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a b s t r a c t

To determine the optimal size, location and also the proper technology of distributed generation (DG)
units in distribution systems, a static fuzzy multiobjective model is proposed in this paper. The proposed
model can concurrently optimize a number of conflicting and competing objective functions including
economic, technical and environmental attributes. The economic function is the profit of a distribution
company (DisCo) from selling the DG output power to its customers. The contribution of this model is the
consideration of some DG marginal revenues in the economic function. Inclusion of marginal revenues
would not only reduce the investment risks of DG technologies, but also would enable the optimal
penetration of DG units. The proposed DG planning framework considers various DG technologies such
as photovoltaic (PV), wind turbine (WT), fuel cell (FC), micro-turbine (MT), gas turbine (GT) and diesel
engine (DE). The system uncertainties (including those for the energy demand, energy price and DG
technologies operating and investment costs) are modeled using fuzzy numbers. The numerical case
studies have been carried out using the IEEE 37-node distribution test system to demonstrate the
performance of the proposed DG planning model.

� 2011 Published by Elsevier Ltd.
1. Introduction

In conventional investment planning approaches, the major
objective of electric utilities was to achieve the least-costs that
met the pre-specified technical characteristics of the power
system. However, electricity restructuring and environmental
awareness have introduced major challenges to the traditional
planning approaches so that other objectives/attributes such as
revenues of the stakeholders, technical characteristics of distri-
bution networks and the pollutants emissions have found
comparable importance with respect to the investment and
operations costs.

Due to the various advantages of DG technologies in distribution
networks, both of the distribution power companies (DisCos) and
big energy customers could invest in and operate DG units [1]. This
upgrading option has found an important role especially in the
developing countries to control excessive load growth. The aim of
distributed generation expansion planning (DGEP) is to obtain the
sizes, locations and also technologies of the DG units that meet the
: þ98 21 77491242.
.
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peak demand forecast in an optimal manner. In this regard, a wide
variety of DG technologies exists, which should be assessed on
a common platform.

Previous works on defining DG planning frameworks could be
classified mainly into two categories: single objective (SO) and
multiobjective (MO) planning models. Depending on a planner’s
point of view, several objective functions have been used in the SO-
DGEP. Some of the published works used technical characteristics
to solve the DGEP problem [2,3]. In some other research works, the
cost function was considered as the main objective of the DGEP
problem using heuristic iterative search methods [4,5] or mathe-
matical programming approaches [6].

The main advantage of MO over the SO optimization problems
is that a set of optimal (non-dominated) solutions are found
instead of one optimal solution; this gives more flexibility to the
planner for selecting the best final plan. The authors of references
[7] and [8] present two multiobjective models for DG planning.
However in [7], the employed model was defined based on the
various cost terms and in [8] only the technical functions were
considered as objectives for the DG planning. Haghifam et al. in
[9] presented an interesting fuzzy MO framework; however, the
DG technologies and environmental issues were not considered
in their model. The multi attribute decision making (MADM) is
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Fig. 1. Proposed algorithm for distributed generation expansion planning.
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another suitable rank based optimization model for strategic
planning [10,11]. The MADM algorithms are more useful for small
size problems with specific solution plans and limited number of
actions/strategies and uncertain factors.

Due to the increasing awareness about environmental pollu-
tions, mid-term and long-term targets have been set to reduce
the emission intensity of energy supply in several regions of
the world. Therefore, the environmental issue will play an
important role in the future planning strategies. For this purpose,
a comprehensive planning framework is necessary to evaluate
the economic, technical and environmental characteristics of
various DG technologies and choose an optimal planning scheme,
which is the best compromise among these characteristics. In the
new competitive environment, the new models for DGEP in
power systems should be based on profit assessment instead of
cost assessment. This paper presents a static fuzzy multiobjective
framework for the DGEP problem to determine the optimal
sizes, locations and technologies of DG units. The proposed
planning framework aims to maximize the total expected profit
of a DisCo (including various revenue and cost terms) while
minimizing the violation risks of technical parameters (from
their desired values) and gas emission amounts. From a DisCo
point of view, DG units are feasible alternatives for distribution
network and substation expansions especially in the compet-
itive electricity market environments with various marginal
economic benefits. The main contributions of this paper are as
follows:

(a) Proposing a fuzzy multiobjective framework including
economic, technical and environmental objective functions to
find optimal solutions for the locations, sizes and technologies
for new DG units to be installed within the current distribution
system.

