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Nature-inspired algorithms are widely used in mathematical and engineering optimization. As one of the
latest swarm intelligence-based methods, fruit fly optimization algorithm (FOA) was proposed inspired
by the foraging behavior of fruit fly. In order to overcome the shortcomings of original FOA, a new im-
proved fruit fly optimization algorithm called IAFOA is presented in this paper. Compared with original
FOA, IAFOA includes four extra mechanisms: 1) adaptive selection mechanism for the search direction, 2)
adaptive adjustment mechanism for the iteration step value, 3) adaptive crossover and mutation mech-
anism, and 4) multi-sub-swarm mechanism. The adaptive selection mechanism for the search direction
allows the individuals to search for global optimum based on the experience of the previous iteration
generations. According to the adaptive adjustment mechanism, the iteration step value can change au-
tomatically based on the iteration number and the best smell concentrations of different generations.
Besides, the adaptive crossover and mutation mechanism introduces crossover and mutation operations
into IAFOA, and advises that the individuals with different fitness values should be operated with dif-
ferent crossover and mutation probabilities. The multi-sub-swarm mechanism can spread optimization
information among the individuals of the two sub-swarms, and quicken the convergence speed. In order
to take an insight into the proposed IAFOA, computational complexity analysis and convergence analysis
are given. Experiment results based on a group of 29 benchmark functions show that IAFOA has the best
performance among several intelligent algorithms, which include five variants of FOA and five advanced
intelligent optimization algorithms. Then, IAFOA is used to solve three engineering optimization problems
for the purpose of verifying its practicability, and experiment results show that IAFOA can generate the
best solutions compared with other ten algorithms.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

has gained much attention and been successfully applied in many
areas in recent years, such as continuous mathematical function

Due to the characteristics of high robust and excellent optimiza-
tion ability, nature-inspired algorithms such as genetic algorithm
(GA), artificial bee colony optimization (ABC), particle swarm op-
timization (PSO), bat algorithm (BA), and ant colony optimization
(ACO) have been applied widely in solving mathematical and en-
gineering problems [1]. As a novel evolutionary computation and
optimization approach, fruit fly optimization algorithm (FOA) was
proposed by Pan [2] in 2012 based on the foraging behavior of
fruit fly. As we know, the fruit fly has obvious advantages over
other creatures in olfactory and visual sensory perception, there-
fore, it can search for food easily [3]. Since FOA was presented, it
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optimization [4], design of tubular linear synchronous motor [5],
optimization of flow shop rescheduling problem [6,7], web auction
logistics service [8], medical diagnosis [9], forecasting power loads
[10], confirming neural network parameters [11], as well as many
other problems in scientific and engineering fields [12]. Many re-
searches have proven that FOA has significant advantages in terms
of convergence and robustness [3].

However, similar with other nature-inspired algorithms, FOA
also has its own shortcomings. For example, it often derives a local
extreme when solving high-dimensional functions and large-scale
combinational optimization problems [3]. For the purpose of im-
proving the search efficiency and global search ability, many vari-
ants of FOA were designed [13]. According to the improved points
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the researchers focus on, these variants can be divided into several
categories.

First, some researchers proposed new mechanisms to adjust the
search scope of the fruit flies. Actually, the search scope depends
on the search radius (or called iteration step value) which is a fixed
value in original FOA. Pan et al. [4] put forward an improved fruit
fly optimization (IFFO), in which a new control parameter is intro-
duced to tune the search scope around swarm location adaptively.
In detail, after setting the maximum and minimum radiuses of
search scope, the iteration step value is decreasing along with the
increase of iteration number. Then, another improvement, which
mainly focus on setting the maximum and minimum radiuses and
a random value on interval [0, 1], was introduced by Liu et al.
[14]. Zuo et al. [15] also presented an adaptive strategy in which
a standard deviation § is used to represent the search range. The
standard deviation § is equal to the product of log(m 4 1)/m* and
(X; — Xp) (m is the iteration number, «=2, X; is the position of the
i-th individual, X, is the best location of the current population).
Recently, a new method which introduces a variation coefficient
and a disturbance coefficient was proposed by Xu et al. [16]. Ac-
cording to this method, the individual whose fitness value is lower
than a certain value will search for appropriate solution in a big-
ger range during every iterative procedure, and if the best loca-
tion of the fruit fly swarm remains unchanged for several itera-
tions, the disturbance coefficient will take effect and the individual
will search for optimum in a much bigger scope (10 times of the
original search scope). What’s more, Hu et al. [17] introduced fruit
fly optimization algorithm with decreasing step (SFOA). In SFOA,
the current step value R; can be calculated according to a formula
R; =R —R/(1 + e®-12m/M)) "in which R is the initial step value, M
is maximum iteration number, m is the current iteration number.

Second, multi-swarm mechanism is another research topic for
FOA. Due to its wonderful performance, multi-swarm approach
have been applied in many intelligent algorithms. Thus, many re-
searchers combined multi-swarm mechanism with FOA and ob-
tained good results. Yuan et al. [18] presented multi-swarm FOA
(MFOA). In MFOA, the swarm is split into several sub-swarms (usu-
ally 4 to 10), and then the sub-swarms move independently in the
search space with the aim of simultaneously exploring global op-
timum. However, there is no information exchange between these
sub-swarms. A bimodal mechanism was introduced by Wu et al.
[19]. The idea of bimodal mechanism was borrowed from the la-
bor division of natural swarm. According to the fruit fly’s osphretic
and visual functions in foraging process, the fruit fly population
can be divided into search group and discovery group. Wang et al.
[13] proposed a concept named “swarm collaboration”, a certain
proportion of individuals whose fitness values are better than the
average fitness value, are allowed to gather towards the current
optimum location, and the others fly randomly in the initial search
region without the loss of generality. Besides, another concept
named multi-population parallel computing was presented by Li
et al. [20]. In this concept, the whole fruit fly swarm is divided
into four sub-populations, and each sub-population evolves sepa-
rately and the elitism strategy is introduced to preserve the best
individuals. Niu et al. [21] proposed a novel FOA which divides the
fruit fly swarm into two parts: one part is used to search for the
food within a small range close to optimal solution; the other part
is used to do the searching work within a larger scope, avoiding
falling into local optimum.

Third, in order to improve the ability of jumping out the lo-
cal optimum, many researchers introduced mutation operation for
FOA. Zhang et al. [22] proposed a novel multi-scale cooperative
mutation fruit fly optimization algorithm (MSFOA) which employs
multi-scale cooperative mutation and the Gaussian mutation oper-
ator. Wang and Liu [23] presented adaptive mutation fruit fly opti-
mization algorithm (AM-FOA) which selects a corresponding num-

ber of fruit files from the population and makes mutation and then
updates the global optimum when the algorithm trapping in local
optimum. Ye et al. [24] introduced a mutation probability rate mr
(set to 0.8) to allow some individuals to search for optimum in
a bigger range. Niu et al. [21] used Cauchy mutation to make fruit
fly variants for the sake of improving the convergence performance
and optimization capabilities of the algorithm. Pan [25] proposed a
modified fruit fly optimization algorithm (MFOA) by introducing an
escape parameter for the fitness function for the purpose of escap-
ing from the local extreme.

What's more, it is a popular topic to combine FOA with other
intelligent algorithms. Si et al. [26] employed an improved FOA
in combination with the least squares support vector machine
(LSSVM) to solve the identification problem of shearer cutting pat-
tern and constructed experiment. Wu et al. [27] proposed a normal
cloud model based on FOA (CMFOA) to improve the convergence
performance of original FOA, and numerical results show that CM-
FOA can obtain competitive solutions. Kanarachos et al. [28] intro-
duced a contrast-based fruit fly optimization algorithm (c-mFOA)
to solve efficient truss optimization. Niu et al. [29] proposed dif-
ferential evolution FOA (DFOA) by modifying the expression of the
smell concentration judgment value and introducing a differential
vector to replace the stochastic search. Wang et al. [3] proposed
LP-FOA (FOA with level probability policy) in which a level proba-
bility policy and a new mutation parameter are developed to bal-
ance the population diversity and stability. Yuan et al. [30] pro-
posed chaotic-enhanced fruit fly optimization algorithm (CFOA),
which employs chaotic sequence to enhance the global optimiza-
tion capacity of original FOA. Zheng and Wang [31] presented a
two-stage adaptive fruit fly optimization algorithm (TAFOA). At the
first stage, a heuristic is proposed to generate an initial solution
with high quality, and at the second stage, the initial solution is
adopted as the initial swarm center for further evolution. Lei et al.
[32] proposed fruit fly optimization clustering algorithm (FOCA)
which combines FOA and gene expression profiles for identifying
the protein complexes in dynamic protein-protein interaction net-
works. Meng and Pan [33] proposed an improved fruit fly opti-
mization algorithm (IFFOA) to solve the multi-dimensional knap-
sack problems. In IFFOA, the parallel search is employed to balance
exploitation and exploration and a modified harmony search algo-
rithm (MHS) is applied to add cooperation among swarms.

In order to overcome the disadvantages of original FOA while
retaining its merits, a new improved fruit fly optimization algo-
rithm named IAFOA is proposed in this paper. In particular, the
main contributions of IAFOA can be summarized as follows:

(1) Present a new concept named optimal search direction, and
an adaptive selection mechanism for the search direction.
The optimal search direction is calculated based on the ex-
perience of the previous iteration generations. In fact, the
optimal search direction can be considered as a guide to
judge which direction is more suitable to find a good so-
lution. Therefore, if a direction is near to the optimal search
direction, fruit flies in the following generation will fly to-
wards it with a large probability. However, if a direction is
far away from the optimal search direction, individuals in
the next generation will fly towards it with a small probabil-
ity. The nearness between a direction and the optimal search
direction can be measured by the angle between the two di-
rections. In order to quantitate the probability of individual
flying towards different directions, a formula which is used
to calculate the value of probability is given.

Propose an adaptive adjustment mechanism for the iteration
step value. The iteration step value is designed to be re-
lated to the iteration number and the changes of best smell
concentrations during the iteration procedure. Most impor-
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tantly, the iteration step value can change adaptively. At the
beginning stage of the iteration procedure, a larger itera-
tion step value is applied in order to obtain a rapid conver-
gence speed; as the iteration procedure going on, a smaller
iteration step value is used to ensure that the fruit flies
search for the global optimum accurately; especially at the
ending stage of the optimization process, if the best smell
concentrations of several adjacent generations remain un-
changed, the iteration step value will increase appropriately
so that the individuals can search for the global optimum
in a larger scope. From the introductions of the mechanisms
which are used to adjust the search scope in current litera-
tures, we know that most of these mechanisms suggest that
the search radius should become small along with the in-
crease of iteration number, and increase crudely once the
swarm falls into a local extreme. Compared with the current
methods, the adaptive adjustment mechanism for the iter-
ation step value allows the search range to become bigger
or smaller adaptively based on the iteration number and the
changes of the best locations during the iteration procedure.
Combine FOA with an adaptive crossover and mutation
mechanism. Different from the current crossover and muta-
tion operations for FOA, the adaptive crossover and muta-
tion mechanism, which is inspired by arc tangent function,
allows the crossover probability and mutation probability to
change along with the fitness value of the individual. The
bigger the fitness value is, the smaller the crossover proba-
bility and mutation probability are. It means that the indi-
viduals with lower fitness values are operated with greater
crossover probability and mutation probability, and the indi-
viduals with higher fitness values are operated with lower
crossover probability and mutation probability. Obviously,
this mechanism can help to improve the diversity of the
swarm. At the same time, these better individuals will be
retained with a bigger probability so that the whole swarm
will not degenerate.

Introduce multi-sub-swarm mechanism to divide the whole
swarm into two sub-swarms with equal population size. In
the first sub-swarm, the individuals search for the optimal
solution according to the rules of the improved FOA which
includes the adaptive selection mechanism for the search di-
rection and the adaptive adjustment mechanism for the it-
eration step value. In the second sub-swarm, the individu-
als will be operated by the adaptive crossover and mutation
mechanism. At the end of each iteration, 1/2 individuals of
each sub-swarm exchange with each other. Compared with
the current combinations of FOA and multi-swarm mecha-
nism, which just divide the whole swarm into several sub-
swarms that move independently in the search scope, or as-
sign different tasks to different the sub-swarms, the most
important characteristics of the multi-sub-swarm mecha-
nism proposed in this paper are the cooperation and ex-
change between two sub-swarms during every iteration pro-
cedure. Obviously, this mechanism can spread optimization
information among individuals and quicken the convergence
speed.

—
W
—

=

The experiment results based on a group of 29 benchmark func-
tions show that IAFOA is more effective and efficient when solv-
ing the high-dimension functions compared with five variants of
FOA and five well-known intelligent algorithms. Besides, IAFOA is
used to solve three engineering optimization problems, which are
oil compression spring design, welded beam design and speed re-
ducer design. Experiment results show that IAFOA can achieve bet-
ter solutions than the other algorithms for the three engineering
optimization problems.
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Fig. 1. Iteration procedure of original FOA.

The rest of this paper is organized as follows. Section 2 intro-
duces the methods. The original FOA is explained and IAFOA is pre-
sented after introducing the four mechanisms in detail. The com-
putational complexity analysis and convergence analysis of IAFOA
are also shown in Section 2. In Section 3, experimental designs
and numerical analyses based on a group of 29 benchmark func-
tions are illustrated. IAFOA is used to solve engineering optimiza-
tion problems in Section 4. Finally, Section 5 gives the concluding
remarks.

