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Demand side participation is one of the important resources that help the operator to schedule genera-
tion and consumption with lower cost and higher security. Customers can participate in both energy and
reserve operational scheduling and earn benefit from reducing or shifting their consumption. In this
paper, a novel stochastic energy and reserve scheduling method for a microgrid (MG) which considers
various type of demand response (DR) programs is proposed. In the proposed approach, all types of
customers such as residential, commercial and industrial ones can participate in demand response pro-
grams which will be considered in either energy or reserve scheduling. Also, the uncertainties related to
renewable distributed generation are modeled by proper probability distribution functions and are
managed by reserve provided by both DGs and loads. The proposed method was tested on a typical
MG system comprising different type of loads and distributed generation units. The results demonstrate
that the adoption of demand response programs can reduce total operation costs of a MG and determine a
more efficient use of energy resources.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

Intelligent electrical grids with renewable energy sources have
attracted increasing public attention in recent years. Green (solar
and wind in particular) energy production is supposed to increase
significantly in the next years. Microgrids (MGs) can be key solu-
tions for integrating renewable and distributed energy resources,
as well as distributed energy-storage systems [1,2]. According to
the United States Department of Energy (DOE) definition, a MG
consists of a group of interconnected loads and distributed energy
resources within clearly defined electrical boundaries. A MG acts as
a single controllable entity with respect to the grid and can connect
and disconnect from the grid in order to operate in both grid-con-
nected and islanded mode [3]. The MG concept has been essen-
tially introduced in order to support a better renewable energy
penetration into the utility grid, to respond to some grid issues,
such as peak shaving, and to reduce energy costs [4–6]. So, MG
can be located in LV or MV level base on distribution networks con-
figurations and voltage levels. A MG can be at LV or MV level, how-
ever, in most of studies and projects, MGs are usually LV networks
and are interconnected to the MV distribution network [7–9]. In
order to achieve the full benefits from the operation of MGs, it is
important that the integration of the distributed resources into
the LV grids, and their relation with the MV network upstream,
contribute to optimize the general operation of the system [9].

On the other hand, a huge penetration of renewable energy
sources may affect reliable and secure operation of the MG due
to the intermittent nature of these resources [10]. So, the microgrid
operator (MGO) usually faces renewable generation uncertainty as
well as load demand uncertainty. This increased uncertainty must
be considered when determining the requirements for spinning
reserve (SR) in order to protect the power system against sudden
load and renewable generation changes [11]. In some approaches,
the total amount of reserve requirement of the grid is determined
before the energy scheduling and without considering the probabi-
listic behavior renewable resources. This method is named deter-
ministic energy and reserve scheduling [11–14]. On the other
hand, in the stochastic method, the uncertainties related to renew-
able generation and load demand are modeled by scenarios and the
reserve scheduling is carried out based on the probabilities of
scenarios [15,16]. Some studies evidenced that the stochastic
method has lower operational costs if compared with the
deterministic ones [11,17].

In [7], a smart energy management system (SEMS) was pre-
sented to optimize the operation of the MG. The paper also consid-
ered photovoltaic (PV) output in different weather conditions as
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Nomenclature

Indices
t index of optimization period, t = 1, 2, . . . ,24
i index of industrial customers, i = 1, 2, . . . , I
b index of commercial customers, b = 1, 2, . . . ,B
h index of residential customers (home), h = 1, 2 . . . ,H
ty index of shiftable appliances
k index of steps in load reduction offer, k = 1, 2, . . . ,K
n, m index of buses, n = 1, 2, . . . ,N
j index of non-renewable DGs, j = 1, 2, . . . , J
s index of scenarios, s = 1, 2, . . . ,S
w index of wind turbines, w = 1, 2, . . . ,W
pv index of PV units, pv = 1, 2, . . . ,Pv

Variables
Binary variable
u(j, t) on/off status (1/0) of the non-renewable DG j in per-

iod t
us(j, t,s) on/off status (1/0) of the non-renewable DG j in per-

iod t and scenario s
d(t,h, ty) on/off status (1/0) of home appliances ty at home h

and in period t
Y(t) 1 if battery starts charging in period t and 0 other-

wise
X(t) 1 if battery starts discharging in period t and 0

otherwise

Continuous variable
Ecost total expected cost ($)
lik accepted load reduction of industrial customer i in

step k of price-quantity offer package (kW)
ICE(i, t) total scheduled load reduction quantity prepared by

the industrial customer i in period t (kW)
ICs(i, t,s) required load reduction quantity prepared by the

industrial customer i in period t and scenario s (kW)
IPE(i, t) cost due to load reduction provided by industrial

customer i in period t ($)
ICR(i, t) scheduled reserve provided by industrial customer i