(b) Considering six conventional DG technologies in the planning
process. These technologies are modeled in the planning
process according to their technical (distribution load flow
(DLF), short circuit and reliability analysis), economic and
environmental characteristics.

(c) Considering the marginal revenue functions of various DG
technologies according to their characteristics and abilities.
Some of these marginal revenue functions have double-edge
effects and could have disadvantages if they are not properly
planned and operated. Therefore, including these functions in
the planning process could help the DG investors find the
optimal penetration of DG units.

The remaining sections of this paper are organized as follows:
Section 2 describes the overview of the DGEP framework and
presents the problem formulation and the fundamental of
non-dominated sorting genetic algorithm is discussed in Section 3.
Section 4 illustrates numerical results on a typical case study
and finally some concluding remarks are provided in Section 5.

2. Overview of the distributed generation expansion planning
framework

In this paper a static fuzzy multiobjective model is presented
to address the DGEP problem which is shown in Fig. 1. This model
determines the sizes (penetration level), locations and technolo-
gies of DG units in three stages. In the first stage, data gathering is
done and the input parameters are divided into deterministic and
non-deterministic parameters. The non-deterministic data
parameters are modeled using triangular fuzzy numbers. In the
second stage, a MODM DG planning problem is formulated. Then
the modified non-dominated sorting genetic algorithm (NSGA-II)
is applied to solve the formulated MODM DG planning problem.
Three main objective functions, which address the economic,
technical and environmental issues, are defined in this paper. The
employed economic function is defined based on the profit (cost
and revenue) evaluation of each planning scheme; the marginal
economic benefits of various DG technologies are included in the
economic function. The technical objective function is deter-
mined as the weighted sum of the violation risks of several
technical parameters. For this purpose, a fuzzy distribution load
flow (DLF), single and three-phases short circuits are executed to
determine the technical indices. The reliability analysis of the DG
units on the expected annual interruption cost is also included in
the marginal revenue function. The annual emission amounts of
the pollutant gases are considered as the environmental objective
function. Due to the conflicting nature of the objective functions,
it is generally impossible to obtain an optimal solution at which
all the objectives are optimized. A set of non-inferior solutions are
created at this stage and the final decision is made in the third
stage based on the normalized fuzzy membership function
for choosing the best solution among the obtained set of non-
dominated solutions.
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2.1. Input parameters

The input data for the planning process are divided into certain
and uncertain data parameters. The certain parameters are the
distribution system characteristics such as network configuration,
resistance (R) and reactance (X) of the branches, capital costs of DG
technologies, and emission rates of DG technologies for different
gases. On the other hand, the load data, electricity market price,
operation costs and capacity factors of the DG technologies are
considered uncertain data parameters. The uncertain parameters
are modeled through fuzzy numbers (with three discrete numbers
as their ranges of uncertainty).
2.2. Problem formulation

The problem formulation of the DGEP is proposed in such
a manner to cover economic, technical and environmental issues.
The assumptions considered in the DGEP problem are listed as
follows [12].

� There are no geographic or primary resource limitations
to install various DG technologies within the distribution
system.

� The proposed DG planning model is presented from the
prospective of a DisCo in an energy market environment.

� The proposed DG planning model is a one-stage (static) plan-
ning strategy.

� To exploit the advantages of using DG units for reducing the
energy not served (ENS) index, the islanding operation of DG
technologies is permitted.
2.2.1. Objective functions and constraints
Amultiobjective optimization problem is generally expressed in

the form of Eq. (1). In this paper three objective functions are
optimized concurrently as follows:

min FðxÞ ¼ f � f1ðxÞ; f2ðxÞ; f3ðxÞg
s:t: gðxÞ � 0; hðxÞ ¼ 0 (1)

where f1 denotes the profit function, f2 and f3 are the technical and
the environmental functions, respectively. Note that the minus sign
behind f1 in (1) is due to the fact that f1 is the profit function and has
to be maximized.