2. Methods
2.1. Original FOA

Fruit fly is an insect that exists widely in temperate and tropi-
cal climate zones and is superior to other species in osphresis and
vision. During hunting for food, fruit fly initially smells a particu-
lar odor by using its osphresis organs, sends and receives informa-
tion from its neighbors and compares the smell concentration (or
called fitness value) and the current best location. Fruit fly identi-
fies the fitness value by taste, and flies towards the location with
best fitness value. They use their sensitive vision to find food and
fly towards that direction further [13].

Pan and other researchers have given the detailed descriptions
of evolutionary steps of original FOA. According to current litera-
tures, the iteration procedure of original FOA is shown in Fig. 1,
and the pseudo code of original FOA is shown in Fig. 2 (when
searching for maximum). Since all the individuals will gather at
the best location in every iteration, the supreme advantage of FOA
is the rapid convergence speed. At the same time, original FOA
is very easy to fall into the local extreme when solving complex
problems.

In original FOA, the smell concentration of individual Smell(i)n
can be calculated by submitting the smell concentration judgment
value S(i), into the smell concentration judgment function (or
called fitness function). Based on the iteration procedure of orig-
inal FOA, it is obvious that the numerical value of Dist; is posi-
tive. Since S(i)n is the reciprocal of Dist;, it is impossible to ob-
tain a negative value for S(i);,. It means that FOA cannot search
for global optimum in negative domain. Actually, the issue has
been reported by many researchers [18]. In this paper, similar
to the methods proposed by Yuan et al. [18] and Pan et al. [4],
both the distance Dist; and smell concentration judgment value
S(i)m are removed, the fitness value of fruit fly is evaluated di-
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Algorithm: Original fruit fly optimization algorithm

Parameters: Initial position of the swarm (X,Y), population size P, maximum iteration number M, initial iteration step value R
Output: The best smell concentration and the coordinate of best location

// Initialization
Set (X,Y), P, Mand R
m=0

X({)g=X+rand( )R, Y({)o=Y+rand( )R, i=12,,P

Dist; = /X(i)oz +Y(),"
S(i)o = 1/Dist;
Smell(i)y = F(S(1)o)
// Calculate initial smell concentration
[bestSmell, bestindex] = max(Smell)
Smellbest = bestSmell
X, = X(bestIndex),Y, = Y (betIndex)
while m<M

//Osphresis searching process

X (@) = X(bestIndex) + rand( )-R, Y(i),, = Y(bestindex) +rand( )-R, i =1,2,---,P

Dist; = /X(i)mz +Y (D’
S(),, = 1/Dist,
Smell(i)y, = F(S()m)
[bestSmell, bestindex| = max(Smell)
//Vision searching process
if bestSmell > smellBest
smellBest = bestSmell
X,, = X(bestindex),Y,, =Y (betIndex)
end if
m=m+1
end while
output results

Fig. 2. Pseudo code of original FOA.

rectly in the decision space of the function to avoid the limita-
tions of the original definition of smell concentration judgement
value [15]. In detail, assume that there is a multidimensional func-
tion optimization problem F(X) with n variables x!,x2, ---, x", and
the i-th fruit fly in the m-th iteration generation is denoted by
X(Dm = ()], x(D2,---, x(DF), the fitness value of X(i)m can be
calculated as follows:

Smell (i), = F(X (i)) (1)
2.2. A new improved FOA (IAFOA)

In this section, four improvements, named adaptive selection
mechanism for the search direction, adaptive adjustment mecha-
nism for the iteration step value, adaptive crossover and mutation
mechanism, multi-sub-swarm mechanism, are introduced. Then, a
new improved FOA called IAFOA is proposed by combining the four
mechanisms with FOA.

2.2.1. An adaptive selection mechanism for the search direction

In original FOA, the foraging behavior of fruit fly is random, it
means that the search direction and search radius are uncertain.
However, in the actual nature world, the animal swarm should be
intelligent and can give a guide for the individual behavior. Under
the guidance, the individuals should fly towards these directions
which are more possible to find a better result. Thus, an adaptive
selection mechanism for the search direction is proposed in this
section. In detail, after calculating the best locations of the pre-
vious iteration generations, an optimal search direction is defined
and then the fruit flies in the next iteration generation can forage
food towards these directions which are much nearer to the opti-
mal search direction with much larger probability.

The adaptive selection mechanism for the search direction can
be described as follows:

A
Fruit fly 1
Fruit fly 2 , m
Optimal search
Q 4 » / . direction
Current best locatior ~
(XpYo) s | ~@
/ Fruit fly P
-0
Fruit fly 3
Last best location
(Xq—lqu—l) =
(0,0)

Fig. 3. The schematic diagram of the adaptive selection mechanism for the search
direction.

Given the initial position of fruit fly swarm (X, Y), population
size P, and maximum iteration number M. As shown in Fig. 3, as-
sume that the coordinate of the best location of the m-th genera-
tion is (Xg, Yq), and the coordinate of last best location during the
optimization process is (X;_1, Y;_1). It is important to note that the
last best location must be a location that is different with the cur-
rent best location, so it may be not the best location of the (m-1)-
th generation since sometimes the best locations of several adja-
cent generations are the same.

In fact, the experience of the previous iteration generations is
very significant. Based on the changes of best locations of fruit
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flies, a concept called optimal search direction, denoted by Im
is defined as follows:
ot = [(% =X 1), (Y~ ¥o0)] @

As shown in formula (2), the optimal search direction is from
the last best location to the current best location. Obviously, it
is not sane to make all the individuals fly towards the optimal
search direction in order to search for the global optimum in a
wide range. However, it is a good choice to let the fruit flies in the
following iteration generation fly towards these directions which
are near to the optimal search direction with a big probability, and
fly towards these directions which are far away from the optimal
search direction with a small probability. As shown in Fig. 3, the
nearness between a direction and the optimal search direction can
be measured by the angle (denoted by 6) between the two direc-
tions. Obviously, the value of 4 is from 0 to 7, and distributes sym-
metrically.

In order to quantitate the probability of individual flying to-
wards the direction with 6, a formula is given as follows:

C
80)=C-—_-0 (3)

in which C is a constant. Apparently, the smaller the value of 6
is, the bigger the value of g(f) is. Especially, when 6=0, g(8)=C, it
means that fruit flies fly towards the optimal search direction with
the maximum probability of C; when 6=, g(0)=0, it means that
fruit flies fly towards the opposite direction of the optimal search
direction with the probability of 0. Obviously, we must make sure
that all the fruit flies can fly towards a direction to forage food, it
means that the definite integral of formula (3) with respect to 6
from O to & is 1. Taking into account the symmetry of the distri-
bution of 6, we have,

2./:Tg(¢9):2~/(;n(C—%~9>:1 (4)

It is easy to get,

1
C=— (5)
Then, we give the final expression of g(8),
1 0
=— - — 6
g0)=— - (6)

Actually, the aforementioned expression is based on the dimen-
sion of the optimization problem (denoted by n) is 2. By that anal-
ogy, it is also easy to understand in three-dimensional space if
n = 3. When n > 3, the optimal search direction Iﬁ can be cal-
culated in an abstract space as follows:

—
Fuon = [(Xg = Xga). (X3 =X3). 0 (G = XL0) ] ™
in which X' and X;_] is the n-th variable while describing the best
location of fruit flies.

The angle 6 between a direction and the optimal search direc-
tion can be calculated as follows:

6 = arccos

06 X)X =) + 0 X)X —XE) 05 - ) - (K )

2.2.2. Adaptive adjustment mechanism for the iteration step value

In original FOA, the iteration step value R keeps unchanged dur-
ing the whole optimization procedure. In fact, the iteration step
value is the maximum radius of the search range in every iteration.
Apparently, a larger iteration step value can make the search scope
much larger and the convergence speed much rapider. However,
when the best solution is close to the global extreme, a smaller
iteration step value is more conducive to finding the global opti-
mum in an exact range. Therefore, an adaptive adjustment mech-
anism for the iteration step value is proposed in this section. The
iteration step value is not only related to the iteration number, but
also to the changes of best smell concentrations during the itera-
tion procedure. In detail, a larger iteration step value is applied to
make sure that the swarm can converge to a good solution quickly
at the beginning stage of the iteration procedure. As the iteration
procedure going on, a smaller iteration step value is used to ensure
that the fruit flies can search for the global optimum accurately.
Especially at the ending stage of the optimization procedure, if the
best smell concentrations of several adjacent generations are the
same, the iteration step value will increase appropriately so that
the individuals can search for the global optimum in a larger scope.

Given the initial position of fruit fly swarm (X, Y), the smell
concentration of the initial position Smell(i)y, and initial iteration
step value R. Assume that the iteration step value becomes Ry, af-
ter the m-th iteration and the best smell concentration of the m-th
generation is Smell(i)y. Then, the iteration step value will be up-
dated to R, after the (m+1)-th iteration and the best smell con-
centration of the (m+1)-th generation is denoted by Smell(i)y, 1.
Rp.1 can be calculated as follows (when searching for maximum):

Smell(i),, Smell(i),, m+1
Smell (i), e (Smell(i)m+1 w7 ! ©)

Rm+1 =Ry -

From formula (9), we can obtain the following conclusions:

(1) At the beginning stage of the iteration procedure,

the best smell concentration will increase quickly,

it means % <1. Since ™ js a little big-
Smell (i), m+1 Smell (i)

ger than 1, (W -2 —1) <0. Thus, W .

Smell(i
exp(m-m?“—l)<l. It means

iteration step value will decrease.
Especially, during the first
m is very small, ™l s

Rm+1 < Rp, the

—
N
—

several iterations, since
bigger than the ratio of
and Smell(i),. For example if m=2,

Smell(i)m 1
m+1 _m] 5. It means oMelDm  mil _ 1 Ag 3 result
m = 1. Smell(Dpyy M~ ’

Smell (i) Smell (i) m+1 i
Smell -exp(Sme”(i)m"'+1 -2 —1)>1. In this case, the

iteration step value will increase.
(3) At the middle & later stage of the iteration procedure, the
best smell concentrations of several adjacent generations

change slightly or remain unchanged. It means % ~
m+

1. In this case, exp(% L mil

tant role to increase the iteration step value. Although ”%’1

—1) will play an impor-

in which (X(p)}, 1. X(P)2,q. -

(8)

2 2 2 2 2 2

(X3 =X1,)"+ (X2 —X2) "+ + (X —X ) -\/(X(p),lnH—X,}) + (XD = X2) + -+ (X(Dia — XT)
-, X(p)p41) is a point on the di- is just a little bigger than 1, the value of Ry, - %

rection.

Especially, when n=1, the only variable just can become big-
ger or smaller. Therefore, we stipulate that the adaptive selection
mechanism for the search direction is no longer applicable in this
case.

Smell(m  m+1 1y :
GXp(m - B2 — 1) will increase observably after sev

eral iterations. Due to the increase of the iteration step
value, fruit flies can search for the global optimum in a
larger scope.
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(4) If the value of Smell(i)y or Smell(i)y,q is zero, %
"17“ will be zero or infinite. Obviously, it is not reason-

able. Therefore, we must check the values of Smell(i)n and
Smell (i), 1 before updating R, 1. If they are nonzero, Ry, 1
can be updated according to formula (9). Otherwise, let
Rp11 = Ry, it means that the iteration step value keeps the
same.

When searching for minimum, Ry, ; will be defined as follows:

Smell (i), 4 Smell(i),,; m+1
smeitGy, &P\ Smetty,, - m ') (0

Rm+l = Rm -

Experiments will be operated to test the effects of the adap-
tive adjustment mechanism for the iteration step value based on a
group of benchmark functions in Section 3.

2.2.3. Adaptive crossover and mutation mechanism

In original FOA, all the fruit flies will gather at the best loca-
tion in every iteration. Obviously, it is not good for promoting the
population diversity which is beneficial for the exploitation ability
of intelligent algorithm [34]. As we know, the crossover and mu-
tation operators play vital roles in generating individual variants.
In order to overcome the drawbacks of FOA, an adaptive crossover
and mutation mechanism is introduced in this section.

Compared with the current crossover and mutation opera-
tions, the adaptive crossover and mutation mechanism, which is
inspired by the arc tangent function y = arctan(x), makes the
crossover probability P. and mutation probability Py, change adap-
tively. The individuals with lower fitness values are operated with
a greater crossover and mutation probability, and the individuals
with higher fitness values are operated with a lower crossover and
mutation probability. Actually, the rules to calculate P; and Py, for
different individuals with different fitness values can be defined as
follows:

Pe min+P. P min—P. 2-f' = finax— fa, /
cmmzcmax+ cmmncmax.z.arctan(w s f Zfavg

PC = Smax—favg
Fe max. f/ < favg
(11)
i in— 2- = fnax—fav
Pm: P mm;Pm mox | P mmr[Pm max ), arctan( ffmiffmi g), f > favg

P max, f<fuvg
(12)

In formulas (11) and (12), Pemax and P, i, are the top and bot-
tom limits of crossover probability; Pmmax and Py, mi, are the top
and bottom limits of mutation probability; fagis the average fit-
ness value of all the individuals; frngx is the largest fitness value of
all the individuals; f is the bigger fitness value of the two individ-
uals that take part in the crossover operation; and f is the fitness
value of the mutated individual.

