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In this paper a stochastic operational scheduling method is proposed to schedule energy and reserve in a
smart distribution system with high penetration of wind generation. The wind power and demand
forecast errors are considered in this approach and the reserve is furnished by both main grid generators
and responsive loads. The consumers participate in both energy and reserve scheduling. A Demand
Response Provider (DRP) aggregates loads reduction offers in order to facilitate small and medium loads
participation in demand response program. The scheduling approach is tested on an 83-bus distribution
test system over a 24-h period. Simulation results show that the proposed stochastic energy and reserve
scheduling with demand response exhibits a lower operation cost if compared to the deterministic
scheduling.
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Introduction

The upgrading of power system toward a smart grid is being
developed to improve reliability, facilitate the integration of differ-
ent types of renewable energies, and improve load management.
With the development of the smart grid, more Distributed Energy
Resources (DER) are deployed such as distributed wind and solar
units, as well as technologies for expanded demand side manage-
ment programs.

Demand response (DR) is one of the key approaches that can
fully be enabled by smart grids. DR is a set of actions taken to
reduce consumer electricity consumption when contingencies,
such as unit outage or unpredictable change in demand or renew-
able generation, occur that threaten supply demand balance. More-
over, if market conditions that raise electric supply costs occur, DR
is one of the best solutions. In other words, DR programs and tariffs
maybe designed to improve the reliability of the electric grid or to
lower the use of electricity during peak hours, thus reducing the
total system operation costs.

Wind power generation is one of the most important renewable
resources used in many countries to replace conventional power
plants and reduce greenhouse gas emissions [1]. However, since
wind generation can only be controlled by ‘‘spilling wind’’ and its
power output cannot be forecasted with great accuracy, a signifi-
cant increase in the prediction of the power produced from wind
energy has a considerable impact on the way in which scheduling
and dispatch are carried out. This increased uncertainty must be
considered when determining the requirements for spinning
reserve (SR) in order to protect the power system against sudden
load and wind generation changes or a combination of both [2].

Determining the optimal amount of reserve that must be pro-
vided as a function of the system conditions is thus an important
and timely issue. Moreover, the reserve scheduling is simulta-
neously carried out with energy scheduling [3]. There are two
types of methods used for reserve scheduling in the literature:
specifically deterministic and stochastic methods. In the determin-
istic approach, the amount of reserve requirement in each period is
determined before the energy and reserve scheduling [4,5].
Generally, the amount of reserve is determined considering the
capacity of the largest online generators, load demand and the
percentage of renewable generation. Some previous researches
evidence that the probabilistic nature of renewable generation
and load demand can be considered for scheduling reserve [1]. In
the stochastic approach, the amount of reserve requirement is
settled during the energy and reserve scheduling procedure
[6–8]. The situation (e.g. unpredicted generators outage and wind
power and load demand fluctuations) in which the reserve is
needed in order to compensate the power generation shortage
is generally modeled by scenarios and the amount of reserve is
determined according to the probability of each scenario.
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A stochastic model of wind power generation based on an
optimal power flow scheduling/dispatching program has been
presented in [9]. This model incorporates the error in wind power
forecasts by using a relative frequency histogram or probability. In
[10], a differential evolution algorithm for integrated energy and
spinning reserve dispatch with uniform prices has been proposed.
In [11], covariant matrix adaptation with evolution strategy using
mean learning technique has been proposed to solve an economic
dispatch problem and to find the optimal scheduling/allocation of
energy and spinning reserves among thermal and wind generators.
The uncertainty of wind power generation has been modeled by
Weibull probability density function. However, the objective func-
tion has been considered such as in a deterministic method. A
probabilistic approach to investigate the multi-objective distribu-
tion feeder reconfiguration considering wind turbines has been
presented in [12]. This probabilistic method considered the uncer-
tainty regarding the load demand forecast errors as well as the
wind turbines output power variations. In [13], a stochastic joint
energy and spinning reserve market clearing model has been
proposed based on a multi-objective mixed integer nonlinear
programming with three objective functions. Wind power
generation uncertainty and demand response programs are not
considered in this work. A stochastic bidding strategy of a
microgrid in a joint day-ahead market of energy and spinning
reserve service has been proposed in [14] in which uncertainty of
renewable DG units’ output power and load demand has been
taken into account.