2.2.1.1. Economic function (f1). Economic evaluation is the major
driving force behind any investment choice. This function is profit
based and consists of cost, revenue and marginal revenue terms
corresponding to the DG planning schemes (2). In this equation,
three terms are considered as marginal revenues of the DG tech-
nologies, namely economic benefits of upgrade investment
deferral, expected annual interruption cost reduction and energy
losses curtailment. However, there are some other marginal reve-
nues and incentives especially for renewable technologies (such as
long-term bilateral contracts for selling their output powers,
emission reduction credits and heat selling for CHP units), which
are not considered in this paper.

f1 ¼ Rw þ RDG � CDG þ
X3
i¼1

MRi (2)

where Rw and RDG are the revenues from selling the grid power
and DG units output power, respectively; CDG is the total invest-
ment cost of DG units, and MR denotes the marginal revenue of DG
units.
(a) Revenue of selling the grid power (Rw):

Rw ¼
Xns
i¼1

CPV� Psub;i � LF�
�
rr � ~rw

�
� 8760 (3)

CPV ¼
XTp
t¼1

ðð1þ iÞð1þ lÞ=ð1þ dÞÞt (4)

where CPV is the cumulative present value during the planning
horizon.

(b) Revenue of selling the DG units power (RDG):

RDG ¼
Xnb
i¼1

X
j˛Tech

�
rr � ~Coj

�
� CPV� PCapDG;ij � ~aj � 8760 (5)

(c) Total investment cost of DG technologies (CDG):

CDG ¼
Xnb
i¼1

X
j˛Tech

ICj � PCapDG;ij (6)

(d) Marginal revenue of upgrade investment deferral:

MR1 ¼ Cut

 � ð1þ iÞ
ð1þ dÞ

�T0
ut

�
� ð1þ iÞ
ð1þ dÞ

�T1
ut

!

þ
Xnl
k¼1

Cub � Lk

 � ð1þ iÞ
ð1þ dÞ

�T0
ub;k

�
� ð1þ iÞ
ð1þ dÞ

�T1
ub;k

! (7)

(e) Marginal revenue of the annual interruption cost reduction:

MR2 ¼ EAIC1 � EAIC0 (8)

EAIC ¼
Xnb
i¼1

Xnl
k¼1

CPV� Pfc;ik � Lk � l� Tf � Cue;i (9)

(f) Marginal revenue of energy losses reduction:

MR3 ¼ �
Ploss;0 � Ploss;1

�
rr � LF� CPV� 8760 (10)

2.2.1.2. Technical function. In addition to economic evaluation, it is
important that a solution candidate (DG planning scheme) is
capable of meeting the technical requirements of the distribution
network simultaneously. This function is defined as the weighted
sum of technical violation risk [9]. The technical parameters
employed to model the violation risks include the risk of over/



Fig. 2. Triangular fuzzy model.
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under voltage (RIvolt) through nodes of the distribution networks,
the risk of overloading (RIflow) in line segments and transformers,
the risk of increasing power losses (RIloss) with respect to the base
case (i.e. without DG installation) and the violation risk of short
circuit capacity. For this purpose a fuzzy distribution load flow
(DLF) is applied based on the forward-backward algorithm
including distributed generation models [13], and the concept of
fuzzy numbers [14]. Also, single and three-phase short circuit
analyses including the DG technologies within the distribution
network are executed [15]. Technical violation risk indices are
defined using the concept of fuzzy constraint modeling, which are
explained in Section 2.2.2.

f2 ¼ wt1RIvolt þwt2RIflow þwt3RIloss þwt4RIsc (11)

(a) The risk value of over/under voltage [9]:

RIvolt ¼ max
�
RIvolt;kjk˛nl

	
(12)

RIvolt;k ¼ risk
n�

~Vk < Vmin

�
&
�
Vmax < ~Vk

�o
(13)

(b) The risk value of overflow [9]:

RIflow ¼ max
n
RIflow;kjk˛ðnl;nsÞ

o
(14)

RIflow;k ¼ risk
�
Pk > Pmax

k

	
(15)

(c) The risk value of increasing energy losses with respect to the
base case:

RIloss ¼ risk


~Ploss � ~P

b
loss

�
(16)

(d) The risk value of single/three-phase short circuit capacity with
respect to the base case:

RIsc ¼ max
n
max

�
RI1Fsc;k;RI

3F
sc;k

�
jk˛nb

o
(17)

RI1Fsc;k ¼ 100�
�
SC1F

k � SC1Fk;b
�.�

SC1F
k;b

�
(18)