Based on formulas (11) and (12), the curve of crossover proba-
bility and mutation probability is plotted and shown in Fig. 4. As
shown in Fig. 4, the individuals with lower fitness values will be
operated with greater P and Pp,. Especially, when the fitness value
is lower than fa, the individuals will cross or mutate with the
greatest probability Pemax O Pmmax. For the individuals with fitness
values higher than fqg, crossover probability P. and mutation prob-
ability P, will change based on arc tangent function y = arctan(x).
The greater the fitness values of individuals are, the smaller the P,
and Pp, are. If the fitness value of individual is closed to fpax, the
P: and Py, are almost equal to P, i, and Py, pmin. In this paper, P; ,in
and Py, nin are set to zero in order to make sure that the best indi-
vidual will not be destroyed. Obviously, the adaptive crossover and

Pc/Pm

A
I)(' max / I)I” max
P i P

Save Smax ﬁ?ness

Fig. 4. Curve of P. and P, according to the adaptive crossover and mutation mech-
anism.

mutation mechanism can help to improve the diversity of the fruit
fly swarm. At the same time, the best individual will be retained
in every iteration so that the whole swarm will not degenerate.

2.2.4. Multi-sub-swarm mechanism

Multi-sub-swarm and cooperation between sub-swarms can
spread optimization information among individuals and quicken
the convergence speed. In this section, a multi-sub-swarm mech-
anism is presented. The whole fruit fly swarm is divided into two
sub-swarms with equal population size. Fruit flies in the first sub-
swarm search for the optimal solution according to the rules of
FOA and two mechanisms which are the adaptive selection mech-
anism for the search direction and the adaptive adjustment mech-
anism for the iteration step value. The individuals included in the
second sub-swarm will cross and mutate according to the adaptive
crossover and mutation mechanism. It means that the two sub-
swarms search for the optimal solution in different ways. At the
end of each iteration, a certain number of individuals are selected
from the two sub-swarms and exchange with each other. The de-
tailed procedure from m-th generation to (m+1)-th generation can
be found in Fig. 5.

As shown in Fig. 5, the population size of initial swarm is P,
and the initial swarm is divided into two sub-swarms. At the be-
ginning of the m-th iteration, P/2 number of individuals are in-
cluded in the first sub-swarm. For this sub-swarm, evaluate the
smell concentration of each fruit fly, and find out the individual
with the best smell concentration. Then, let other individuals fly
towards the best location. Finally, update the iteration step value
according to the adaptive adjustment mechanism for the iteration
step value, and then fruit flies search for food based on the adap-
tive selection mechanism for the search direction. At the moment,
P/2 number of individuals exist in the first sub-swarm.

In the second sub-swarm, which includes P/2 number of indi-
viduals, the individuals are operated by crossover and mutation
operations. Then, P/2 number of offspring individuals are gener-
ated. After evaluating the fitness value of every parent and off-
spring individual, P/2 number of individuals with lower fitness val-
ues are removed and P/2 number of individuals with higher fitness
values are retained. At the moment, also P/2 number of individuals
exist in the second sub-swarm. The next step, which is of vital im-
portance, is to select P/4 number of individuals from the first sub-
swarm and P/4 number of individuals from the second sub-swarm
randomly, and then exchange them.

After these operations, the (m+1)-th generation, which also in-
cludes two sub-swarms, is formed and ready for the next itera-
tion. The circulatory iteration procedure will ends until meeting
the stopping criterions. However, before the first iteration begin-
ning, the two sub-swarms are created from the initial swarm ran-
domly, and then they evolve and cooperate to produce good so-
lution. For convenience, we can call the first sub-swarm FOA sub-
swarm, and call the second sub-swarm GA sub-swarm.
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Fig. 5. The schematic diagram of multi-sub-swarm mechanism.

2.2.5. Procedure of IAFOA

Combining FOA with the four improvements, which are the
adaptive selection mechanism for the search direction, the adap-
tive adjustment mechanism for the iteration step value, the adap-
tive crossover and mutation mechanism, and the multi-sub-swarm
mechanism, a new improved FOA (IAFOA) is presented. The proce-
dure of IAFOA can be described as follows:

Step 1: Initialization process. Set the initial position of swarm
(X, Y), population size P, maximum iteration number M, and initial
iteration step value R.

Step 2: Individuals search for food randomly, and the location
of the i-th individual is (X(i);, Y(i)1). Then, divide the initial swarm
into two sub-swarms, and P/2 number of individuals are included
in each sub-swarm.

Step 3: (1) For the first sub-swarm, calculate the smell con-
centration of the individuals Smell(i),, in which m is the iteration
number,

Smell (i),, = F(X(1),,) (13)

Find the individual with the maximum smell concentration
(when searching for maximum),

[bestSmell bestIndex] = max(Smell) (14)
Record the best smell concentration value and the correspond-
ing location (Xm, Ym). Then, other individuals fly towards (Xm, Ym),

smellBest = bestSmell
Xm = X (bestIndex)
m = Y (bestIndex)

Update the iteration step value (when searching for maximum),

Smell(i),, x( 1) (16)

R = . " .
T Smell (1),
Calculate the probability of individual flying towards the direc-
tion with 6,

(15)

Smell(i),, m+1
Smell (i), m

(17)

Then, P/2 number of individuals search for food from the loca-
tion (Xm, Ym) based on the adaptive selection mechanism for the
search direction.

(2) For the second sub-swarm, individuals will be imple-
mented crossover and mutation operations according to the adap-
tive crossover and mutation mechanism.

After mixing the P/2 number of parent individuals and P/2
number of offspring individuals, P/2 number of individuals with
lower fitness values will be removed, and P/2 number of individu-
als with higher fitness values will be retained.

Step 4: Exchange individuals selected from the two sub-
swarms.

Select P/4 number of individuals from the first sub-swarm ran-
domly, and exchange with P/4 number of individuals which are se-
lected from the second sub-swarm randomly.

Then, the (m+1)-th generation, which includes two sub-
swarms, is formed and ready for the next iteration.

Step 5: Repeat step 3 to step 4 until the best fitness value
meets the preset precision or the iteration number m is not less
than the maximum iteration number M.

Step 6: Output the results.

Based on the procedure, optimization flowchart of IAFOA is
shown in Fig. 6.

In summary, IAFOA inherits the momentous advantage of orig-
inal FOA which is to generate a satisfactory solution at a fast con-
vergence speed. What’s more, due to the adaptive selection mech-
anism for the search direction, the completely randomized search-
ing procedure is replaced by an experience-based iteration proce-
dure in IAFOA. Besides, the adaptive adjustment mechanism for
the iteration step value can make the fruit flies search for solu-
tions within a reasonable and changing search range. A bigger iter-
ation step value is helpful to search for global extreme in a bigger
scope, and a smaller search radius allows the individuals to for-
age food accurately. In addition, the adaptive crossover and muta-
tion mechanism brings a method to improve the diversity of the
swarm without destroying the best individuals. Finally, the multi-
sub-swarm mechanism gives an opportunity to work cooperatively



160

L. Wu et al./Knowledge-Based Systems 144 (2018) 153-173

and initial iteration step value R

Parameters setting
The initial position of swarm (X,Y), population size P, maximum iteration number M

!

Individuals search for food randomly, P number of individuals exist in the initial
swarm. Then divide the initial swarm into two sub-swarms.

v

v

First group
Calculate smell concentration, and P/2
number of individuals fly towards the best

Second group
P/2 number of individuals are
implemented crossover operation and
mutation operation

location
v

Update iteration step value
. Smell(i)y,
™ Smell()ms1

m+1
m

Rpe1 = - exp (log

'

Mix the P/2 number of parent individuals
and P/2 number of offspring individuals

)
!

Individuals search for food from the best
location based on the adaptive selection
mechanism for the search direction

y

Remove the P/2 number of individuals
with lower fitness and keep the P/2 number
of individuals with higher fitness

v

| Exchange P/4 number of individuals selected from each sub-swarm |

v

| New first sub-swarm |

v

|New second sub-swarm |

Output the results

End

Fig. 6. Optimization flowchart of IAFOA.

for two different optimization approaches. Apparently, it is good
for taking the chief and discarding the short of the two searching
processes, one is based on improved FOA, and the other is based
on the crossover and mutation operations.

On the whole, the adaptive selection mechanism for the search
direction can accelerate the convergence speed, the adaptive ad-
justment mechanism for the iteration step value can make the it-
eration procedure be more intelligent and bring a chance to search
for optimal extreme in a bigger scope especially at the later stage
of the iteration procedure. The major function of the adaptive
crossover and mutation mechanism is to generate different indi-
vidual variants and to improve the diversity of the swarm. And
multi-sub-swarm mechanism can make IAFOA obtain the advan-
tages of two different iteration ways. Finally, the procedure of
IAFOA presents a wonderful way to combine the several strategies.
All the improvements can take effect and give contributions to the
proposed IAFOA.

2.2.6. Computational complexity analysis

In order to analyze the efficiency of algorithm, computational
complexity analysis is necessary and used to estimate the comput-
ing time [32]. In fact, the computational complexity of an intelli-

gent optimization algorithm mainly includes two parts: algorithm
execution and fitness evaluation. Since the computational complex-
ity of algorithm execution is much larger than that of fitness eval-
uation, we just discuss the computational complexity of algorithm
execution of IAFOA in this section [27]. Assume that the popula-
tion size is P, and the maximum iteration number is M. According
to the procedure of IAFOA, its computational complexity can be
analyzed as follows:

(1) The computational complexity of initializing the locations of
fruit flies is O(P);

(2) The computational complexity of dividing the whole swarm
into two sub-swarms is O(P);

(3) For the first sub-swarm including P/2 number of individuals,

the computational complexity of updating individual posi-

tions is O(g -M), the computational complexity of calculat-

ing the iteration step values is O(M), the computational com-

plexity of calculating the optimal search directions is O(M),

and the computational complexity of selecting fly directions

for individuals is O(P- M);

For the second sub-swarm including P/2 number of individ-

uals, the computational complexity of calculating crossover

probability and mutation probability is O(P- M), the compu-

~
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tational complexity of carrying out crossover and mutation
operations is O(P- M).

Usually, it is reasonable to take the highest power item as
the computational complexity of algorithm. Therefore, the anal-
yses above show that the computational complexity of IAFOA is
O(% -P-M). Compared with the computational complexity of sev-
eral variants of FOA as mentioned in literature [27], such as the
computational complexity of CMFOA is O(2-P-M), the computa-
tional complexity of MFOA is O(5-P-M), the computational com-
plexity of IFFO is O(P- M), we can say that the computational com-
plexity of IAFOA is acceptable. The comparison of the computing
time spent by several variants of FOA when solving a group of
benchmark functions, will be illustrated in the Section 3.

2.2.7. Convergence analysis of IAFOA

Due to the multi-sub-swarm mechanism, IAFOA can be consid-
ered as a combination of an improved FOA and an improved GA.
According to the adaptive crossover and mutation mechanism, the
individual with highest fitness value in the second sub-swarm will
be operated with crossover probability and mutation probability of
0. It means that the best elite in each generation will be retained.
Actually, based on the Markov chain analysis, many researchers
have proved that the genetic algorithm with elitism strategy can
converge to the optimal extreme theoretically [35]. However, the
convergence analysis of FOA is rare in current research and litera-
tures. Therefore, in this section, we mainly focus on two issues:

(1) Convergence analysis of IAFOA;
(2) Description why the proposed mechanisms in this paper can
make contribution to the convergence of IAFOA.

Assume that a multidimensional function optimization prob-
lem F(X)= f(x!, x2,---,x") with n variables x!,x2, ..., x
has the global extreme F(X*)= f(x!, x2,---,x") when X*=
(x1, x2,... x") existing in the search space. We call X*=
(x}, x2,... . x") the global solution. For convenience, we restrict
the application domain to minimization problems.

Lemma 1. The search scope of IAFOA always can cover the global so-
lution after some iterations.

Proof. Let Xm = (x},, x%.---,x%) be the best solution in the m-th
generation, and Ry, is the search radius. If Ji(ie[1, 2, ---, n]), let
|x£71 — x| =Con > Ry (18)

in which Con is a finite constant. We can say that the global
solution is out of the search scope of the fruit flies.

According to the rules of FOA, individuals forage food in the
search scope. Since the search radius is a fixed value in original
FOA, it cannot become big or small. Actually, if the current best so-
lution Xm = (%), ¥2,---,x%) is a local solution in the search scope
with radius of Ry, due to |xi, — xL| > Rm, it is impossible to let the
i-th variables become xi during the next iteration. Considering the
fruit fly swarm will gather at the best location in every iteration,
it is different to jump out the local extreme for original FOA.

However, in IAFOA, due to the adaptive adjustment mechanism
for the iteration step value, the search radius will become bigger
when the algorithm trapping a local extreme. Thus, 3Im’, let Vie (1,
2, -, n)

i i
Riym > |xm - X

(19)

In this case, the global solution is covered by the search scope
of the individuals.

Theorem 2. IAFOA can converge to the global extreme with a proba-
bility of 100% theoretically.