Today, ancillary services (such as voltage control, reactive
power contribution and reserve capacity) are procured by the
Transmission System Operator (TSO), largely from large power
producers, to manage the system as whole. With the introduction
of distributed generation and information and communication
technologies, in future, it will be essential that also DSO will leave
the actual passive management philosophy and become active in
the management of the distribution system, thus also participating
in procurements of ancillary services [15]. Moreover, DSOs are also
responsible for ensuring that the dispatch of generation and alloca-
tion of reserves is correctly managed in order to maintain the
power flows on distribution network within security and opera-
tional limits. Thus, active DSOs should be allowed to coordinate
new system services such as ancillary services from Distributed
Energy Resources (DER) [15].

Eventually, in order to achieve an efficient use of DER, DSOs will
have to contract energy- and capacity-related products, and it is
therefore expected that they will employ market-based mecha-
nisms such as procurement auctions, similar to the ones TSOs are
currently using to procure reserves [16].

Making demand side involved in the energy and reserve opera-
tional planning has opened a wide range of new possibilities for
which demand elasticity has increased [17–19]. In [20], a model
to support virtual power plants in DR programs’ management
has been presented in which all the existing energy resources (gen-
eration and storage units) and the distribution network are consid-
ered. The result showed that for higher values of network total load
demand the use of DR can have a great impact in reducing both
electricity prices and operation costs, namely in situations of
absence of wind and solar power generation.

To the best of our knowledge, no stochastic energy and reserve
scheduling method in distribution system considering uncertain-
ties related to electricity price, wind power and load demand and
in which the consumers can provide both energy and reserve ser-
vices has been reported in the literature. Accordingly, in this paper
a stochastic approach for energy and reserve scheduling of distri-
bution systems is presented in which various types of demand
response programs are taken into account. The contributions of
this paper are highlighted as follows:
� Aggregate real-time price, wind power and load demand
uncertainties.
� Consider load demand participation in both energy and reserve

scheduling.
� Evaluate stochastic scheduling of energy and reserve in a distri-

bution system.

The rest of the paper is organized as follows: Section ‘Demand
response programs’ describes different types of demand response
programs. The uncertainty modeling of electricity prices, wind
power and load demand is explained in Section ‘Uncertainty
modeling’. In Section ‘Energy and reserve scheduling’, the stochas-
tic scheduling of energy and reserve is formulated. Some simula-
tion results are described in Section ‘Case study’ and finally the
concluding remarks are presented in Section ‘Conclusion’.

Demand response programs

In the proposed method, a DR program is provided by Demand
Response Providers (DRP) and large individual consumers (e.g.
industrial loads) [21,22]. The DRP acts as a medium between
Distribution System Operator (DSO) [23] and small customers
and enable the participation of small customers in DR programs.
DR programs are characterized as load reduction in energy sched-
uling and reserve capacity in reserve scheduling carried out by DSO
[24,25].

Each DRP submits load reduction offers as different price-
quantity offer packages. In the price-quantity offer package, the
minimum ðLi

MinÞ and maximum ðLi
MaxÞ load reduction is determined.

Also, the load reduction is divided into several steps each having a
specific price. The equations for the ith DRP are the following ones
from Eqs. (1)–(4).
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where li
j is the accepted load reduction of DRP i in step j of price-

quantity offer package; Li
j and Li

jþ1 represent, respectively, the start
and end points of step j; DPE(i, t) and DCE(i, t) are, the total accepted
load reduction quantity and payment for the ith DRP in period t,
respectively.

At each hour, the sum of scheduled energy reduction and
reserve provided by each DRP should not be greater than its
maximum load reduction offer (Li

Max). The reserve prepared by
DRPs is calculated as follows:

DPEði; tÞ þ DPRði; tÞ 6 Li
Max ð5Þ

DCRði; tÞ ¼ DPRði; tÞ � qR;pði; tÞ ð6Þ

where DPR(i, t) and qR,p(i, t) are the scheduled reserved provided
by DRP i and the reserve price for being in standby in period
t, respectively; DCR(i, t) is the reserve cost that is paid to DRP.