RI3Fsc;k ¼ 100�
�
SC3F

k � SC3Fk;b
�.�

SC3F
k;b

�
(19)

2.2.1.3. Environmental function. Nowadays with increasing the
awareness of environmental pollutions, sometimes DG technolo-
gies with low costs and appropriate technical characteristics may
not be the best solution from the environmental viewpoint. In the
employed objective function, the annual amount of pollutant gas
emissions is minimized [16]. The main pollutant gases are CO2, NOx,
SO2, CO and PM10.

f3 ¼
Xnb
i¼1

X
j˛Tech

Xng
k¼1

PCapDG;ij �wek � ERjk � ~aj � 8760 (20)

2.2.1.4. Constraints.

(a) Maximum installed DG capacity at each node:

X
j˛Tech

PCAPDG;ij � Pmax
DG ; ci˛nb (21)

(b) Distribution load flow constraints which satisfy the conver-
gence of the algorithm [13].

2.2.2. Fuzzy modeling of uncertainties
Several uncertain parameters should be considered and

analyzed when planning a power system expansion. In this paper,
the fuzzy numbers are used to model the uncertain parameters
(which is convenient for evaluating random numbers with discrete
PDFs). The triangular fuzzy numbers (TFN) are defined based on
three values [14]: optimistic (P1), possible (P2) and pessimistic (P3)
values as shown in Fig. 2.

2.2.2.1. Uncertain parameters modeling. In this paper, three input
parameters for the DG planning are considered as uncertain
parameters: the forecasted load, electricity market price and
parameters related to the DG technologies. The forecasted load and
electricity market price are inherently two conventional uncertain
parameters in the planning problems and are modeled using the
TFN approach. The operating cost and the capacity factor of DG
technologies are also considered as two other uncertain parameters
in this paper. Due to the technological improvement of DG units
and also the intensive variation of theworldwide energy prices, it is
not appropriate to set deterministic values for the operation costs
of various DG types during a particular planning horizon. Also, the
capacity factor of DG technologies is difficult to be predicted
precisely in a year especially for renewable technologies with
intermittent characteristics.

2.2.2.2. Constraints modeling as risk functions. One of the advan-
tages of using fuzzy logic/theory in optimization problems is to
handle the constraints in soft forms [9]. In this form, instead of
assigning a true or false value, a certain degree of violation is
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defined as the risk function. For instance, the voltage constraint (Eq.
(22)) at each node of a distribution network is expressed as the risk
of violation using the following upper and lower limits (Eq. (23)).

Vmin � Vk � Vmax (22)

RIvolt ¼ risk
n�

Vk � Vmin
�����Vmax � Vk

�o
(23)

To obtain a value that demonstrates the above statement, a risk
index is defined as the ratio between violation areas (Avl and Avr)
and total area (Eq. (23)), which is shown in Fig. 3 [9].

RIvolt ¼ ðAvl þ AvrÞ=Atot (24)

2.2.3. Final decision making
Mathematically, none of the solutions in the trade-off region has

a priority with respect to other solutions. Due to the subjective
imprecise nature of the decision maker’s judgment, a fuzzy satis-
fying method is applied here to select the preferred solution among
non-dominated solutions [17]. Through fuzzy set theory, each
objective function is presented with a linear membership function.
If the objective function is monotonically decreasing, Eq. (25) is
used for normalizing vice versa if the objective function is mono-
tonically increasing Eq. (26) is applied.

mki ¼ fmax
i � f ki

fmax
i � fmin

i

(25)

mki ¼ f ki � fmin
i

fmax
i � fmin

i

(26)

where fmin
i and fmax

i are the absolute satisfactory and unsatisfactory
values of ith objective function according to the decision maker’s
opinion, respectively. The normalized membership function of the
kth non-dominated solution in the objective space is defined as
follows [17]:

mk ¼
PNf

i¼1 m
k
iPNp

k¼1

PNf

i¼1 m
k
i

(27)

The solution with the maximum membership value is selected as
the best compromising solution.
3. Non-dominated sorting genetic algorithm (NSGA-II)

The NSGA-II algorithm uses non-dominated sorting for fitness
assignments. Based on this idea, a population of solutions is clas-
sified into the number of non-dominated fronts [18]. In this paper,
Fig. 3. Fuzzy voltage constraint modeling as a risk value.
the decision variables (size, location and technology of DG units)
are coded using real numbers. The computational algorithm of
NSGA-II is used to address the DGEP problem through the following
steps [18]:

Step 1 Initialization. Similar to other evolutionary approaches,
a population is generated randomly in the search space as
initial solutions of the algorithm.

