespread applications in fraction of kilowatt
to megawatt converter systems such as UPSs, ac–dc–ac links,
BESSs, ASDs, etc. However, there are new developments in
IPQCs for further improvements in their performance. The
new trends are improved control algorithms and soft-switching
techniques to reduce switching losses in IPQCs even at high
switching frequency, to enhance the dynamic response, and to
reduce the size of energy storage elements (filters at input and
output, high-frequency transformers). The new developments
toward single-stage conversion have resulted in increased
efficiency, reduced size, high reliability, and compactness of
IPQCs.

Sensor reduction has also revolutionized the IPQC tech-
nology to reduce their cost and enhance their reliability. Novel
configurations in autotransformers for multipulse converters
have resulted in their reduced size, cost, rating, weight, and
losses. The new approaches in multilevel converters are offering
high efficiency, reduced stress on devices, and a low level of
high-frequency noise.

The further improvement in solid-state device technology in
terms of low conduction losses, higher permissible switching
frequency, ease in gating process, and new devices, especially
low voltage drop and reduced switching losses, will give a real
boost for IPQCs in low-voltage dc power applications. The mul-
tiple device integration into a single power module as a cell for
direct use as a configuration of IPQCs will result in size re-
duction, increased efficiency, and low-cost option. The sensors,
control, gating, and protection integration in the IPM will pro-
vide a new direction in the development of IPQCs. Dedicated
processors and ASICs development for IPQCs are also expected
in the near future to reduce their cost, provide ease in control,
and result in compact and efficient ac–dc conversion. The inven-
tion of new configurations and reduction in conversion stages in
IPQCs will help explore a number of newer applications.

IX. CONCLUSION

A comprehensive review of three-phase IPQCs has been car-
ried out to explore a broad perspective on their different con-
figurations to researchers, design and application engineers,
and end users of ac–dc converters. The proposed classification
of IPQCs in ten categories with further subclassification of
various circuits is expected to provide an easy selection of an
appropriate converter for a specific application. These IPQCs
may be considered to be better alternatives for power quality
improvement because of reduced size of the overall converter,
higher efficiency, lower cost, and enhanced reliability com-
pared to other means of power quality improvement. These
converters provide improved power quality not only at input
ac mains but also at dc output for better design of the overall
equipment. Moreover, the use of these IPQCs results in any
equipment behaving as a linear resistive load at the ac mains.
The new developments in device technology, processors, mag-
netics, and control algorithms, will result in a real boost to
these IPQCs in the near future.
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[113] V. Vlatković, D. Borojević, and F. C. Lee, “A new zero-voltage
transition, three-phase PWM rectifier/inverter circuit,” in Proc. IEEE
PESC’93, 1993, pp. 868–873.

[114] T. Singh and S. B. Dewan, “Modeling and control of a high power pulse
width modulated synchronous rectifier,” in Conf. Rec. IEEE-IAS Annu.
Meeting, 1993, pp. 957–964.

[115] J. M. Retif, B. Allard, X. Jorda, and A. Perez, “Use of ASIC’s in PWM
techniques for power converters,” in Proc. IEEE IECON’93, 1993, pp.
683–688.

[116] P. Verdelho and G. D. Marques, “Decoupled model of the PWM voltage
converter connected to the ac mains,” in Proc. IEEE IECON’93, 1993,
pp. 1021–1026.

[117] T. G. Habetler, “A space vector-based rectifier regulator for AC/DC/AC
converters,” IEEE Trans. Power Electron., vol. 8, pp. 30–36, Jan. 1993.

[118] J. W. Kolar, H. Ertl, and F. C. Zach, “Quasidual modulation of
three-phase PWM converters,” IEEE Trans. Ind. Applicat., vol. 29, pp.
313–319, Mar./Apr. 1993.

[119] C.-T. Pan and T.-C. Chen, “Modeling and analysis of a three phase PWM
AC-DC converter without current sensor,” Proc. Inst. Elect. Eng., pt. B,
vol. 140, pp. 201–208, May 1993.

[120] Y. Ito, Y. Kanno, and S. Kawauchi, “Source voltage sensor-less digital
control using observer for PWM converter,” in Proc. IEEE PESC’94,
1994, pp. 160–165.

[121] P. Roual, H. Pouliquen, and J. P. Louis, “Non linear control of PWM
rectifiers by state feedback linearization and exact PWM control,” in
Proc. IEEE PESC’94, 1994, pp. 1095–1102.

[122] Y. Jiang, H. Mao, F. C. Lee, and D. Borojevic, “Simple high perfor-
mance three-phase boost rectifiers,” in Proc. IEEE PESC’94, 1994, pp.
1158–1163.

[123] A. Draou, Y. Sato, and T. Kataoka, “A fast current control method for
voltage type PWMac-dc converter system,” in Proc. IEEE IECON’94,
1994, pp. 366–371.