The equations of individual loads (ILs) participating in both
energy reduction and for reserve supply are given as follows:

ILEðb; tÞ þ ILRðb; tÞ 6 ILmax
b ðb; tÞ ð7Þ

ICEðb; tÞ ¼ ILEðb; tÞ � qE;lðb; tÞ ð8Þ
ICRðb; tÞ ¼ ILRðb; tÞ � qR;lðb; tÞ ð9Þ

where ILE(b, t) and ILR(b, t) are, the scheduled load reduction and
reserve prepared by individual consumer b in period t, respectively;
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ILmax
b ðb; tÞ is the maximum load reduction offered by consumer b in

period t; qE,l(b, t) and qR,l(b, t) are the price offer of individual load b
for energy reduction and being in standby for reserve in period t,
respectively. The cost of load reduction and committing reserve that
are paid to individual loads participating in DR programs are ICE(b,
t) and ICR(b, t), respectively.

Uncertainty modeling

A distribution system operator encounters three major sources
of uncertainty, namely future real-time prices, future loads and
intermittent renewable generation [26,27]. In this section, the
uncertainty of future wind power, electricity price and load
demand is modeled as multiple different scenarios. Then, the
scenario-based stochastic programming method is employed here
to handle the uncertainties [28].

Wind generation

The model used to simulate possible scenarios of the wind
speed forecast errors is based on autoregressive moving average
series (ARMA). It can be defined as [29]:

DVð0Þ ¼ 0; Zð0Þ ¼ 0 ð10Þ

DVðtÞ ¼ aDVðt � 1Þ þ ZðtÞ þ bZðt � 1Þ

where DV(t) is the wind speed forecast error in period t; Z(t) is a
random Gaussian variable with standard deviation dz; a and b are
parameters.

The wind speed scenario v t
k in period t can be calculated as the

sum of the wind speed forecast v t
f and the wind speed forecast

error scenario Dv t
k, i.e. DV(t):

v t
k ¼ v t

f þ Dv t
k 8k 2 Nk ð11Þ

where Nk is number of wind speed forecast error scenarios.
The parameters dz, a and b can be identified by using the least-

square fitting, minimizing the difference between sample forecast
error variance based on data from the studied area, and modeled
forecast error variance.

The output power of the wind turbine corresponding to each
wind speed is calculated using the wind turbine power curve
parameters as described by Eq. (12).

Pt
w;k ¼

0; 0 6 v t
k 6 vci

Prated �
ðvt

k
�vciÞ
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k
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>>>>:
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where Pt
w;k is the output power of wind turbine w according to wind

speed scenario v t
k; vci, vr and vco are the cut-in speed, rated speed

and cut-off speed of the wind turbine, respectively; Prated represents
the total rated power of wind turbines.

Price uncertainty

The uncertainties on real-time prices is taken into account using
time-series approaches [30] which enable constructing a set of
scenarios. The time series ARMA model is used to predict hourly
prices in the electricity markets by generating likely scenarios.
More details on this method are given in [30].

Load demand uncertainty

Load uncertainty is modeled based on the load forecast errors.
Here, a Gaussian distribution with specific lower and upper limits
is used to model the probability density function (PDF) of the
hourly load forecast errors. The parameters of PDF can be
estimated from historical hourly load data by using curve fitting.
The load scenario Pt

load;k in period t can be calculated as the sum
of the load forecast Pt

load;f and the load forecast error scenario
DPt

load;k:

Pt
load;k ¼ Pt

load;f þ Pt
load;k 8k 2 Nk ð13Þ

where Nk represents number of load demand forecast error
scenarios.

Scenario generation and reduction

Latin Hypercube Sampling (LHS) is a sampling method that
ensures a full coverage of the range of variables by maximally
stratifying marginal distribution [31]. In LHS, the distribution of
a random variable is divided into intervals with equal probabil-
ity, and a state is randomly selected within each interval. There-
fore, LHS is used to sample day-ahead wind speed, market price
and load forecast error. According to aforementioned day-ahead
electricity price, wind speed, and load forecast error distribu-
tions, the cumulative distributions of each error variable is
divided into several equiprobable intervals. A forecast error value
is selected randomly from each interval. Then electricity price,
wind speed, and load scenario can be generated considering
the forecast and error values. Details of LHS can be found in
[32,33].