Step 2 Objective evaluation. In this step, the values of objective
functions are evaluated for each individual of the
population.

Step 3 Non-dominated sorting. The responsibility of this step is to
classify individuals into some fronts (layers) according to
the dominated concept and fitness of objective functions.
One individual is said to dominate another if its solution is
noworse than the other in all objectives and also it is strictly
better than the other in at least one objective.

Step 4 Crowding distance. After completing the non-dominated
sorting, the crowding distance is utilized to sort the clas-
sified individuals in the same front.

Step 5 Selection. The selection is carried out based on the binary
tournament between two randomly chosen individuals
from the population.

Step 6 Cross-over. The Simulated Binary Crossover (SBX) as an
approach for real GA numbers is used in this step. It works
with two parent solutions and generates two offspring.

Step 7 Mutation. In this step, the polynomial approach is used for
mutation. The probability distribution can also be a poly-
nomial function, instead of a normal distribution.

The above process except Step 1 is repeated for the maximum
number of generations.
Fig. 4. IEEE 37-node distribution test system [19].



Table 1
Fuzzy modeling of uncertain parameters.

Uncertain parameters Lower value Middle value Upper value

Operating cost of DG
technologies (Cent/kWh)

DE 3.5 4.5 5.5
GT 3 4 5
MT 4 5 6
FC 4 5 6
WT 0.5 1 1.5
PV 0.25 0.50 0.75

Capacity factor of
DG technologies (%)

DE 32 35 40
GT 50 55 58
MT 30 35 40
FC 35 40 45
WT 15 20 30
PV 15 25 30

Market price (Cent/kWh) 4 8 12

Fig. 5. Size, location and technology of DG units in the optimal planning scheme in
scenario A.
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4. Numerical results

The proposed planning framework was implemented in the
MATLAB environment and applied to the IEEE 37-node distribution
test system (as shown in Fig. 4). The distribution test system
consists of 25 load points and one junction substation of 2500 kVA
capacity connecting the remainder of the system to the main grid.
The maximum forecasted demand at the beginning of the planning
horizon is equal to 2734 kVA with a load growth rate equal to 4%
and therefore, it is necessary to meet the required demand either
by upgrading the junction substation or the local power supplies. It
is assumed that the DisCo has to plan for a peak load growth to be
served in a10-year duration by investing in DG capacities, whereas
the forecasted demand is uncertain and has an error equal to 20%.
The network data for this system can be found in [19] and the
information of DG technologies is presented in Tables 1 and 2
including capital costs, operating costs, capacity factors and emis-
sion rates. The discount and inflation rates are assumed to be 9%
and 6%, respectively during the planning horizon [17]. The
maximum installed capacity at each node is assumed 400 kW. Six
conventional DG technologies namely photovoltaic (PV), wind
turbine (WT), fuel cell (FC), micro-turbine (MT), gas turbine (GT)
and diesel engine (DE) are considered in this paper with different
economic, technical and environmental characteristics. Three
different case study scenarios are investigated in this section to
evaluate three generations of DG planning models, and to compare
the proposed DG planning model with the earlier ones. These
planning scenarios are discussed as follows.

(1) Scenario A: single objective based planning model. This
scenario is defined according to the traditional planningmodel,
which has been frequently used in the literature. The goal of
this model is to minimize a cost function with respect to the
technical constraints during the planning horizon. The
environmental function, which was introduced in Section
2.2.1.3, is neglected in this scenario and the technical objective
functions (RIvolt, RIflow, RIloss and RIsc) are considered as
Table 2
Deterministic parameters of DG technologies [17,20].