Proof. From Lemma 1, we can know that there exist a finite num-
ber m can let the search scope of IAFOA cover the global solution.
Due to the randomness of searching process, Jcoef; € [-1, 1], let

1 Y | |
X2m+1 = xg1 + coe fiRm _Xﬁ
Xo 1 =X + COefoRy = x2

(20)
X1 = Xm + coefoRm = X{
It means that, Vie(1, 2, --+, n)
P{‘X:"HJJ_Xi =Xl}n—xi+coef,'-Rm:0}>0 (21)

in which P{-} is the probability of the random event { -} happens.
Besides, due to another two mechanisms, the adaptive crossover

and mutation mechanism and the multi-sub-swarm mechanism,

some individuals will be created by crossover and mutation

operations. As we know, the crossover and mutation opera-

tions are stochastic methods. Assume that the best individ-

uals created by crossover and mutation operations is Xp_s =
] ,XL_o), we have,

(Xm—s’ X%‘I—S’ e
P (Xhmss Koo Xms) < F(Xho X+ %)} > 0 (22)

The proof of formula (22) can refer the convergence analysis of
the genetic algorithm with elitism strategy.
Assume that X1 = (x}nﬂ, x%H] .=+, X, 1) is the best individ-
ual in the (m+1)-th generation, according the rules of IAFOA we

have f(x} .. X%, 4.+ X% 1) < f(x}, X&, -, X%). Based on for-
mulas (21) and (22), we can get, Vie(1, 2, ---, n)
rllilgc|x;1 - x|=0 (23)

It means that IAFOA can converge to the global extreme with a
probability of 100%.

Actually, the adaptive iteration step value and the adaptive se-
lection mechanism for the search direction can promote the opti-
mization process of IAFOA. Based on the Lemma 1, we can assume
that in the m-th iteration, Vie(1, 2, ---, n), let Ry > |xi, — xi|, and
then the value of - ’;’mz (P is the population size of fruit fly swarm)
is called point-face rate of the m-th iteration. Obviously, a big value
of nTF:nZ means that the individuals can find the global best loca-

tion with a big probability, and also can let the individuals search
for the global extreme accurately. As mentioned in Section 2.2.2,
at the beginning stage of optimization procedure of IAFOA, the it-
eration step value is becoming smaller along with the increase of
the iteration number. A smaller iteration step value can make the

point-face rate - }f > much bigger. Therefore, the adaptive adjust-

m

ment mechanism for the iteration step value can let the IAFOA
converge to a better solution with a big probability.

In original FOA, the search direction of fruit fly is selected ran-
domly. It means that every direction can be selected with the same
probability. Suppose the probability of individual flying towards
the direction with 0 (@ is the angle between the direction and the
optimal search direction) is g(6)pga in original FOA, and the prob-
ability of individual flying towards the direction with 6 is g(@) in
IAFOA, then we have,

{g(em < 80)0(0.7/2) (24)

8(0)pop = 8(0) 0 e[m/2, 7]

Thus,
/2 /2 T big

80> [ e@yor=[ £Oron ~ [ 6 (29

/2 /2

Due to the adaptive selection mechanism for the search direc-
tion, more individuals will fly towards these directions with small
6. Obviously, it is beneficial to obtain a good solution at a fast
speed.
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Table 1
List of benchmark functions.

No. Functions Xi X- fix.)

F1 f&x) = iiX? (-512512) 0 0
P

F2 foo = 22 2 —x1)2 + (1 —1)? (~10,10) 20202 0
i=,

F3 f(x) = —exp(-0.5 ‘ilxiz) (-11) 0 -1

i=

F4 fex) = il (10%) =t x? (~100,100) 0 0
P

F5 fx) = ilix;* + rand(0,1) (-128128) 0 0
i=

F6 fx) = "i]]nomxm —x 4 (- 1)) (-3030) 0 1
i=

F7 fx) = i (_i xj)? (-100,100) 0 0

F8 fx) = ;la;(zllql) (~100,100) 0 0

F9 fx) = 1; %] +f[] [xi] (~10,10) 0 0

F10 fx) = flxiz (-100,100) 0 0
P

F11 fe) = ilxi +0.52 (~100,100) 0 0
i=

F12 F) = 3 Il (-11) 0 0
P

F13 Fx) = iixf (~10,10) 0 0
P

Fl4 fo = i}x? —450 (-100,100) 0 450
i=

F15 fx) = il (_i'lxj)2 —450 (-100,100) 0 —450
P

F16 F(x) = ~20exp(~02_[ 1 ixiz) —exp(1 il os(27X)) +20 + e (~32:32) 0 0

1= 1=

F17 F) = ¥ xisin(x) + 0.1x (~10,10) 0 0

FI8 F00 = [yt 3)+ Fr Gz x3) -+ i G xr), i (1,3) = (2 4205 [sin2 (5002 +32)°1)) + 1] (~100,100) 0 0

F19 F&) = filxa, x2) + fi(xa, x3) +--- + fi (xn, X1), (—100,100) 0 0

fi(x,y) = 0.5 + (sin?({/x2 + y2) — 0.5)/(1 4+ 0.001(x% + y?))?
fx) = T{10sin?(y;) +'§ 1 = D?[1+10sin? (y1.0)] + (v — 1)°} + iﬂ(x,-, 10,100, 4)
- k(xi—a)™.x; > a -
F20 yi=1+025(x+ 1), uxakm={ 0,—-a<x<a (~50,50) -1 0
k(=x;i —a)™, x; < —a

F21 F@® = 00 é X7 - l_lj cos(%) +1 (-600,600) 0 0

F22 Fx) = — ,;1 (exp(— MLt ) o4 AT TR0 F05%Ki01)) (=5.5) 0 1-n

F23 fx) = Zl (X —1)% - éxfx,q (—n?,n?) i(n+1-1) M)
P F

F24 fo) = :i: 05+ /B0 D3, m )2 (-100100)  © 0

F25 fx) = i](xiz — 10cos(27x;) + 10) (-512512) 0O 0
i=

F26 F) = £07 - 10cos(@my) + 10,5 = [, G0 (-512512) 0 0

F27 F(x)=1—-cos2m ( _ilxiz) +0.1 ixf) (—~100,100) 0 0

1= 1=

F28 fx) = ﬁ;{l:i:[a"cos(ank(x,v +0.5)]} - nkmzﬂ(x)[a"cos(Zer" -0.5)],a=0.5, b=0.3, Kkpax =30 (-0.5,0.5) 0 0
1= = n=l

F29 fo =3 i](yfk/4ooofcos(yjk)+1),yjk =100(x, —22)2 + (1 -23)? (~100100) 1 0
k=1 j=

Overall, we can say that IAFOA can converge to the global ex-
treme theoretically, and the four proposed mechanisms in this pa-
per are helpful to address the multidimensional function optimiza-
tion problem.

3. Experiments and numerical analysis

For the purpose of verifying the performance of IAFOA, a total
of 29 benchmark functions including 15 unimodal functions and 14
multimodal functions, are considered in the experimental section.
These benchmark functions shown in Table 1 are widely adopted
in benchmarking global optimization algorithms. In fact, different
functions can be used to test different abilities of algorithms, such

as the unimodal functions are suitable for testing the exploitation
ability of algorithms because they only have one global extreme,
and multi-modal functions are suitable for testing the exploration
ability of algorithms because they have a global extreme as well
as many local optima [36]. In this section, all the algorithms are
coded in Matlab 2012a on the computer with an Intel® Core(TM)
i7-6500U CPU@2.50 GHz, 8GB RAM, Windows 7.

As we know, there are many coding methods and many variants
of crossover and mutation operators. Therefore, several instructions
are listed as follows:

(1) For IAFOA, the real number coding method is adopted. When
optimizing the high-dimensional function, fruit fly is coded
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by a numeric string which includes n (n is the dimension of
the function) numbers, and the n numbers represent the n
variables of the function;

(2) As to crossover operator, the partial-mapped crossover is
used, and the quantity of selected points is set to 2n/10. As
to mutation operator, Gaussian mutation and Cauchy muta-
tion are two most popular methods. Compared with Gaus-
sian mutation, Cauchy mutation has a stronger global ex-
ploration capability, which can effectively inhibit the loss of
population diversity [37]. Therefore, standard Cauchy muta-
tion is adopted in IAFOA.

3.1. Experiments for testing the effects of adaptive adjustment
mechanism for the iteration step value

In order to test the effects of adaptive adjustment mechanism
for the iteration step value, a set of special experiments is carried
out based on the 29 benchmark functions. Since IAFOA includes
four extra mechanisms compared with original FOA, it is difficult
to distinguish the effects of each mechanism by comparing the re-
sults obtained by IAFOA and FOA. Hence, a transitional algorithm
named AFOA, which just combines FOA with the adaptive adjust-
ment mechanism for the iteration step value, is used in this set of
experiments.

To be fair, the common parameters of AFOA and FOA are set to
the same values: population size P=40, maximum iteration num-
ber M= 1000 and the stopping criterion is iteration number m= M.
The initial iteration step value R is set according to the following
rules: if the limiting value of x; shown in Table 1 is less than 10 for
a function, the iteration step value R is set to the limiting value of
x;; if the limiting value of x; shown in Table 1 is not less than 10
for a function, the iteration step value R is set to 10.

Then, AFOA and FOA are used to solve the 29 benchmark func-
tions on the computer mentioned above. Owing to their stochastic
nature, evolutionary algorithms may arrive at solutions those are
better or worse than solutions they have previously reached. For
this reason, it is beneficial to use statistical tools to compare the
problem-solving success of an algorithm with that of another [18].
Therefore, each problem is run with 50 independent replications.
The results obtained by AFOA and FOA for the 29 functions with
dimensions equal to 30, are shown in Table 2 which includes the
best value (Best), the worst value (Worst), the mean value (Mean)
and the standard deviation (Std.) in the 50 independent replica-
tions.

As shown in Table 2, the results obtained by AFOA are much
better than those obtained by FOA. Firstly, AFOA is more effective
in terms of the “Best” and “Worst” results. In detail, although AFOA
and FOA both can produce the best solutions which are the theo-
retical optima for FO3, F14 and F22, AFOA generates 22 significantly
better “Best” (except FO7, F11, F19, F25) for the remaining 26 func-
tions compared with FOA. What's more, AFOA generates 25 signifi-
cantly better “Worst” (except F19, F21, F22, F25) for the total of 29
functions than FOA. Secondly, AFOA is highly robust in terms of the
“Mean” and “Std.” results. In detail, AFOA obtains 26 significantly
better “Mean” (except F19, F21, F25) and 26 significantly better
“Std.” (except F19, F22, F25) for the total of 29 functions compared
with FOA. The data shown in Table 2 can prove that AFOA is able to
provide more promising performance than FOA. Obviously, this is
mainly contributed by the adaptive adjustment mechanism for the
iteration step value. Therefore, we can conclude that the adaptive
adjustment mechanism for the iteration step value can improve the
performance of FOA effectively.

Besides, for the purpose of monitoring the changes of the it-
eration step values, several changing curves of Ry(1<m<M) are
shown in Fig. 7 when solving the benchmark functions. In order
to save space, just some representative curves are illustrated. As

shown in Fig. 7, the iteration step value is changing along with the
optimization procedure. In the beginning, the iteration step value
even increases so that fruit flies can search for a good solution in
a large scope and at a fast speed. Then, the iteration step value
decreases rapidly since the best fitness values of individuals are
becoming better quickly. At the middle & later stage of the itera-
tion procedure, the iteration step value will increase and decrease
alternately. These curves can prove that the adaptive iteration step
value is more suitable for searching for global extreme efficiently.

3.2. Experiments for testing the effects of the GA sub-swarm

In order to uncover the real benefit introduced by the GA sub-
swarm, another set of experiments is carried out. As mentioned
above, because IAFOA includes several extra improvements com-
pared with original FOA, another transitional algorithm called GM-
FOA, which combines FOA with the adaptive crossover and muta-
tion mechanism and the multi-sub-swarm mechanism is adopted
in this section. Then, GMFOA and FOA are used to solve the 29
benchmark functions to verify the advantages of GAFOA. For a fair
comparison, the common parameters of GMFOA and FOA are set to
the same values. In detail, population size P=40, maximum itera-
tion number M=1000, the stopping criterion is iteration number
m=M, and the initial iteration step value R is set according to the
rules mentioned in Section 3.1. What’s more, the specific param-
eters of GMFOA are set as Penax = 0.9, Peypin = 0, Pmmax = 0.5,
Pymin = 0. Each problem is run with 50 independent replications
and the results obtained by GMFOA and FOA are shown in Table 3
when solving the 29 functions with dimension equal to 30.

As shown in Table 3, the performance of GMFOA is much bet-
ter than that of FOA. Although both GMFOA and FOA can gener-
ate the same “Best” which are the theoretical optima for F03, F14
and F22, GMFOA produces 23 significantly better “Best” for the 26
remaining benchmark functions. In terms of “Worst”, GMFOA gen-
erates 27 significantly better results (except F12 and F21) for the
29 benchmark functions compared with FOA. Based on the results
of “Best” and “Worst”, we can know that GMFOA is more effec-
tive than FOA. In addition, GAFOA has the significant advantages
in terms of “Mean” and “Std.”. In detail, GAFOA obtains 27 sig-
nificantly better “Mean” (except F12 and F21) and 27 significantly
better “Std.” (except F12 and F21) for the total of 29 functions. It
means that GMFOA is more robust than FOA. In summary, GMFOA
has the ability to produce better solutions. Obviously, this is mainly
contributed by the adaptive crossover and mutation mechanism
and the multi-sub-swarm mechanism. The results have shown the
real benefit introduced by the two mechanisms. Actually, the major
function of the adaptive crossover and mutation mechanism is to
improve the population diversity. As we know, better swarm diver-
sity can bring better exploitation ability, and make the algorithm
jump out the local optima effectively.