The number of scenarios generated by LHS is huge, and the
computational effort would be really expensive to solve scenario-
based stochastic energy and reserve scheduling with all of these
scenarios. Therefore, it is necessary to consider a limited subset
of scenarios without losing the generality of the original set. The
scenario reduction technique can reduce the number of scenarios
effectively and maximally retain the fitting accuracy of samples.
The backward scenario reduction technique is used here as
described in [34].
Energy and reserve scheduling

In this model, DSO is responsible for energy and reserve sched-
uling in distribution networks [35–37]. In order to show the advan-
tages of the energy and reserve scheduling using the proposed
stochastic method, it is compared with a deterministic method.
Accordingly, in this section, the formulations of the energy and
reserve scheduling using deterministic and stochastic methods
are explained.

Deterministic method

The objective function of the deterministic method (OFDet) is the
total operation cost of the distribution system that should be
minimized:

OFDet ¼
XT

t¼1

PgridðtÞ � Tt
E þ RgridðtÞ � Tt

R þ
X
b2B

ICEðb; tÞ þ ICRðb; tÞ
"

þ
X
i2I

DCEði; tÞ þ DCRði; tÞ
#

ð14Þ

where Pgrid(t) and Rgrid(t) are the scheduled purchased energy and
reserve from the main grid in period t, respectively. Tt

E and Tt
R are

the hourly forecasted electricity and reserve price of electricity,
respectively.

The constraints of the deterministic method are given as
follows:
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� Load balance

PgridðtÞ þ
XW
w¼1

Pt
w;f ¼ Pt

load;f �
X

i

DPEði; tÞ �
X

b

ILEðb; tÞ ð15Þ

where Pt
w;f and Pt

load;f are the forecasted wind power of turbine w
and load demand in period t, respectively.
� Reserve constraint

The required reserve for each period in the deterministic
method (Rt) is determined based on a percentage of forecasted load
demand and wind power [1,5].

Rt ¼ rt
w �
XW
w¼1

Pt
w;f þ rt

load � P
t
load;f ð16Þ

DPRðtÞ þ ILRðtÞ þ RgridðtÞP Rt ð17Þ

where rt
w and rt

load represent forecast error values for wind power
and load demand in period t, respectively.

Stochastic method

In order to consider the uncertain natures of wind power, load
demand and electricity price within the energy and reserve
scheduling, a two-stage stochastic programming framework is
presented [28]. Variables pertaining to the energy and reserve
costs and payments that are made before the realization of any
one of the scenarios should be considered in the first stage of
this model. In the second stage of the model, variables pertaining
to each particular scenario at each time period should be
considered.

The involuntarily load shedding is used in this model to prevent
committing more reserve in some scenarios with low probability
and refers to unplanned load shedding in which the operator
should pay damage costs for power interruptions [6]. The Value
of Lost Load (VOLL) is defined as the value that an average con-
sumer losses from an unsupplied kW h of energy. The value of
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these losses can be expressed as a customer damage function.
While an involuntarily load shedding for a consumer occurs, the
damage cost is paid at VOLL to this consumer.

The total expected cost of the distribution network represents
the objective function of the stochastic model that should be min-
imized [8]. The objective function has two parts: the first one is the
sum of contracting energy and reserve costs which should be paid
to the market operator and to loads participating in DR programs,
while the second part is the operational cost associated to each
scenario.

The first part of objective function takes into account the total
contracting energy and reserve costs (CC) and is given as follows:

CC ¼
XT

t¼1

PgridðtÞ � Tt
E þ RgridðtÞ � Tt

R þ
X
b2B

ICEðb; tÞ þ ICRðb; tÞ
"

þ
X
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The second part of objective function takes into account the
operational cost associated to each scenario (SC(s)) and is given
as follows:

SCðsÞ ¼
XT

t¼1

Psg s; tð Þ � Tt;s
E þ

X
b2B

ICsðb; t; sÞ þ
X
i2I

DCsði; t; sÞ
"

þ ENSðs; tÞ � vollðtÞ
#

ð19Þ

where Psg(s, t) and Tt;s
E are, respectively, the required purchased

power from the main grid and the real-time electricity price in sce-
nario s at period t; DCs(i, t, s) and ICs(b, t, s) are the costs associated
to both groups of load reductions in scenario s at period t, respec-
tively; ENS(s, t) and voll(t) are the Expected Energy Not Served
(EENS) and Value of Lost Load, respectively. So, SC(s) represents
the cost associated to the actual deployment of reserve in each
scenario.
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The objective function of the stochastic energy and reserve
scheduling (OFSt) is then calculated as follows:

OFSt ¼ CC þ
XS

s¼1

pðsÞ � SCðsÞ ð20Þ

where p(s) is the probability of scenario s.
The constraints of this model are described below:

� Load balance

PgridðtÞ þ
XW
w¼1

PwðtÞ ¼ DðtÞ �
X

i

DPEði; tÞ �
X

b

ILEðb; tÞ ð21Þ

where Pw(t) and D(t) are the scheduled wind power of turbine w and
demand in period t, respectively.