Tech. Capital cost ($/kW) Emission rate of pollutant gases (kg/kWh)

CO2 NOx SO2 CO PM10

DE 500 0.65 4.483 0.093 1.275 0.16
GT 1000 0.63 0.236 0.002 0.144 0.016
MT 1500 0.72 0.091 0.002 0.247 0.018
FC 3500 0.46 0.006 0.012 0.002 0
WT 4500 0 0 0 0 0
PV 5000 0 0 0 0 0
constraints. The objective function consists of investment and
operating costs of the candidate DG technologies, cost of
purchased energy by the DisCo and cost of energy losses. A
simple genetic algorithm is used to solve this problem. After
the convergence of GA, the value of the employed cost function
reaches to 19.827 million dollars (M$) for the best planning
scheme during the utilized planning horizon. The detailed
costs of this function are 1.97 M$ for the investment cost, 5.41
M$ for the operating cost, 11.83 M$ for the purchased energy
from the grid and 0.617 M$ for energy losses. The size, location
and proper technology of the optimal planning scheme are
presented in Fig. 5. It is observed that the gas turbine is selected
as the only technology in the selected planning scheme with
the total capacity of 1970 kW.

(2) Scenario B: multiobjective based planning model with cost
evaluation. In this scenario, the planning model is promoted by
defining a multiobjective planning framework instead of the
single objective function of scenario A. The multiobjective
planning framework of this scenario considers the cost func-
tion, technical function and environmental functions. However,
this model is not completely developed as the proposed model
of the present paper. In other words, the economic objective
function of scenario B is just the cost function and not the profit
function. The other two objective functions (technical and
environmental) are applied as defined in Section 3. The
weighting factors of the technical and environmental objective
functions may be chosen based on the importance/criticality of
each attribute or index. Therefore, it is possible to use multi
attribute decision making approaches like analytical hierarchy
process (AHP) to determine the weight factors. However, for
brevity, an equal weighting factor is considered in both tech-
nical and environmental functions. To determine the set of
non-dominated solutions, the NSGA algorithm is executed
using the parameters in Table 3. The obtained non-dominated
solutions are shown in Fig. 6, which shows a trade-off between
cost and environmental function. Fig. 6 shows that decreasing
of the annual amount of emissions leads to increasing the total
cost of DG planning schemes and vice versa. In other words, it
shows that utilization of renewable and clean power technol-
ogies (in order to decrease the emissions) would increase the
Table 3
Parameters of the NSGA-II algorithm.

Parameter Value Parameter Value

Population 500 Generation (gmax) 300
Crossover 0.9 Mutation 0.125



Fig. 6. Trade-off curve between cost and environmental objective functions.

Fig. 8. Three dimensional trade-off curve between objective functions.
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total cost of DG planning schemes. The total cost of DG plan-
ning schemes varies between 15 and 22.5 M$. The normalized
membership function presented in Section 2.2.3 helps the
decision maker to select the best compromise solution. The
best optimal planning scheme which is presented in Fig. 7
includes photovoltaic, fuel cell, micro-turbine and gas turbine
technologies with a total capacity of 2000 kW. In this scheme,
the values of economic (including investment and operating
cost of DG units, cost of energy purchased and energy losses),
technical and environmental objective functions are 16.22 M$,
36.3% and 3170 ton, respectively. It could be useful to find the
situation of the best planning scheme (in Fig. 6) by comparing
the values of the economic and the environmental objective
functions of the best planning scheme with the vertical and
horizontal axes of Fig. 6. Due to considering the environmental
function in this scenario, the clean technologies like FC and PV
have been entered to the optimal planning scheme with
respect to the previous scenario (A). However, the penetration
percentage of total DG units is almost the same in both of the
studied scenarios (A & B).

(3) Scenario C: multiobjective based planning model with profit
evaluation. In this scenario, the proposed DG planningmodel is
evaluated (with respect to the DG planningmodels of scenarios
A & B). This model is based on the multiobjective optimization
explained in Section 2.2.1. However, in this model the profit
Fig. 7. Size, location and technology of DG units in the optimal planning scheme in
scenario B.
function (with DG marginal revenues) is used instead of the
cost function in scenarios A & B. The retail electricity price (rr)
is assumed fixed and 30% larger than the average market price
(rw) in Table 1. The cost of energy not served is assumed to vary
at each node of the distribution system depending on its
importance as given in [17]. Also, the unit upgrading cost of
branch (Cub) and upgrading cost of transformer (Cut) are
assumed 0.15 (M$/km) and 0.05 ($/kVA), respectively [5]. Three
dimensional trade-off curves of this scenario are presented in
Fig. 8. It is observed that if the planner aims to reduce the gas
emissions, the profit of the planning schemes will be reduced
dramatically. Even in some schemes, the profit could become
negative showing that for investing in renewable and clean
technologies, some supporting policies like low-loan and
grants for low emissions are needed; otherwise, the profits of
the planning schemes would become negative.