In order to evaluate and analyze the real influence on the pop-
ulation diversity introduced by the GA sub-swarm, some scatter
plots of individual distribution at a specific phase of search (when
the iteration number m=50) are shown in Fig. 8. Actually, we pro-
vide five scatter plots of individual distribution, which are obtained
by the FOA sub-swarm, the GA sub-swarm, the whole swarm of
IAFOA, the pure adaptive FOA and the pure adaptive GA used in
IAFOA with the same parameters as mentioned above. For sav-
ing space, these scatter plots are driven by the data when solv-
ing F13. As we know, it is very difficult to display the exact loca-
tion of individual when n > 3. Therefore, we just select two vari-
ables and show the locations in two-dimensional space. As shown
in Fig. 8(a), the fruit flies in the first sub-swarm of IAFOA search for
the optimum around the best location of last generation. And as
shown in Fig. 8(b), the population diversity of the GA sub-swarm is
much better due to the crossover and mutation operations. There-
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Table 2
Comparison of AFOA and FOA on the 29 benchmark functions (n = 30).
Functions =~ AFOA FOA
Best Worst Mean Std. Best Worst Mean Std.

FO1 3.432E-09 2.304E-03 6.231E-04 2.038E-04  5.249E-07 5.896E-01 4.746E—02 1.239E-01
F02 5.304E-03 9.483E-01 5.693E-02 5.392E-02  3.472E-01 5.382E+00 9.301E-01 2.482E+00
F03 -1.000E+00 —9.973E-01 —9.998E-01 3.023E-03  —1.000E+00 —9.966E-01 —9.994E-01 7.925E-03
F04 7.324E-06 1.292E+01 2.903E+00 2.382E+00 2.007E-04 2.415E+03 1.427E+02 3.904E+02
F05 4.203E-06 9.382E-03 7.873E-04 5.284E-04  9.533E-05 1.228E-02 3.560E-03 2.870E-03
FO6 9.394E-07 7.374E-02 4.460E-03 4.871E-03 1.576E-05 2.871E+01 2.394E+00 4.989E+00
FO7 6.090E-05 4.003E+01 3.468E+00 3.980E+00 3.557E-05 1.494E+02 3.788E+01 4.883E+01
F08 9.403E-06 3.240E-03 4.590E-04 7.025E-04  2.112E-05 3.791E-02 5.642E-03 6.457E-03
F09 4.693E-07 8.032E-03 6.489E-04 5.609E-04  9.265E-05 7.972E-01 1.646E-01 2.043E-01
F10 9.023E-08 5.403E-03 4.503E-04 3.845E-04  6.255E-06 1.422E-02 1.478E-03 2.723E-03
F11 8.230E-05 2.049E-02 7.342E-03 2.983E-03  6.589E-06 6.452E-01 2.997E-02 1.166E—-01
F12 5.663E-14 6.704E-09 5.303E-10 1.321E-09  9.490E-12 7.481E-08 1.891E-09 1.060E-08
F13 4.340E-08 5.304E-02 5.403E-03 5.034E-03  1.084E-05 3.371E-01 3.489E-02 7.583E-02
F14 —4.500E+02  —4.102E+02  —4.401E+02  8.503E+00 —4.500E+02 —4.021E+02  —4.327E+02  1.201E+01
F15 —4.403E+02  —3.103E+02 —3.928E+02  4.034E+01 —4.369E+02 —2.964E+02  —-3.582E+02  4.801E+01
F16 5.940E-09 2.394E-04 3.492E-05 4.032E-05  3.738E-07 5.955E-02 1.486E-02 1.355E—-02
F17 3.045E-06 3.052E-03 1.032E-04 3.209E-04  1.848E-04 3.325E-02 7.360E-03 5.627E-03
F18 5.132E-04 1.023E+00 6.034E-01 6.034E-01  2.535E-02 6.216E4+00 2.708E+00 1.560E+00
F19 4.098E—04 4.098E-01 8.024E-02 6.098E-02  1.599E-05 7.747E-02 4.991E-03 7.242E-03
F20 6.483E-02 3.884E-01 4.673E-02 5.022E-02  3.332E-01 1.684E+01 5.899E+00 2.905E+00
F21 8.094E-10 4.887E-05 7.335E-06 2.932E-06  1.110E-08 3.603E-05 2.654E—-06 4.632E-06
F22 —2.900E+01 —1.304E+01 —1.896E+01 5.023E+00  —2.900E+01 —1.553E+01  —1.813E+01 4.227E+00
F23 -1.392E+03  -8.023E+02  -1.023E+03  1.296E+02  —8.700E+02 —1.685E+02  —4.698E+02  1.850E-+02
F24 7.394E-05 4.956E—02 2.343E-03 4.209E-03  2.084E-04 9.237E-02 5.786E-03 8.812E-03
F25 4.453E-02 2.545E+00 7.345E-01 9.234E-01 6.717E-03 2.251E+00 1.860E—-01 3.822E-01
F26 5.441E-08 6.506E—02 3.445E-03 2.343E-03  4.175E-06 8.806E-01 1.794E-01 1.532E-01
F27 2.461E-05 8.334E-02 5.456E—-03 2.985E-03  4.994E-04 1.427E-01 2.026E-02 3.118E-02
F28 6.561E—06 9.004E-03 3.095E-04 3.356E-04  4.873E-03 7.339E-01 3.298E-02 7.223E-02
F29 2.034E-01 2.450E+00 4.875E-01 2.445E-01  5.593E-01 4.289E+00 8.901E-01 7.588E—-01

fore, the whole swarm of IAFOA as shown in Fig. 8(c) has the ad-
vantages of the two sub-swarms. Compared with the individual
distribution of the pure adaptive FOA (Fig. 8(d)), the population
diversity of IAFOA has obvious advantages. And compared with
individual distribution of the pure adaptive GA (Fig. 8(e)), more
individuals in IAFOA can search for the optimum accurately. The
scatter plots of individual distribution when the iteration number
m=>500 are shown in Fig. 9, which can verify the conclusions ob-
tained from Fig. 8.

3.3. Comparison of IAFOA with other algorithms

In order to verify the advantages of IAFOA, it is compared with
several well-known algorithms in two groups. In the first group,
several state-of-the-art variants of FOA are included. And five ad-
vanced intelligent algorithms are used for comparison in the sec-
ond group. For the algorithms in group 1, the dimensions of the 29
benchmark functions are set to 30. For the algorithms in group 2,
the dimensions of the functions are set to 50. All the algorithms in
the two groups are carried out on the same computer mentioned
above.

3.3.1. Comparison of IAFOA with state-of-the-art variants of FOA

The five state-of-the-art variants of FOA used in this section are
the contrast-based fruit fly optimization algorithm (c-mFOA) pro-
posed by Kanarachos et al. [28], the multi-scale cooperative muta-
tion fruit fly optimization algorithm (MSFOA) proposed by Zhang
et al. [22], the normal cloud model based on FOA (CMFOA) pro-
posed by Wu et al. [27], the effective and improved FOA (IFOA)
proposed by Wang et al. [13], and the improved fruit fly optimiza-
tion (IFFO) proposed by Pan et al. [4].

To be fair, the common parameters used by these algorithms
are set to same values, and the specific parameters for different
improved FOAs are set according to the literatures first introduced
them. In detail, set population size P=40 and maximum iteration

number M=6000 for all the five variants of FOA. What’s more, for
c-mFOA, K=320, K=15, the two coefficients are 0.95 and 0.92 as
in [28]; for MSFOA, set M=6 and ¢ =6 as in [22]; for CMFOA, set
En = Enmgx x (1 —t/M)%, He = 0.1En, Enpgx = (UB - LB)/4 and o =
10 as in [27]; for IFOA, @ =0.3, kmax = (UB—LB)/2 and k,;; =10~ as
in [13]; for IFFO, set Amgx =(UB—LB)/2 and Ap; = 107> as in [4]; for
IAFOA, Pemax = 0.9, P pmin = 0, Pmmax = 0.5, Py imin=0.

The comparative results of IAFOA and the other five variants of
FOA are illustrated in Table 4. Besides the results of the best value
(Best), the worst value (Worst), the mean value (Mean) and the
standard deviation (Std.) in the 50 independent replications, the
average computing time (ACT) is also shown in Table 4 in order
to test the computational complexity of IAFOA. Furthermore, we
used two-tailed t-tests to compare the results produced by these
improved FOAs at the 0.05 level of significance. The statistical sig-
nificance level of the aggregate results are shown in the last sev-
eral rows of the Table 4. The “+” indicates that a given algorithm
significantly outperforms IAFOA, “—” means IAFOA is better than
the given algorithm, and “~” indicates that there is no significant
difference between IAFOA and the compared algorithm. In order to
highlight the overall best results, the significantly better values are
marked in bold. From Table 4, we can obtain the following infor-
mation and conclusions:

(1) For the total of 29 benchmark functions, IAFOA has the
best performance among all the six variants of FOA.
In terms of “Best” and “Worst”, which reflect the effi-
ciency of algorithm, IAFOA produces 15/16/17/21/19 sig-
nificantly better, 3/4/1/2/2 significantly worse, 11/9/11/6/8
equal “Best”, and generates 18/20/22/25/26 significantly bet-
ter, 5/4/3/2/3 significantly worse, 6/5/4/2/1 equal “Worse”
compared with c-mFOA/MSFOA/ CMFOA/IFOA/IFFO. In terms
of “Mean” and “Std.”, which reflect the robustness of al-
gorithm, IAFOA produces 18/19/23/24/27 significantly better,
5/5/3/2/1 significantly worse, 6/5/3/3/1 equal “Mean”, and
obtains 18/20/23/25/27 significantly better, 5/4/3/2/1 signifi-
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cantly worse, 6/5/3/2/1 equal “Std.” compared with c-mFOA/ 1.27/1.52/1.55/1.15/2.54 times of that used by c-mFOA/
MSFOA/ CMFOA/IFOA/IFFO. MSFOA/ CMFOA/IFOA/IFFO. However, considering the best
(2) In detail, for 6 functions (FO1, FO3, F10, F12, F13, F14), IAFOA performance and outstanding solutions obtained by IAFOA,
has the same best performance with the other one or more the time spent by IAFOA is acceptable.
state-of-the-art variants of FOA. For the other 12 functions In brief, IAFOA has the better performance than other five state-
(FO2, FO5, FO7, FO8, F11, F15, F18, F21, F23, F25, F26, F29), - .
L of-the-art variants of FOA when solving the 29 benchmark func-
IAFOA has significantly better performance than other five . . . . I
. tions in terms of highly effective and robust within a reasonable
improved FOAs. It means that IAFOA can produce the best . . . .

. . .. computing time. The results obtained by IAFOA can verify the su-
solutions for 18 benchmark functions. For the remaining 11 erioritv of IAFOA compared with the other improved FOAs
functions, c-mFOA has the best performance when solving p y P P ’

FO4, FO6 and F27, MSFOA produces the best solutions for 3.3.2. Comparison of IAFOA with advanced intelligent optimization

F16, F19 and F28, CMFOA has the best performance when algorithms

solving FO9 and F20, IFOA obtains the best solutions for F17, In the section, we intend to show how well the proposed

F22 and F24. . . IAFOA performs when compared with five representative intelli-
(3) In terms of “ACT”, which reflects the computation com-

plexity of algorithm, IAFOA spend the longest time among
all the variants of FOA, while IFFO spend the shortest
time. In detail, the average value of “ACT” obtained by
IAFOA is 27.70s when solving the 29 benchmark func-
tions, while that of c-mFOA/ MSFOA/CMFOA/IFOA/IFFO
is 21.83s/18.285/17.925/24.115/10.91s. It means that
the average value of “ACT” spent by IAFOA is about

gent optimization algorithms, such as the improved artificial fish
swarm algorithm (IASFA) [38], the comprehensive learning parti-
cle swarm optimizer (CLPSO) [39], the local-best harmony search
algorithm with dynamic subpopulations (DLHS) [40], the ant lion
optimizer (ALO) [41] and the grey wolf optimization (GWO) [42].
Among them, IASFA is the representative of fish swarm algorithm
and CLPSO is the top access article in the PSO community [27].
DLHS is a new improved algorithm of harmony search algorithm
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Table 3
Comparison of GMFOA and FOA on the 29 benchmark functions (n = 30).
Functions =~ GMFOA FOA
Best Worst Mean Std. Best Worst Mean Std.