The energy balance at each scenario should also be satisfied.

Psgðs; tÞ þ
XW
w¼1

Pt
w;s ¼ Pt

load;s � ILsðb; t; sÞ � DPsði; t; sÞ � ENSðs; tÞ ð22Þ

where Pt
w;s and Pt

load;s are the wind power and demand at scenario s,
respectively. Also, the required load reduction from DRPs and large
loads at each scenario is denoted by DPs(i, t, s) and ILs(b, t, s), respec-
tively. ENS(s, t) is the amount of involuntarily load shedding at each
scenario which should be subtracted from demand.
Fig. 2. Expected real-time prices of open market.

Fig. 3. Forecasted load profile of the distribution test system.

Fig. 4. Hourly wind speed forecast.
� Reserve constraint

The scheduled reserve from the main grid is determined based
on the difference between the main grid scheduled power and
power in each scenario. Also, the scheduled load reserve from both
of DRPs (DPR(t)) and individual large loads (ILR(t)) is defined as the
difference between amount of scheduled load reduction and load
reduction in each scenario. Choosing the maximum value assures
that the scheduled load reserve can cover load reduction
requirements in all scenarios.

RgridðtÞP Psgðs; tÞ � PgridðtÞ 8s; t ð23Þ
DPRðtÞP DPsði; t; sÞ � DPEðtÞ 8s; t; i ð24Þ
ILRðtÞP ILsðb; t; sÞ � DPEðtÞ 8s; t; b ð25Þ

The proposed model is solved using mixed-integer Linear pro-
gramming (MILP) solver Xpress [38] under GAMS [39] on a Pen-
tium IV, 2.6 GHz processor with 4 GB of RAM.
Case study

The proposed method was applied to a modified version of the
83-bus distribution system given in [40] and illustrated in Fig. 1.
The ARMA model corresponding to real-time prices and load
demand are estimated through the Ontario’s electricity market
data from January 2012 to December 2013. The historical data of
the Ontario’s electricity market are available online at [41]. There-
after, the uncertainty of next day prices is modeled via a set of 300
scenarios. The expected real-time prices of forecasted scenarios
and the forecasted load profile of the test system are depicted in
Figs. 2 and 3. Also, the capacity cost for spinning reserve from
the main grid is considered at the rates of 25% of hourly energy
price in each hour [42]. The forecasted hourly wind speed for a
24-h period is calculated from historical data measured in north
part of Italy [43] and shown in Fig. 4. All wind turbines installed
in the test system are of the same type with specifications power
rated 1.1 MW, cut-in speed 4 m/s, nominal speed 14 m/s, and
cut-out speed 25 m/s. The wind turbines are located in buses 7,
12, 20, 32, 52, 72, 80. The VOLL that is needed to estimate the social
cost of interruptions was taken as 1000 $/MW h [44].

The load buses area of each DRP is shown in Table 1. The DRPs’
price–quantity offer package is presented in Table 2. It is assumed
Table 1
DRPs’ support area.

DRP Bus

DRP1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
DRP2 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
DRP3 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42
DRP4 56, 57, 58, 59, 60, 61, 62, 63, 64

Table 2
Price-quantity offer package of DRPs.

Quantity (kW)

Price (Cent/kW h)

DRP1 0–200 200–600 600–1400 1400–1800
4.9 5.8 7.9 9.1

DRP2 0–500 500–1000 1000–1500 1500–2000
4.8 5.1 7.5 8.9

DRP3 0–100 100–400 400–900 900–1600
5.1 5.9 7.9 9.5

DRP4 0–200 200–600 600–900 900–1700
4.9 5.2 9.5 10.2



Table 3
Individual load offer.

IL number Bus Quantity (kW) Price (Cent/kW h)

1 13 400 5.9
2 29 1100 5.0
3 72 350 7.9
4 76 1400 9.0
5 80 1000 5.1

Table 4
Stochastic and deterministic operational cost comparison.