Table 4 presents three schemes as three minima points of each
objective function which are located on the boundary points of the
Pareto set in Fig. 8. It should be noted that these are not the optimal
planning schemes according to the multiobjective optimization,
but they are just the optimal planning schemes in their individual
single objective functions and are on the borders of the Pareto set.
Similar to scenario B, in order to determine the best planning
scheme among non-dominated solutions of Fig. 8, it is necessary to
apply the normalized fuzzy membership function in Section 2.2.3.

Table 5 presents the first eight schemes and their objective
values among non-dominated solutions according to the normal-
ized membership function. In this table, the best solution in each
objective function and its rank among non-dominated solutions of
the multiobjective optimization result has been included. Table 5
shows that solution number 14 was selected as the best planning
Table 4
The best planning schemes w.r.t each objective function individually.

Scheme
no.

Size (kW), location and technology of candidate DG units

3 PGT701 ¼ 230, PDE701 ¼ 110, PGT705 ¼ 400, PPV713 ¼ 20, PGT713 ¼ 360,
PGT722 ¼ 260, PFC728 ¼ 90, PMT

728 ¼ 250

4 PPV701 ¼ 200, PMT
701 ¼ 100, PGT720 ¼ 400, PFC731 ¼ 210, PGT731 ¼ 180,

PFC737 ¼ 360, PPV741 ¼ 350

299 PPV722 ¼ 220, PWT
729 ¼ 200, PWT

360 ¼ 400, PPV738 ¼ 10, PPV741 ¼ 270



Table 5
Ranking of the planning schemes according to the values of the normalized membership functions.

Scheme no. Actual objective function value Normalized objective function value Normalized
membership
function (�10�3)

Rank

Profit function (M$) Technical
function (%)

Environmental
function (1000 ton)

Profit function Technical function Environmental
function

14 7.35 15.4 2.95 0.8462 0.7916 0.6329 2.442 1
358 6.00 15.3 1.74 0.6922 0.7927 0.7828 2.439 2
443 7.23 16.4 2.85 0.8326 0.7685 0.6452 2.416 3
490 6.74 15.9 2.51 0.7759 0.7801 0.6872 2.412 4
202 4.03 8.5 1.40 0.4685 0.9490 0.8246 2.411 5
4* 2.62 6.3 0.70 0.3072 1.0 0.9124 2.387 6
98 6.55 17.5 2.34 0.755 0.7427 0.7085 2.373 7
255 3.52 12.8 0.82 0.4098 0.8509 0.8976 2.321 8
299y 1.95 27.4 0 0.2314 0.5173 1.0 1.881 348
3þ 8.71 37.9 5.09 1.0 0.2760 0.366 1.776 405

* The best scheme in the technical function viewpoint, y The best scheme in the environmental function viewpoint, þ The best scheme in the profit function viewpoint.

Table 6
The cost and revenue values of the profit function in scheme 14.