FO1 6.231E-08 2.611E-04 3.216E-05 5.502E—05  5.249E—07 5.896E-01 4.746E—02 1.239E-01
F02 3.521E-04 7.182E-02 6.418E—03 7.268E-03  3.472E-01 5.382E+00 9.301E-01 2.482E400
FO3 —~1.000E+00 —9.975E—01 —9.998E-01 2.681E-03 —1.000E+00 —9.966E—01 —9.994E-01  7.925E-03
F04 1.620E-05 1.292E-01 3.256E-02 2.265E-02  2.007E—04 2.415E403 1.427E+02 3.904E+02
FO5 8.162E—06 2.004E-03 3.264E-04 3.648E-04  9.533E-05 1.228E-02 3.560E—03 2.870E-03
F06 2.365E—07 1.592E-02 2.395E-03 2.265E-03  1.576E—05 2.871E+01 2.394E400 4.989E+00
FO7 1.390E-05 6.321E-01 3.289E-02 6.318E-02  3.557E—05 1.494E+02 3.788E+01 4.883E+01
FO8 2.658E—07 9.358E—04 7.925E-05 8.647E-05  2.112E-05 3.791E-02 5.642E-03 6.457E—03
F09 1.365E-06 2.340E-02 3.611E-03 3.102E-03  9.265E-05 7.972E-01 1.646E—01 2.043E-01
F10 6.329E-08 1.280E-03 2.970E-04 1.699E-04  6.255E—06 1.422E-02 1.478E—03 2.723E-03
F11 3.220E-08 5.321E-03 3.841E-04 6.480E-04  6.589E—06 6.452E-01 2.997E-02 1166E-01
F12 1.236E-11 3.261E-07 4.521E-08 5.012E-08  9.490E-12 7.481E-08 1.891E-09 1.060E—08
F13 2.330E-07 1.399E-03 6.481E—04 2.034E-04  1.084E—05 3.371E-01 3.489E—-02 7.583E—02
F14 —4500E+02 —4.108E+02  —4.409E+02  7.803E+00 —4.500E+02 —4.021E+02  —4.327E+02  1.201E+01
F15 —4420E4+02  —3.320E+02 —4.126E+02  3.125E4+01  —4.369E+02  —2.964E4+02  —3.582E+02  4.801E401
F16 2.360E-09 6.445E-05 7.223E-06 6314E-06  3.738E-07 5.955E—02 1.486E-02 1.355E-02
F17 7.182E-05 5.330E—03 4.112E-04 7140E-04  1.848E-04 3.325E-02 7.360E—-03 5.627E—03
F18 1.020E-04 6.341E-01 8.117E—02 9150E-02  2.535E-02 6.216E+00 2.708E+00 1.560E+00
F19 9.630E-06 4.260E—02 1.003E-03 4261E-03  1.599E-05 7.747E-02 4.991E-03 7.242E-03
F20 1.568E-02 6.328E-01 3.201E-02 1.236E-01 3.332E-01 1.684E+01 5.899E+00 2.905E+00
F21 2.310E-08 1.477E—04 3.894E-05 1562E-05  1.110E—08 3.603E-05 2.654E-06  4.632E-06
F22 —2900E+01  —1.755E4+01  —2213E+01  3.563E+00 —2.900E+01  —1553E+01  —1813E+01  4.227E400
F23 —~1.866E+03  —1.023E+03  —1423E+03  1203E+02  —8.700E+02  —1685E+02  —4.698E+02  1.850E+02
F24 6.322E-06 8.112E-03 4.236E-04 2130E-03  2.084E—04 9.237E-02 5.786E-03 8.812E-03
F25 7.209E-04 9.125E-01 8.251E-02 1.963E-01  6.717E—03 2.251E+00 1.860E-01 3.822E-01
F26 7.236E-06 2.148E-02 6.384E—03 4112E-03  4.175E-06 8.806E—01 1.794E-01 1.532E-01
F27 9.010E-05 3.624E-03 8.630E—04 1.025E-03  4.994E—04 1.427E-01 2.026E—-02 3.118E-02
F28 1.332E-05 5.249E-02 4.113E-03 1.632E-02  4.873E-03 7.339E-01 3.298E-02 7.223E-02
F29 6.149E—03 4.223E-01 1.025E-02 2.002E-01  5.593E-01 4.289E+00 8.901E-01 7.588E—01

with dynamic subpopulations, and ALO and GWO are the advanced N

swarm intelligent optimization algorithms [43]. The parameters of

these algorithms are the same as the corresponding literatures sug-

gested. And the parameters of the IAFOA are the same as the pre- b

vious.

Table 5 shows the mean value “Mean” and standard deviation
“Std.” by applying the six algorithms to optimize the 29 bench-
mark functions with dimensions equal to 50. In Table 5, the best
results on each row are in bold and the aggregate results of statis-
tical testing are shown in the last several rows. From Table 5, we
can obtain the following information and conclusions:

(1) For the 15 unimodal functions, the results show that GWO
has the best performance, followed by IAFOA. In detail, GWO
obtains 10 best “Mean” and “Std.” while IAFOA generates 8
best “Mean” and “Std.” for the 15 functions. However, the
performance of IAFOA is much better than that of IASFA,
CLPSO, DLHA and ALO.

For the 14 multimodal functions, the results show that
IAFOA has the best performance. In detail, IAFOA generates
11 best “Mean” and “Std.” for the 14 multimodal functions,
but the numbers obtained by IASFA, CLPSO, DLHA, ALO and
GWO are 0, 0, 0, 0 and 3, respectively.

Overall, for the 29 benchmark functions, IAFOA pro-
duces 27/25/24/25/16 significantly better, 1/2/3/2/9 signif-
icantly worse, and 1/2/2/2/4 equal “Best” compared with
IASFA/CLPSO/DLHA/ALO/GWO. On the other hand, IAFOA
performs steadily well in terms of “Mean”, it gener-
ates 27/25/25/25/16 significantly better, 1/2/2/2/9 signifi-
cantly worse, and 1/2/2/2/4 equal “Std.” compared with
IASFA/CLPSO/DLHA/ALO/GWO.

—
N
—

—
w
—

Therefore, we can conclude that IAFOA can achieve excellent
solutions for unimodal and multimodal functions, even though its
performance for unimodal functions is a little worse than that of
GWO. In summary, IAFOA is the best algorithm when solving the

|-

Fig. 10. Schematic diagram of coil compression spring design [46].

29 functions compared with IASFA/CLPSO/DLHA/ALO/GWO. Actu-
ally, the super performance of the proposed IAFOA is mainly ben-
efited from the four proposed mechanisms in this paper.

4. Application to solve engineering optimization problems

In order to verify the ability of IAFOA to solve the optimiza-
tion problems in real-world applications [44], three well-known
engineering problems, which are coil compression spring design,
welded beam design and speed reducer design, are provided in
this section [45,46].

4.1. Three engineering optimization problems

4.1.1. Coil compression spring design

The objective of this optimization problem is to design a coil
compression spring with a minimum total weight. The coil com-
pression spring, as shown in Fig. 10, is subjected to three design
variables, which are the mean coil diameter D (x;), the wire di-
ameter d (x,) and the number of active coils N (x3), and four con-
strains, which are the minimum deflection, the shear stress, the
surge frequency and the diameter [46].
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Table 4
Comparative results of I[AFOA with several variants of FOA on the 29 benchmark functions (n=30).

Function IAFOA c-mFOA MSFOA CMFOA IFOA IFFO

FO1 Best 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~
Worst 0.000E+00 0.000E+00 ~ 4.814E-10 — 0.000E+00 ~ 1.485E-08 — 6.248E—-11 —
Mean 0.000E+00 0.000E+00 ~ 6.157E-11 — 0.000E+00 ~ 1.464E-09 — 4.852E-12 —
Std. 0.000E+00 0.000E+00 ~ 1.164E-10 — 0.000E+00 ~ 2.478E-09 — 1.967E-12 —
ACT 18.83s 15.18s 11.57s 13.01s 16.63s 7.23s

F02 Best 7.591E-07 1.268E-05 — 1.658E-06 — 3.705E-03 — 1.578E-04 — 4.571E-05 —
Worst 6.390E-06 5.160E-04 — 6.548E-01 — 2.354E+00 — 1.306E+00 — 3.413E4+00 —
Mean 2.158E-06 1.815E-04 — 4.581E-02 — 7.902E-01 — 4.505E-01 — 9.478E-01 —
Std. 8.820E-07 1.233E-04 — 3.547E-02 — 8.501E-01 — 2.658E-01 — 2.045E-01 —
ACT 21.59s 17.34s 14.37s 14.28s 21.02s 8.76s

FO3 Best —1.000E+00 —1.000E+00 ~ —1.000E+00 ~ —1.000E+00 ~ —1.000E+00 ~ —1.000E+00 ~
Worst —1.000E+00 —1.000E+00 ~ —1.000E+00 ~ —1.000E+00 ~ —1.000E+00 ~ —1.000E+00 ~
Mean —1.000E+00 —1.000E+00 ~ —1.000E+00 ~ —1.000E+00 ~ —1.000E+00 ~ —1.000E+00 ~
Std. 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~
ACT 22.10s 16.76s 13.82s 13.74s 20.39s 8.64s

F04 Best 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 3.110E-07 — 2.515E-10 —
Worst 2.918E-06 6.182E-10 + 1.561E+00 — 1.025E-08 + 6.158E-01 — 3.651E-06 —
Mean 1.029E-07 3.058E-10 + 2.548E-01 — 1.660E—-09 + 1.350E-02 — 1.610E-07 —
Std. 9.156E-08 7105E-11 + 2.611E-01 — 3.610E-09 + 1977E-02 — 4.272E-07 —
ACT 23.41s 18.70s 15.69s 15.87s 22.34s 9.12s

FO5 Best 1.182E-08 6.219E-08 — 1.548E-09 + 3.148E-05 — 9.124E-07 — 3.659E-06 —
Worst 8.916E-06 3.174E-05 — 8.259E-04 — 2.272E-01 — 1.580E-03 — 2.025E-03 —
Mean 3.913E-06 8.091E-06 — 2.251E-05 — 4.929E-02 — 6.454E-04 — 1.005E-04 —
Std. 2.153E-06 5.130E-06 — 3.811E-05 — 3.457E-02 — 2.820E-04 — 2.133E-04 —
ACT 20.21s 16.40s 12.82s 13.37s 18.94s 7.96s

F06 Best 1.025E-08 2.069E-10 + 2.068E-08 — 5.474E—-06 — 2.351E-07 — 1.580E-07 —
Worst 5.620E-06 1.863E-08 + 3.561E-05 — 2.667E-03 — 2.104E-02 — 2.269E-02 —
Mean 1.068E-06 4.613E-09 + 4.909E-06 — 4.511E-04 — 1.698E-03 — 9.002E-03 —
Std. 1.269E—-06 4.752E-09 + 3.180E-06 — 3.828E-04 — 2.414E-03 — 4.460E-03 —
ACT 22.25s 17.37s 14.58s 14.32s 20.43s 8.73s

FO7 Best 3.547E-08 5.920E-05 — 7.881E-07 — 6.187E-06 — 2.581E-05 — 2.681E-08 +
Worst 8.962E-02 7.630E-01 — 8.581E+00 — 8.413E-01 — 3.068E+00 — 4.859E+00 —
Mean 6.291E-03 1.523E-01 — 1.280E-01 — 1.058E-01 — 6.184E-01 — 7.155E-01 —
Std. 7.269E-03 6.190E-02 — 4.980E-01 — 7.841E-02 — 4.552E-01 — 4.308E-01 —
ACT 24.21 19.52s 16.47s 17.75s 21.10s 9.86s

FO8 Best 8.210E-10 3.201E-07 — 2.658E-09 — 4.447E-07 — 2.184E-08 — 5.817E-06 —
Worst 9.320E-06 6.390E-05 — 6.365E-05 — 2.360E-05 — 6.318E-04 — 2.658E-04 —
Mean 2.360E—-06 1.582E-05 — 4.030E-06 — 5.505E-06 — 5.681E-05 — 7.218E-05 —
Std. 6.301E-07 7.605E-06 — 4.941E-06 — 5.898E-06 — 6.117E-05 — 8.258E-05 —
ACT 16.40s 12.96s 11.19s 10.13s 13.36s 6.58s

F09 Best 8.693E-13 1.250E-12 — 2.617E-11 — 2.658E-14 + 1.178E-07 — 4.180E-09 —
Worst 1.052E-08 6.392E-10 + 3.647E-07 — 2.058E-11 + 6.247E-04 — 2.618E-05 —
Mean 2.536E-09 2.360E-10 + 5.218E-08 — 4.855E-12 + 5.440E-05 — 7.310E-06 —
Std. 2.069E-09 6.620E—-11 + 4.151E-08 — 5.001E-12 + 6.940E-05 — 7.097E-06 —
ACT 18.45s 15.26s 13.35s 11.90s 15.64s 7.63s

F10 Best 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 8.957E-12 — 0.000E+00 ~
Worst 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 6.187E—-08 — 2.367E-12 —
Mean 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 3.617E-09 — 2.958E-13 —
Std. 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 6.581E-09 — 6.628E—13 —
ACT 19.35s 15.08s 12.85s 12.41s 15.90s 7.43s

F11 Best 8.320E-09 5.602E-06 — 6.140E-07 — 6.170E-06 — 7.184E—-05 — 2.151E-06 —
Worst 1.850E-05 2.080E-04 — 7.114E-04 — 5.218E-03 — 1471E-02 — 3.184E-04 —
Mean 3.206E-06 5.890E-05 — 1.250E-04 — 9.147E-04 — 4.571E-03 — 1.251E-04 —
Std. 5.190E-06 4149E-05 — 1.517E-04 — 1471E-03 — 7.418E-03 — 2.584E-04 —
ACT 21.97s 16.85s 14.04s 13.55s 17.35s 8.26s

F12 Best 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~
Worst 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 5.368E—-12 — 3.291E-10 — 8.152E-13 —
Mean 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 1.058E-13 — 2.681E-11 — 1.560E—-14 —
Std. 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 1.581E-12 — 6.170E—11 — 7.077E-14 —
ACT 22.87s 17.46s 15.50s 15.50s 20.85s 8.91s

F13 Best 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 0.000E+00 ~ 4281E-11 — 0.000E+00 ~
Worst 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 4.518E-08 — 5.617E-04 — 6.187E—-10 —
Mean 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 7.447E-09 — 9.714E-05 — 4.077E-11 —
Std. 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 1.248E-08 — 5.257E-05 — 7.686E—11 —
ACT 19.18s 15.05s 13.22s 13.14s 15.36s 7.64s