[124] P. Tenti, A. Zuccato, L. Rossetto, and M. Bortolotto, “Optimum dig-
ital control of PWM rectifiers,” in Proc. IEEE IECON’94, 1994, pp.
382–387.

[125] L. Chen, F. Blaabjerg, and P. S. Frederiksen, “An improved predictive
control for three-phase PWM ac/dc converter with low sampling fre-
quency,” in Proc. IEEE IECON’94, 1994, pp. 399–404.

[126] B.-D. Min and B.-H. Kwon, “A unity power factor control for fully soft-
ware-controlled three-phase PWM rectifier with voltage link,” in Proc.
IEEE IECON’94, 1994, pp. 555–560.

[127] D. R. Veas, J. W. Dixon, and B.-T. Ooi, “A novel load current control
method for a leading power factor voltage source PWM rectifier,” IEEE
Trans. Power Electron., vol. 9, pp. 153–159, Mar. 1994.

[128] Y. Guo, X. Wang, H. C. Lee, and B.-T. Ooi, “Pole-placement control of
voltage-regulated PWM rectifiers through real-time multiprocessing,”
IEEE Trans. Ind. Electron., vol. 41, pp. 224–230, Apr. 1994.

[129] V. Vlatko and D. Borojvec, “Digital-signal-processor-based control of
three-phase space vector modulated converters,” IEEE Trans. Ind. Elec-
tron., vol. 41, pp. 326–332, June 1994.

[130] C. T. Rim, N. S. Choi, G. C. Cho, and G. H. Cho, “A complete dc and
ac analysis of three-phase controlled current PWM rectifier using circuit
d-q transform,” IEEE Trans. Power Electron., vol. 9, pp. 390–396, July
1994.

[131] A. Draou, Y. Sato, and T. Kataoka, “New approach to current control of
ac-to-dc voltage-type convertors,” Proc. IEE—Elect. Power Applicat.,
vol. 141, pp. 275–283, Nov. 1994.

[132] A. M. Hava, T. A. Lipo, and W. L. Erdman, “Utility interface issues for
line connected PWM voltage source converters: A comparative study,”
in Proc. IEEE APEC’95, 1995, pp. 125–132.

[133] L. Chen and F. Blaabjerg, “A three-phase predictive PWM Ac/DC con-
verter with phase compensation and space vector control,” in Proc. IEEE
APEC’95, 1995, pp. 863–869.

[134] S. Hiti, D. Borojevic, R. Ambatipudi, R. Zhang, and Y. Jiang, “Av-
erage current control of three-phase PWM boost rectifier,” in Proc. IEEE
PESC’95, 1995, pp. 131–137.

[135] C.-T. Pan and M.-C. Jiang, “Control and implementation of a three-phase
voltage-doubler reversible ac to dc converter,” in Proc. IEEE PESC’95,
1995, pp. 437–443.

[136] A. Veltman and J. L. Duarte, “Fish method based on-line optimal control
for PWM rectifiers,” in Proc. IEEE PESC’95, 1995, pp. 549–555.

[137] M. B. Lindgren, “Feed forward—time efficient control of a voltage
source converter connected to the grid by lowpass filter,” in Proc. IEEE
PESC’95, 1995, pp. 1028–1032.

[138] P. Marino and F. Vasca, “Sliding mode control for three phase rectifiers,”
in Proc. IEEE PESC’95, 1995, pp. 1033–1039.

[139] B. Singh, C. L. P.C. L. Putta Swamy, B. P. Singh, A. Chandra, and K.
Al-Haddad, “Performance analysis of fuzzy logic controlled permanent
magnet synchronous motor drive,” in Proc. IEEE IECON’95, 1995, pp.
399–405.

[140] H. Pinheiro, G. Joós, and K. Khorasani, “Neural network-based con-
trollers for voltage source PWM front end rectifiers,” in Proc. IEEE
IECON’95, 1995, pp. 488–493.

[141] S. Bhowmik, R. Spée, G. C. Alexander, and J. H. R. Enslin, “New
simplified control algorithm for synchronous rectifiers,” in Proc. IEEE
IECON’95, 1995, pp. 494–499.

[142] B. Singh, B. N. Singh, B. P. Singh, A. Chandra, and K. Al-Haddad,
“Unity power factor converter-inverter fed vector controlled cage motor
drive without mechanical speed sensor,” in Proc. IEEE IECON’95,
1995, pp. 609–614.

[143] Y.-K. Lo and C.-L. Chen, “Three-phase four wire voltage controlled ac
line conditioners with unity input power factor and minimized output
voltage harmonics,” Proc. IEE—Elect. Power Applicat., vol. 142, pp.
43–49, Jan. 1995.

[144] N. R. Zargari and G. Joós, “Performance investigation of a current-
controlled voltage-regulated PWM rectifier in rotating and stationary
frames,” IEEE Trans. Ind. Electron., vol. 42, pp. 396–401, Aug. 1995.