in period t (kW)
IPR(i, t) cost due to committing reserve provided by indus-

trial customer i in period t ($)
IPs(i, t,s) cost due to load reduction provided by industrial

customer i in period t and scenario s ($)
CCE(b, t) scheduled load reduction provided by commercial

customer b in period t (kW)
CCs(b, t,s) required load reduction provided by commercial

customer b in period t and scenario s (kW)
CCR(b, t) scheduled reserve provided by commercial

customer b in period t (kW)
CPE(b, t) cost due to load reduction provided by commercial

customer b in period t ($)
CPR(b, t) cost due to committing reserve provided by

commercial customer b in period t ($)
CPs(b, t,s) cost due to load reduction provided by commercial

customer b in period t and scenario s ($)
RCE(h, t) scheduled load reduction provided by residential

customer h in period t (kW)
RCR(h, t) scheduled reserve provided by residential customer

h in period t (kW)
RPE(h, t) cost due to load reduction provided by residential

customer h in period t ($)
RPR(h, t) cost due to committing reserve provided by residen-

tial customer h in period t ($)
RPs(h, t,s) cost due to load reduction provided by residential

customer h in period t and scenario s ($)

Pgrid(t) scheduled purchased energy from the main grid in
period t (kW)

CDG(j, t) hourly fuel cost of non-renewable DG j in period t
($)

CsDG(j, t,s) hourly fuel cost of non-renewable DG j in period t
and scenario s ($)

PDG(j, t) scheduled active output power of non-renewable
DG j in period t (kW)

PsDG(j, t,s) active output power of non-renewable DG j in
period t and scenario s (kW)

RDG(j, t) scheduled spinning reserve provided by non-renew-
able DG j in period t (kW)

ENS(s, t) the amount of involuntarily load shedding in period
t and scenario s (kW)

Pow(t) scheduled wind power of wind turbine w at hour t
(kW)

Popv(t) scheduled solar power of PV unit pv at hour t (kW)
Loss(t) total network losses in period t (kW)
SU(j, t) start up cost of non-renewable DG j in period t ($)
PþB ðtÞ scheduled battery discharge power in period t (kW)
P�B ðtÞ scheduled battery charge power in period t (kW)
|V(n, t)| voltage amplitude at node n and in period t, p.u.
d(n, t) voltage angle at node n and in period t
Pinj(n, t) net injected active power to node n and in period t,

p.u.
Qinj(n, t) net injected reactive power to node n and in period

t, p.u.

Parameters
PL(t) total hourly demand of MG in period t (kW)
lik price offer of industrial customer i in step k ($/kW)
qI,r(i, t) reserve price of industrial customer i for being in

standby in period t ($/kW)
Li

Max maximum quantity of load reduction offered by
industrial customer i in period t (kW)

CCmax
b ðb; tÞ maximum quantity of load reduction offered by

commercial consumer b in period t (kW)
qC,E(b, t) price offer of commercial customer b for energy

reduction in period t ($/kW)
qC,R(b, t) price offer of commercial customer b for committing

reserve in period t ($/kW)
RCMax(h, t) maximum quantity of load reduction offered by

residential customer h in period t (kW)
qR,E price offer of residential customer h for energy

reduction in period t ($/kW)
qR,R price offer of residential customer h for committing

reserve in period t ($/kW)
HDA(t,h, ty) power consumption of shiftable appliances ty at

home h that turn on in period t (ss 6 t 6 se), (kW)
HDAMax(h, ty) nominal power of shiftable appliance ty at home h

(kW)
fw(v) Rayleigh probability distribution function
v wind speed (m/s)
fb(/) beta probability distribution function
/ solar irradiance (kW/m2)
Ppv(/) PV output power (kW) for irradiance /
gpv efficiency of PV (%)
Spv total area of PV (m2)
Ps

wðs; tÞ wind turbine w output power in period t and
scenario s (kW)

Ps
pvðs; tÞ PV pv output power in period t and scenario s (kW)

TaE
gðtÞ hourly electricity price ($/kW)

CR
DGjðj; tÞ reserve price of non-renewable DG j in period

t ($/kW)
VOLL(t) value of lost load in period t ($/kW)
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Pmin
DGj minimum output power limits of non-renewable

DG j (kW)
Pmax

DGj maximum output power limits of non-renewable
DG j (kW)