Cost ($) Main grid DR Total

Energy Reserve Energy reduction Reserve

Stochastic 16,569 345 2233 311 19,458
Deterministic 16,569 412 2233 398 19,612

Fig. 5. The reserve requirement in the stochastic and deterministic methods.

Fig. 6. Purchased energy from the main grid.

Fig. 7. Purchased spinning reserve from the main grid.

Fig. 8. Scheduled demand reduction.
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that individual loads (IL) participating in DR program exist at buses
13, 29, 72, 76 and 80 and their offer packages are given in Table 3.

In order to show the effectiveness and capability of the pro-
posed stochastic method, the energy and reserve scheduling has
also been carried out by using the deterministic method. In the
deterministic approach, the reserve requirement is determined
based on the percentage of demand and renewable generation
(as forecast errors) before the starting scheduling. In this case
study, the demand and wind generation forecast errors are consid-
ered as 10% and 20%, respectively [5,45]. The operational costs of
these two scheduling models are given in Table 4. Simulation
results evidence that the stochastic scheduling model has a lower
operational cost than the deterministic one due to lower reserve
allocation. Wind power cost is calculated and paid to wind turbine
owners after real-time operation when the real output power from
these units is determined.

In the stochastic approach, real-time price, wind generation and
load demand are modeled in different scenarios and their probabi-
listic nature is considered in the reserve allocation procedure. As a
result, the scholastic model does not allocate more reserve in sce-
narios having low probability. The scheduled reserve provided by
the main grid generators and responsive loads in the deterministic
and stochastic scheduling are illustrated in Fig. 5. The results show
Table 5
Scheduling costs comparison in two cases: with and without DR.

Cost ($) Main grid

Energy Reserve

Without DR programs 19,384 995
With DR programs 16,569 345
that the reserve requirement in the deterministic model is higher
than that in the stochastic model. Therefore, the stochastic
approach allows allocating appropriate amount of reserve which
causes lower operation costs.

In order to analyze the effect of the demand side participation in
energy and reserve scheduling, the proposed stochastic energy and
reserve scheduling is tested in two different cases: with and
without considering DR programs. The operational costs of these
different schedulings are given in Table 5. The costs of energy
and reserve from both of the main grid and demand side are
compared in these two cases. These comparison shows that the
proposed model deploying DR program allows obtaining lower
total operation costs.
DR Total

Energy reduction Reserve

– – 20,379
2233 311 19,458
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The scheduled contracting electricity and reserve from the main
gird in these two cases are shown in Figs. 6 and 7. As shown in
Fig. 6, in the case with DR, the purchased energy from the main
grid is reduced in hours 13–17 due to the higher electricity price.
In other words, some load reduction has been contracted at these
hours to reduce the operational costs. Also, comparing the pur-
chased spinning reserve from the main grid in two cases as shown
in Fig. 7, scheduled reserve provided by the main grid is reduced at
some hours when the reserve price is high and the reserve is fur-
nished by load demand reduction during these hours.

The scheduled load reduction from both individual loads (IL)
and DRPs in the DR participation case is illustrated in Fig. 8. As
shown in this figure, the load reduction is scheduled at hours 10,
11, 13–17, 20 and 21 in which the hourly electricity price is rela-
tively high and the DSO prefers to purchase energy reduction from
DR resources. Especially, in hours 15 and 16 when the electricity
price experiences a peak, more load reductions are contracted than
other hours. Also, the scheduled reserve provided by load demand
participation in ancillary service demand response program is
shown in Fig. 9. DR resources also provide reserve during hours
in which the reserve price of the main grid is high.

Conclusion

In this paper, an energy and reserve scheduling model for distri-
bution systems with demand side participation in energy and
reserve scheduling has been proposed. A two stage stochastic
approach was used to integrate the probabilistic nature of wind
generation and load demand as well as the real-time price uncer-
tainty into energy and reserve scheduling program. The results
show that the loads participation in energy and reserve scheduling
reduces the total operation costs. In order to show the capability of
the stochastic optimization, the scheduling has been performed
using conventional deterministic method and the results com-
pared with those obtained with the stochastic method. Simulation
results evidenced that the stochastic approach exhibits lower oper-
ational costs and, therefore, is more economical.
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