Rw (M$) RDG (M$) CDG (M$) MR1 (M$) MR2 (M$) MR3 (M$)
3.55 4.25 2.34 0.668 0.863 0.359

Fig. 9. Size, location and technology of DG units in the optimal planning scheme in
scenario C.
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scheme among the non-dominated solutions. The values of the
profit, technical and environmental objective functions in this
scheme are 7.35 M$, 15.4% and 2950 ton, respectively. The detailed
values of the cost and revenues in the profit function (f1) are given
in Table 6. The profit values of selling energy from the grid and DG
units (of the planning scheme 14) are 3.55 and 4.25 million dollars,
respectively and the total investment cost of DG technologies is
2.34 million dollars. The marginal revenues of the upgrade
investment deferral, the annual interruption cost reduction and the
energy losses reduction are 0.668 M$, 0.863 M$ and 0.359 M$,
respectively. It is shown that the marginal revenue of the inter-
ruption cost reduction has the largest value among other marginal
revenues in scenario C. The net profit value of the best planning
scheme is 7.35 M$ according to Eq. (2) while this value is 5.46 M$
without considering the marginal revenues. Including the marginal
revenues into the DG planning objective could help the DG inves-
tors/operators to distinguish the profitability of different planning
options with respect to various marginal revenue sources. As it was
illustrated, some of the considered marginal revenues like energy
losses reduction and investment deferral may have double-edge
(cost and benefit) effects. In other words, although DG units could
have economic benefits for the investors/operators (if they are
properly planned), but high penetration of DG units could have
negative effects on the distribution systems as well. For example,
high capacity of DG units leads to the increase power flow through
branches andmay increase the energy losses or investment costs to
upgrade the distribution systems. Thus it could be asserted that
a more appropriate penetration of DG units was planned in
scenario C. It was shown that the total capacity of DG units in the
best planning scheme (shown in Fig. 9) was reduced to 1690 kW.
Fig. 9 shows the optimal locations, sizes and types of DG technol-
ogies of the best planning scheme. It was observed that in the profit
based analysis, the PV unit was omitted in the selected DG planning
scheme. The penetration rate of FC, MT and GT technologies in this
scheme were 8.9%, 32.5% and 58.6%, respectively.
5. Conclusion

This paper presented a static fuzzy multiobjective model to
determine the sizes, locations and the technologies of distributed
generation units in an uncertain energy market environment. Six
conventional technologies were considered as the potential
upgrading options in the planning process. The proposed model
covered different aspects of these technologies including economic,
technical and environmental issues in a multiobjective mathemat-
ical representation. The economic evaluationof thismodelwasprofit
based by considering three marginal revenues as potential benefits
of various DG technologies. However, there are more marginal
revenues that could be considered. The NSGA-II algorithm was
applied to the IEEE 37-bus distribution system under three different
scenarios (two of the existing DG planning models versus the
proposed DG planning model) to assess the ability and performance
of the proposed model with respect to previous ones. It was shown
that the proposedmultiobjective planningmodel (in scenario C) had
advantages over the traditional models in scenario A and B (espe-
cially in the profit objective function and financial risk reductions).
The economic evaluation of the proposed model was more suitable
for energymarket environments, wheremoneymaking from the DG
invested outputs is the most important objective while minimizing
their risks. Itwas also shown that themarginal revenues (included in
the proposed profit function) were useful in modeling some hidden
aspects of DG technologies utilization.
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Nomenclature

~Coj, ICj: Fuzzy operating cost ($/kWh) and investment cost of jth DG technology.
Cut: Upgrading cost of transformer ($/kVA).
Cub: Unit cost of upgrading branch ($/km).
Cue,j: Cost of unserved energy at jth node ($/kWh).
LF: Load factor.
rr, ~rw: Retail price and Fuzzy market price ($/kWh).
~aj: Fuzzy capacity factor of jth DG technology.
l, L: Average outage rage and length of branches.
d, i, l: Discount, interest and load growth rate.
nb, nl, ns: Total number of nodes, branches and substations.
T1ut , T

0
ut : Required time to upgrade transformer with and without DGs.

T1ub, T
0
ub: Required time to upgrade branches with and without DGs.

Tech: Set of considered DG technologies.
EAIC1: Expected annual interruption cost with DGs.
EAIC0: Expected annual interruption cost without DGs.
Pfc;ij: Unserved power at ith node due to fault occurrence at jth feeder.
Ploss1 : Network power losses with DGs.
Ploss0 : Network power losses without DGs.
PCapDG : Capacity of DG unit (kW).
Psub;i: Power flow from the grid through ith substation.
we: Weigh factor of the emission function.
wt: Weight factor of the technical function.
Vi: Magnitude voltage at ith node.
Vmax, Vmin: Maximum and minimum permitted voltage.
SC1Fi;1 ; SC

1F
i;0 : Single phase short circuit capacity with and without DGs.

SC3Fi;1 ; SC
3F
i;0 : Three-phase short circuit capacity with and without DGs.

Pmax
k : Maximum power on kth feeder.

ERjk: Emission rate of kth gas in jth technology (kg/kWh).
ng: Number of pollutant gases.
Nf: Number of objective functions.
Np: Number of non-dominated solutions.
gmax: Maximum number of generations.
Tf: Maintenance duration of faulted branches (h).
Tp: Planning horizon (year).
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