F14 Best —4.500E+02 —4.500E+02 ~ —4.500E+02 ~ —4.500E+02 ~ —4.500E+02 ~ —4.500E+02 ~
Worst —4.500E+02 —4.500E+02 ~ —4.500E+02 ~ —4.228E+02 — —4.500E+02 ~ —4.358E+02 —
Mean —4.500E+02 —4.500E+02 ~ —4.500E+02 ~ —4.401E+02 — —4.500E+02 ~ —4.415E+02 —
Std. 0.000E+00 0.000E+00 ~ 0.000E+00 ~ 3.217E400 — 0.000E+00 ~ 4.027E+00 —
ACT 18.96s 14.63s 12.23s 12.16s 18.93s 7.28s

F15 Best —4.500E+02 —4.500E+02 ~ —4.500E+02 ~ —4.500E+02 ~ —4.500E+02 ~ —4.500E+02 ~
Worst —4.020E+02 —3.955E+02 — —3.987E4+02 — —3.154E+02 — —3.912E4+02 — —3.847E+02 —
Mean —4.397E+02 —4.276E+02 — —4.224E+02 — —4.001E+02 — —4.205E+02 — —4.150E+02 —
Std. 1.001E+01 1.250E+01 — 1.455E+01 — 2.874E+01 — 1.314E+01 — 2.247E+01 —
ACT 21.62s 18.15s 15.11s 14.57s 19.13s 8.94s

(continued on next page)
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Table 4 (continued)

Function IAFOA c-mFOA MSFOA CMFOA IFOA IFFO

F16 Best 6.208E-14 5.414E-10 — 3471E-13 — 6.227E-10 — 7481E-06 — 3.247E-12 —
Worst 8.620E—-08 4.192E-06 — 1.471E-09 + 4.257E-04 — 1.478E-01 — 4.771E-08 +
Mean 6.821E—-09 7.929E-07 — 5.810E-10 + 6.418E—-05 — 3.610E-02 — 8.952E-09 —
Std. 2.956E-09 7.120E-07 — 4.336E-10 + 8.557E-05 — 2.149E-02 — 4.417E-09 —
ACT 25.12s 20.05s 17.08s 18.00s 23.53s 10.23s

F17 Best 2.599E-11 5.927E-10 — 3.647E-11 + 9.471E-08 — 2.357E-14 + 3.217E-12 +
Worst 6.112E-08 2.415E-06 — 1.480E-08 + 3.334E-04 — 2.154E-10 + 3.597E-09 +
Mean 2.018E-08 7.139E-07 — 3.268E-09 + 6.171E-05 — 7.551E-11 + 9.044E-10 +
Std. 1.592E-08 8.157E-07 — 5.007E-09 + 4.222E-05 — 5.370E-11 + 3.159E-10 +
ACT 28.96s 23.59s 19.29s 18.01s 2591s 11.62s

F18 Best 8.174E-09 7.608E—06 — 3.022E-06 — 3.215E-05 — 6.147E-04 — 3.299E-06 —
Worst 1.592E-05 4.990E-02 — 3.179E-04 — 1.547E+00 — 3.476E+01 — 2.581E-01 —
Mean 5.180E-06 6.491E-03 — 6.475E-05 — 2.541E-01 — 2.557E+00 — 3.522E-02 —
Std. 4.109E-06 5.889E-03 — 1112E-04 — 5.828E-01 — 6.698E+00 — 5.149E-02 —
ACT 39.82s 31.60s 26.07s 2591s 32.39s 15.80s

F19 Best 7.981E-09 1.250E-09 + 1.562E-10 + 3.225E-05 — 3.214E-06 — 3.141E-03 —
Worst 4.912E-05 6.811E-06 + 2.936E-07 + 4.449E-02 — 2.358E-03 — 1.115E-01 —
Mean 5.156E—-06 2.447E-06 + 5.229E-08 + 6.417E-03 — 1.227E-04 — 4.997E-02 —
Std. 7.108E—-06 6.491E-07 + 4.513E-08 + 7.949E-03 — 2.979E-04 — 2.461E-02 —
ACT 44.32s 34.69s 28.73s 27.33s 36.62s 17.52s

F20 Best 0.000E+00 0.000E+00 ~ 3.284E-05 — 0.000E+00 ~ 1.187E-06 — 6.332E-03 —
Worst 5.827E—-06 6.840E-04 — 4.291E+00 — 3.177E-07 + 6.307E-01 — 2.611E-02 —
Mean 5.690E—-07 7.401E-05 — 9.272E-01 — 6.217E-08 + 7.192E-02 — 1.041E-02 —
Std. 6.147E-07 7.355E-05 — 8.040E-01 — 5.228E-08 + 6.318E-02 — 4114E-03 —
ACT 30.54s 23.34s 19.61s 18.65s 28.15s 12.03s

F21 Best 0.000E+00 0.000E+00 ~ 3.212E-08 — 0.000E+00 ~ 6.331E-10 — 2.367E-12 —
Worst 0.000E+00 9.481E-09 — 5.326E-05 — 8.368E-03 — 9.147E-05 — 3.652E-06 —
Mean 0.000E+00 3.551E-10 — 4.662E—-06 — 2.774E-04 — 2.110E-05 — 1.480E-07 —
Std. 0.000E+00 4.502E-10 — 5.080E-06 — 2.14E0-03 — 3.008E-05 — 3.429E-07 —
ACT 33.89s 27.16s 22.53s 21.73s 30.08s 13.25s

F22 Best —2.900E+01 —2.900E+01 ~ —2.900E+01 ~ —2.900E+01 ~ —2.900E+01 ~ —2.900E+01 ~
Worst —2.562E+01 —2.212E401 — —2.358E+01 — —2.567E+01 ~ —2.219E+01 — —1.784E+01 —
Mean —2.778E+01 —2.658E+01 — —2.667E+01 — —2.612E4+01 — —2.780E+01 ~ —2.100E+01 —
Std. 1.158E+00 1.359E+00 — 1.746E+00 — 2.410E4+00 — 1.585E+00 — 1.795E+00 —
ACT 42.29s 33.13s 26.63s 24.04s 35.89s 16.24s

F23 Best —4.890E+03 —4.520E+03 — —4.802E+03 — —4.059E+03 — —3.935E+03 — —3.621E+03 —
Worst —4.215E+03 —3.845E+03 — —3.946E+03 — —2.625E+03 — —2.236E+03 — —1.845E+03 —
Mean —4.387E+03 —4.050E+03 — —4.467E+03 + —3.593E+03 — —3.481E+03 — —2.082E+03 —
Std. 1.015E+02 1.362E+02 — 2.030E+02 — 2.570E+02 — 2.947E+02 — 2.210E4+02 —
ACT 35.96s 27.46s 24.10s 23.82s 30.26s 14.01s

F24 Best 6.110E—-09 7.118E-07 — 3.258E-06 — 3.548E-03 — 6.348E-11 + 6.347E—-04 —
Worst 2.041E-05 2.894E-04 — 5.114E-03 — 5.948E+00 — 1.284E-05 + 3.641E+00 —
Mean 8.449E-06 2005E-05 — 3.601E-04 — 1.154E+00 — 3.149E-06 + 2.770E-01 —
Std. 5.011E-06 3.647E-05 — 6.674E-04 — 2.092E4+00 — 3.440E-06 + 4.182E-01 —
ACT 33.98s 27.54s 23.25s 22.70s 30.17s 13.84s

F25 Best 5.290E-08 7.181E-07 — 8.525E-07 — 8.617E-08 — 6.248E-04 — 7.550E-04 —
Worst 1.952E-06 2.525E-04 — 3.397E-03 — 4.669E—-05 — 3.221E-01 — 2.358E-02 —
Mean 2.265E-07 4.105E-05 — 3.683E-04 — 3.479E-06 — 2.553E-02 — 4.788E-03 —
Std. 5.608E—-07 6.232E-05 — 5.226E-04 — 5.801E-06 — 5.402E-02 — 7.245E-03 —
ACT 25.50s 20.97s 17.29s 16.57s 21.07s 10.23s

F26 Best 1.158E-11 6.471E-08 — 3.657E-05 — 6.810E-07 — 9.241E-05 — 3.269E-10 —
Worst 3.058E-08 1.952E-06 — 3.327E-02 — 3.118E-03 — 6.377E-01 — 4.297E-08 —
Mean 2.187E-09 4.571E-07 — 5.330E-03 — 2.942E-04 — 8.411E-02 — 3.572E-09 —
Std. 4.158E-09 2.118E-07 — 4.991E-03 — 7.778E-04 — 7163E-02 — 8.470E—-09 —
ACT 29.56s 23.12s 18.96s 18.38s 23.70s 11.56s

F27 Best 1.258E—-08 3.229E-13 + 9.512E-07 — 4.556E—-04 — 3.467E-05 — 3.660E-04 —
Worst 1.952E-05 2.247E-10 + 1.116E-03 — 3.615E-02 — 2.990E-01 — 2.650E-02 —
Mean 3.140E-06 4.265E-11 + 3.681E-04 — 7.712E-03 — 2.682E-02 — 2.333E-03 —
Std. 4.155E-06 5.166E—-11 + 2.560E-04 — 4.959E-03 — 1.030E-01 — 3.878E-03 —
ACT 40.00s 3041s 26.42s 25.19s 35.33s 15.36s

F28 Best 4.925E-12 4.584E-08 — 3.229E-13 + 3.212E-09 — 1.548E-07 — 3.265E-06 —
Worst 1.054E—-08 1.479E-05 — 2.247E-10 + 4.319E-05 — 3.258E-03 — 2.165E-03 —
Mean 1.889E—-09 3.206E-06 — 4.265E-11 + 7.912E-06 — 2.309E-04 — 1.088E—-04 —
Std. 2.697E-09 2.545E-06 — 5.166E-11 + 6.585E-06 — 4.221E-04 — 4.126E-04 —
ACT 39.53s 30.18s 26.18s 25.72s 32.65s 15.40s

F29 Best 8.696E-06 3.617E-05 — 5.147E-03 — 3.616E-03 — 6.335E-04 — 2.225E-05 —
Worst 4.559E-03 4447E-02 — 1.566E+00 — 2.221E-01 — 3.155E+00 — 3.214E-02 —
Mean 6.995E-04 5.694E-03 — 1159E-01 — 6.606E-02 — 1.945E-01 — 2.352E-03 —
Std. 8.441E-04 7.889E-03 — 5.440E-01 — 5.693E-02 — 9.322E-01 — 3.065E-03 —
ACT 42.32s 33.23s 27.17s 27.83s 36.18s 16.37s

Best + / 3 4 1 2 2
- / 15 16 17 21 19
~ / 1 9 1 6 8

Worst + / 5 4 3 2 2
- / 18 20 22 25 26
~ / 6 5 4 2 1

Mean + / 5 5 3 2 1
- / 18 19 23 24 27
~ / 6 5 3 3 1

Std. + / 5 4 3 2 1
- / 18 20 23 25 27
~ | 6 5 3 2 1

Average of ACT 27.70s 21.83s 18.28s 17.92s 24.11s 10.91s




Table 5

Comparative results of IAFOA with advanced intelligent algorithms on the 29 benchmark functions (n = 50).
Function  IAFOA IASFA CLPSO DLHS ALO GWO

Mean Std. Mean t—test Std. t—test Mean t—test Std. t—test Mean t—test Std. t—test Mean t—test Std. t—test Mean t—test Std. t—test