SINGH et al.: REVIEW OF IPQCs 653

[145] M. E. Fraser, C. D. Manning, and B. M. Wells, “Transformerless
four-wire PWM rectifier and its application in AC-DC-AC converters,”
Proc. IEE—Elect. Power Applicat., vol. 142, pp. 410–416, Nov. 1995.

[146] A. Draou, Y. Sato, and T. Kataoka, “A new state feedback based transient
control of PWM AC to DC voltage type converters,” IEEE Trans. Power
Electron., vol. 10, pp. 716–724, Nov. 1995.

[147] L. J. Borle and C. V. Nayar, “Zero average current error controlled power
flow for AC-DC power converters,” IEEE Trans. Power Electron., vol.
10, pp. 725–732, Nov. 1995.

[148] T. Noguchi, H. Tomiki, S. Kondo, and I. Takahashi, “Direct power con-
trol of PWM converter without power source voltage sensors,” in Conf.
Rec. IEEE-IAS Annu. Meeting, 1996, pp. 941–946.

[149] G. Joós, H. Pinheiro, and K. Khorasani, “DSP implementation of neural
network-based controller for voltage PWM rectifier neural,” in Proc.
IEEE TENCON’96, 1996, pp. 883–888.

[150] D. M. Vilathgamuwa, S. R. Wall, and R. D. Jackson, “Variable structure
control of voltage sourced reversible rectifier,” Proc. IEE—Elect. Power
Applicat., vol. 143, pp. 18–24, Jan. 1996.

[151] G. T. Kim and T. A. Lipo, “VSI-PWM rectifier/inverter system with a re-
duced switch count,” IEEE Trans. Ind. Applicat., vol. 32, pp. 1331–1337,
Nov./Dec. 1996.

[152] S. Mazumder, “DSP based implementation of a PWM AC/DC/AC con-
verter using space vector modulation with primary emphasis on the anal-
ysis of the practical problems involved,” in Proc. IEEE APEC’97, 1997,
pp. 306–312.

[153] J. W. Lee and B. H. Kang, “Digital current controller with delay com-
pensator for PWM converters,” in Proc. IEEE EMDC’97, 1997, pp.
TC2-6.1–TC2-6.3.

[154] T. Ohnishi and K. Fujii, “Line voltage sensor-less three phase PWM
converter by tracking control of operating frequency,” in Proc. IEEE
PCC-Nagaoka’97, 1997, pp. 247–252.

[155] K. T. Park, J. K. Kang, and S. K. Sul, “Analysis and design of three-phase
boost PWM converter against power disturbances,” in Proc. IEEE PCC-
Nagaoka’97, 1997, pp. 773–776.

[156] A. Draou, “Stability analysis and performance evaluation of AC side
current control system of voltage type converters,” in Proc. IEEE PCC-
Nagaoka’97, 1997, pp. 865–870.

[157] J.-K. Kang and S.-K. Sul, “Control of unbalanced voltage PWM
converter using instantaneous ripple power feedback,” in Proc. IEEE
PESC’97, 1997, pp. 503–508.

[158] J.-W. Lee, “An intelligent current controller using delay compensation
for PWM converters,” in Proc. EPE’97, vol. 1, 1997, pp. 342–347.

[159] D.-C. Lee, G.-M. Lee, and D.-H. Kim, “Multivariable state feedback
control for three-phase power conversion systems,” in Proc. EPE’97,
vol. 1, 1997, pp. 348–353.

[160] P. Verdelho and G. D. Marques, “A unity power factor PWM voltage rec-
tifier under nonsinusoidal and unbalanced conditions,” in Proc. EPE’97,
vol. 2, 1997, pp. 250–255.

[161] J. Rodríguez, J. Hernández, M. Salgado, and F. Liebe, “Control of
a three-phase PWM front end rectifier using fuzzy logic,” in Proc.
EPE’97, vol. 2, 1997, pp. 438–443.

[162] C. Colliez, A. Tounzi, and F. Priou, “Vector control of an autonomous
induction generator connected to a PWM rectifier,” in Proc. EPE’97,
vol. 2, 1997, pp. 711–716.

[163] T. Ohnuki, O. Miyashita, P.Ph. Lataire, and G. Maggetto, “A three-phase
PWM rectifier without voltage sensors,” in Proc. EPE’97, vol. 2, 1997,
pp. 881–886.

[164] F. R. Walsh, J. F. Moynihan, P. J. Roche, M. G. Egan, and J. M. D.
Murphy, “Analysis and influence of modulation scheme on the sizing
of the input filter in a PWM rectifier system,” in Proc. EPE’97, vol. 2,
1997, pp. 929–933.

[165] B.-R. Lin, D.-P. Wu, and T.-F. Shiue, “Three-phase power reversible con-
verter with simple control algorithm,” in Proc. EPE’97, vol. 3, 1997, pp.
189–194.
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