FO1 8.611E-08 4.581E-07 1.845E4+03 — 1.426E+02 — 4.650E-03 — 1.126E-03 — 4.162E-08 + 1.465E-07 + 5.261E-02 — 8.162E-02 — 0.000E+00 + 0.000E+00 +
F02 1.541E-04 3.177E-03 7.621E4+03 — 1.024E+03 — 1.878E+01 — 1.994E+00 — 2.144E+00 — 1.947E+00 — 1.112E4+00 — 1.241E+00 — 5.268E-01 — 1.004E-02 —
FO3 —-1.000E+00 0.000E+00 -1.000E+00 ~ 0.000E+00 ~ —1.000E+00~ 0.000E+00 ~ -1.000E+00~ 0.000E+00 ~ —1.000E+00~ 0.000E+00 ~ —1.000E+00~ 0.000E+00 ~
F04 6.422E-04 3.880E-03 2.486E+02 — 1.947E+02 — 2.144E+00 — 8.732E4+00 — 1.002E+03 — 4.562E+03 — 2.315E+02 — 6.347E+02 — 0.000E+00 + 0.000E+00 +
F05 6.809E-03 1.513E-02 3.257E+01 — 4.587E+00 — 4.558E-03 + 1.005E-03 + 2.155E-03 + 4.587E-03 + 5.687E-02 — 2.657E-02 — 2.547E-04 + 1.147E-04 +
FO6 2.014E-01 3.396E-01 5.162E+03 — 1.119E+03 — 1.258E+02 — 8.591E+01 — 2.158E+00 — 5.216E4+00 — 1.847E+02 — 1.895E+02 — 4.226E+01 — 8.597E+00 —
FO7 1.024E-01 2.963E-01 1.447E-04 + 2.667E—04 + 7.116E-02 + 2.584E-02 + 1119E+02 — 4116E+02 — 1.026E+00 — 1.558E+00 — 0.000E+00 + 0.000E+00 +
FO8 2.361E-03 4.550E-03 3.005E+01 — 1.110E+01 — 2.228E+01 — 1.557E4+00 — 1.258E-02 — 1.663E-02 — 1.211E+01 — 2.008E+00 —  0.000E+00 + 0.000E+00 +
F09 6.034E-08 7.008E—-08 2.569E+01 — 5.621E+01 — 1.125E-01 — 2.113E-01 — 4.239E-04 — 6.320E-03 — 1.634E+02 — 1.634E+02 — 0.000E+00 + 0.000E+00 +
F10 0.000E+00 0.000E+00  6.217E+00 — 2.317E+00 — 5.627E-02 — 2.007E-02 — 2.957E-06 — 3.258E-05 — 2.617E-07 — 1.005E-07 — 0.000E+00 ~ 0.000E+00 ~
F11 4.195E-04 7.891E-04 3.269E+02 — 3.247E+02 — 6.448E-02 — 1.635E-02 — 2.657E400 — 4.697E+00 — 3.697E-07 + 2.035E-07 + 1.125E400 — 3.227E-01 —
F12 0.000E+00 0.000E+00  1.151E-02 — 1.090E-02 — 0.000E+00 ~ 0.000E+00 ~  1.652E-14 — 3.216E-13 — 2.014E-08 — 1.647E-08 — 0.000E+00 ~ 0.000E+00 ~
F13 0.000E+00 0.000E+00  6.325E-01 — 5.209E-01 — 1.562E-04 — 2.364E-04 — 2.697E-07 — 3.647E-06 — 4.897E-02 — 5110E-02 — 0.000E+00 ~ 0.000E+00 ~
F14 —4.450E+02  0.000E+00 —4.362E+02 — 2.569E+00 — —4.236E+02 — 1.860E+00 — —4.500E+02 ~  0.000E+00 ~ —4.500E+02 ~ 0.000E+00 ~ —4.430E+02 —  4.392E+00 —
F15 —4.210E+02  8.520E+00 —4.101E+02 — 1.060E+01 — —3.800E+02 —  4.669E+01 — —4.022E+02 —  3.392E+01 — —3.900E+02 —  3.260E+01 — —3.869E+02 —  4.962E+01 —
F16 6.208E-07 3.281E-07 1.569E+01 — 3.264E+00 — 2.561E-02 — 2.974E-02 — 1.647E-07 + 5.269E-07 — 3.647E-06 — 6.317E-06 — 1.261E-12 + 1.358E-12 +
F17 4.632E-06 1.028E-06  3.157E+01 — 1.214E400 — 5.361E-02 — 1.526E-02 — 5.314E-04 — 2.317E-03 — 5.147E-01 — 2.361E-01 — 2.369E-05 — 1.118E-04 —
F18 3.780E-04 4485E-04  2.358E+02 — 1162E+01 — 4.765E+01 — 3.255E+00 — 5.660E+01 — 1.118E+01 — 1.225E402 — 1.684E+01 — 2.548E-03 — 2.331E-03 —
F19 2.841E-02 3.627E-02 1.115E+01 — 1.884E+00 — 6.548E+00 — 6.118E-01 — 2.229E+00 — 8.621E-01 — 1.558E+00 — 1.192E+00 — 6.258E+00 — 1.864E+00 —
F20 6.774E-04 2.418E-04 4.054E+01 — 1.820E+00 — 1.584E-03 — 4.845E—-04 — 2.228E-01 — 3.117E-01 — 6.489E+00 — 1.894E+00 — 5.668E—02 — 1.998E-02 —
F21 3.940E-05 4.521E-05 1.187E+01 — 3.022E+00 — 5.326E-03 — 1.286E-03 — 6.328E-03 — 1.326E-02 — 5.229E-03 — 6.185E-03 — 3.156E-03 — 1.228E-03 —
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Fig. 12. Schematic diagram of speed reducer design [45].

The problem can be described mathematically as follows:
Min f(X) = x3x2(x3 + 2) (12)

3 2

X5X 4x5—X1 X

28 <0; gX)= ——2 172 _
71782x‘1‘ - 2(X) 12566()(%)(2—)(‘1‘)

1 _ . _ 1 _ 140.45x; . _ XtXp
5108){% 1<0; g3(x) =1 X%X3 <0; g4(x) = 15 1<0,

where 0.05<x;<1,025<x, <13,2<x3<15.

subjected to g (X)=1-

4.1.2. Welded beam design

The objective of this well-known problem is to design a welded
beam with minimum total cost of fabricating. As shown in Fig. 11,
the welded beam, designed to support a load and welded to a rigid
support, is subjected to four design variables, which are the thick-
ness of the weld h (x;), the length of the welded joint | (x;), the
height of the beam t (x3) and the thickness of the beam b (x4),
and the five constraints, which are the shear stress t, the bending
stress in the beam o, the buckling load on the bar P, the deflection
of the beam § and side constraints [46].

The problem can be described mathematically as follows:

Min f(X) =1+G )X%Xz + Goxsxa(L+x2) (13)
subjected to g1 (X) =7(X) — Tmax < 0; €2(X) =0 (X) — Omax < 0;

83(X) =x1 —x4 <0; g4(X) =6(X) = 8max < 0; g5(X) =P -P(X) <

2 2 P
0, where TX)=,@) +2t't"%+ (") T = T
' =MR  M=P(L+05x), R= \/o.zsxg +0.25(x1 +X3)°,
2
J=20V200l% +0256 +x)'ll o0 =FL RO =
R
4.013E
T”(l -5 JE), ¢,=010471 §/in?, C,=0.04811 $/in’,

P=60001b, L=14 in, 8max=0.25 in, E=3.0 x 107 psi, G=1.2 x 107,
Tmax =136 x10*psi, omax=3.0x10%psi, 0125 <x;< 5,
01 <x,< 10,01 <x3< 10,0.1 <x4< 5.

4.1.3. Speed reducer design

The objective of this problem is to find a minimum total weight
of the speed reducer. As shown in Fig. 12, the speed reducer is
subjected to seven design variables, which are the face width b
(x1), the module of teeth m (x,), the number of teeth on pinion
Z (x3), the length of first shaft between bearingsl;(x4), the length
of second shaft between bearings l,(xs), the diameter of first shaft
dq(xg) and the diameter of second shaftd,(x7), and four constrains,

which are the limits on the bending stress of the gear teeth, the
surface stress, the transverse deflections of shafts 1 and 2 due to
transmitted force, and stresses in shafts 1 and 2 [45].

The problem can be described mathematically as follows:

Min f(X) = 0.7854x;x3(3.3333x3 + 14.9334x; — 43.0934)
—1.508% (Xg +X3) + 7.4777 (x¢ + %3)

+0.7854(X4X + X5X3) (14)
subjected to g X) = X1§§X3 —1<0; X)) = % -
150, B0 pi-120 g0 =S 120,
g5(X) = 11(1)xé\/(7)éixg4)2+16.9 X 10° —1<0, g(X) =

g(X) =% -1<0;
gs(X) =32 —120; go(X) = Bl —120; gio(X) = 222 — 1 <

X4
0, gn(X):%_lgo, 26<x;<36, 07<x,<08,

17 <x3 <28, 73 <x4<8.3, 73 <x5<8.3, 29<x5<3.9, 5<x7<5.5.

X2X3

L\/ 745%)% | 1575 x 105 —1 < 0;
85x3 ( ) =

4.2. Results and analyses

IAFOA is compared with several intelligent algorithms men-
tioned in Sections 3.3.1 and 3.3.2 to solve the three engineering
optimization problems. The parameters of these algorithms are the
same as the previous. The statistical results obtained by IAFOA and
other algorithms are shown in Table 6.

From Table 6, it can be clearly seen that IAFOA has a sig-
nificant better performance than other comparative algorithms
when solving the three engineering optimization problems. In
detail, for engineering optimization problem coil compression
spring design, although all the algorithms can achieve the same
“Best”, IAFOA can produce significantly better “Worst”, “Mean”
and “Std.” than other algorithms. The best solution achieved by
the proposed IAFOA is x*=(0.05165669, 0.35593916, 11.33499876)
with f (x*)=0.0126654861. Meanwhile, the constraint values
are g (x*)=(—2.04490856E—-05, —5.73786773E—07, —4.05213877,
—0.72826943), which illustrate that the solution is feasible.

Besides, for the second engineering optimization problem
welded beam design, IAFOA is superior to all the compar-
ative algorithms in terms of “Best”, “Worst”, “Mean” and
“Std.”. The best solution achieved by the proposed IAFOA is
x* = (0.20572614, 3.47056150, 9.03663019, 0.20572961) with
fix*)=1.7248564741. What's more, the constraint values are g
(x*)=(—6.21550498E—07, —3.74049439E-02, —3.46690000E-06,
—0.23554035, —1.38686835E—04). However, for the third engi-
neering optimization problem speed reducer design, IAFOA gen-
erates the best “Best” and “Mean”, while GWO produces the best
“Worst” and “Std.”. The best solution achieved by IAFOA is x* =(3.5,
0.69999961, 17.00000600, 7.29477842, 779998996, 3.35021544,
5.28675679) with f(x*)=2996.3478982241.

Overall, IAFOA can efficiently solve the three engineering opti-
mization problems and has the best performance compared with
other ten algorithms.

5. Conclusion

In this paper, a new improved fruit fly optimization algorithm
named IAFOA is designed to solve the high-dimensional function
optimization problems and engineering optimization problems. In
detail, we proposed four mechanisms including the adaptive selec-
tion mechanism for the search direction, the adaptive adjustment
mechanism for the iteration step value, the adaptive crossover
and mutation mechanism, and the multi-sub-swarm mechanism.
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Table 6

Results of different algorithms on the three engineering optimization problems.

Speed reducer design

Welded beam design

Coil compression spring design

Algorithm

Std.

Mean

Worst

Worst Mean Std. Best Worst Mean Std. Best

Best

1.352E+00
6.354E+00
4.963E+00
5.950E—-05

2999.745821 2997.236411

2996.356940
2996.415711

2.963E-03

1.725114
1.725348
1.724922
1.726517
1.726393
1.739654
1.736811
1.725518
1.725120
1.724866
1.724856

1.725219
1.726155
1.724962
1.727564
1.727373
1.759479
1.746361
1.726047
1.725416
1.724871
1.724856

1.724880
1.724911

1.724866
1.725224
1.725717

1.724866
1.724866
1.724870
1.724911

1.724860
1.724856

2.145E-04

0.012710
0.012721
0.012931
0.012765
0.012851
0.012687
0.012688
0.012713
0.012702
0.012691
0.012673

0.012763
0.012784
0.013420
0.012868
0.013012
0.012719

0.012698
0.012900
0.012766
0.012721

0.012688

0.012665
0.012665
0.012665
0.012665
0.012666
0.012665
0.012665
0.012665
0.012665
0.012665
0.012665

c-mFOA
MSFOS
CMFOA
IFOA
IFFO

2998.062837

3002.756491
3009.261801

6.215E-03

3.738E-04

3007.242156
2996.348195
3016.492651

3000.981058

7.883E-06

1.454E-03

2996.348165 2996.348225

2.405E-04

9.287E-05

2.420E+01

3094.556809
3076.723522
3007.301217

2996.348072

3.497E-03

1.185E-04
2.452E-05

1.107E+00
3.804E+00
2.356E+00
5.621E-05

3057.704453

3000.278329

3014.605030
2996.974415

8.064E—-03

IASFA

7.152E-03

5.737E-06

CLPSO

DLHS
ALO

3000.005428
2996.348405
2996.348185

3005.836268
2996.348565
2996.348212

2996.947261

6.159E-04

6.301E-05

2996.348236
2996.348164

1.562E-04

2.612E-05
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5.135E-06

9.481E-06

2.314E-05

GWO

3.519E-05

2996.348356 2996.348069

2996.347898

8.991E-07

3.015E-06

IAFOA

After combining the four mechanisms with FOA, IAFOA is pre-
sented. Then the computational complexity of IAFOA is analyzed
to estimate the computing time, and convergence analysis prove
that IAFOA can converge to the global extreme with a prob-
ability of 100% theoretically. In the experimental section, five
state-of-the-art variants of FOA and five advanced intelligent op-
timization algorithms are used to test the advantages of IAFOA
based on the 29 benchmark functions. Compared with the sev-
eral variants of FOA, which are c-mFOA, MSFOA, CMFOA, IFOA and
IFFO, IAFOA generates 15/16/17/21/19 significantly better “Best”,
18/20/22/25/26 significantly better “Worse”, 18/19/23/24/27 signif-
icantly better “Mean”, 18/20/23/25/27 significantly better “Std.”,
respectively. Besides, experiment results show that IAFOA can
produce 27/25/24/25/16 significantly better, 1/2/3/2/9 significantly
worse, 1/2/2/2[4 equal “Mean”, and 27/25/25/25/16 significantly
better, 1/2/2/2/9 significantly worse, 1/2/2/2/4 equal “Std.” com-
pared with IASFA/CLPSO/DLHA/ALO/GWO. Therefore, we can con-
clude that IAFOA has better performance than the five variants of
FOA and five advanced intelligent optimization algorithms. Finally,
IAFOA is used to solve three engineering optimization problems.
Experiment results show that IAFOA can achieve the best “Best”,
“Worst”, “Mean” and “Std.” compared with the other 10 algorithms
when solving coil compression spring design and welded beam de-
sign. Meanwhile, IAFOA can produce the best “Best” and “Std.” for
engineering optimization problem speed reducer design. The re-
sults prove that IAFOA has strong practicability for engineering op-
timization problems. In the future, we plan to apply IAFOA in solv-
ing other engineering optimization problems, such as layout prob-
lems which are widely used in the modern industry [47].
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