Scj start up cost of non-renewable DG j ($).
SOCMin minimum capacity of battery (kWh)
SOCMax maximum capacity of battery (kW h)

g� battery charge efficiency coefficients
g+ battery discharge efficiency coefficients
N total number of buses
|Yn,m| amplitude of element (n, m) in network admittance

matrix
hn,m angle of Yn,m
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well as hourly electricity prices of the main grid. However, the
method did not allocate reserve for renewable uncertainty and
did not consider load participation in demand response programs.
In [18], an energy management system (EMS) based on a rolling
horizon (RH) strategy for a renewable-based MG has been pre-
sented. The EMS minimizes the operational and consequently pro-
vides the online set points for generation units. In [19], both
emission and economic objectives were considered in MG opera-
tional scheduling. Mesh adaptive direct search algorithm was used
to minimize the cost function of the system but demand side par-
ticipation in energy market and wind and solar forecast errors
were not considered. The application of a high reliability distribu-
tion system (HRDS) in the economic operation of a MG has been
studied in [20]. HRDS, which offers higher operation reliability
and fewer outages in MG, has been applied to looped networks
in distribution systems.

The estimation model of spinning reserve requirement in MG
was proposed in [21]. In the proposed method, the uncertainty of
wind and solar generation is considered, as well as the unreliability
of units and uncertainties caused by load demand. The approach
aggregated various uncertainties in order to reduce the computa-
tional burden. The demand side reserve and load participation in
energy markets was not considered in the model. A deterministic
energy management system for a MG was proposed in [22]. The
method includes advanced PV generators with embedded storage
units and a gas micro-turbine. The scheduling was implemented
in two parts: a central energy management of the MG and a local
power management at the customer side. However, the reserve
requirement estimation and demand response program in MG were
not considered in this work. In [23], a model for MG optimal sched-
uling considering multi-period islanding constraints has been pro-
posed. The objective of the problem is to minimize the MG total
operation cost which comprises the generation cost of local
resources and cost of energy purchase from the main grid. Benders
decomposition method was employed to decouple the grid-con-
nected operation and islanded operation problems. Islanding cuts
were further utilized to coordinate these two problems. Mixed inte-
ger programming was used to model MG components, which
included loads, generating units, and energy storage systems.

An environmental economic dispatch problem of smart MG
using deterministic method has been proposed in [24]. The quan-
tum genetic algorithm was used in order to minimize the operation
cost and emission. But, the uncertain nature of renewable genera-
tion has not been taken into account in the energy scheduling. In
[25], a MG energy management under cost and emission minimi-
zation has been presented in which optimal battery scheduling
using by a fuzzy logic expert system has been investigated. More-
over, the uncertainty of the uncertainty of renewable generation
and load demand has been taken into account. In [26], a stochastic
framework for energy operation management of DGs in a grid-
connected MG has been presented. The uncertainties of load fore-
cast error, wind turbine generation, photovoltaic generation and
market price has been considered in generation scenarios by using
roulette wheel mechanism. However, the method did not focus on
reserve scheduling and did not consider the role of DR in energy
and reserve scheduling.
To the best of our knowledge, no stochastic energy and
reserve scheduling method for a MG in which the demand side
participation, as well as intermittent nature of renewable gener-
ation, has been reported in the literature. The main focus of this
paper is, therefore, the proposal on an innovative stochastic
energy and reserve scheduling method including multiple types
of demand response programs in order to facilitate the participa-
tion of different types of customers in energy and reserve
scheduling.

The rest of this paper is organized as follows. In Section 2
the advanced metering architecture of the microgrid is
described. The demand response programs and renewable
generations’ uncertainty are modeled in Sections 3 and 4,
respectively. The method formulation is detailed in Section 5.
Simulation results are given in Section 6 and the paper is
concluded in Section 7.
Advanced metering architecture of the microgrid

In order to practically apply the proposed method in a real MG,
the two-way communication system between MG operator and
consumers should be available [27–31]. As an available solution,
the Advanced Metering Infrastructure (AMI) system of a real pilot
project presented in [32,33] is introduced in order to make active
all types of DR program that is used in the proposed method. The
architecture of the smart metering system is shown in Fig. 1 and
consists of:

� Smart meters with Power Line Carrier (PLC) communications,
installed at the customer premises. They may be single phase
or three phase smart meters. Also, the smart meter of medium
and large customers could directly be connected to the utility
by using GPRS.
� Data concentrators (DC) installed in 20 kV/400 V power trans-

formers in order to manage all smart meters measured data
from each installation. Data concentrators integrate PLC com-
munications that exchange information with smart meters
and communicate with central meter data management
systems.
� Meter data management system, mainly meter data manage-

ment & repository (MDM/R) systems in which the received
unprocessed data from all meters or sensors are collected and
processed in order to deliver the required data to MGO or DSO.
� Customer energy management system, mainly In Home Dis-

play (IHD) that shows the electricity consumption and the
prices to customer. For residential customers, a Home Energy
Scheduler (HES) system is also integrated into IHD. This system
is explained in the residential customer sub-section.

Demand response participants

Different types of electricity customers with different electricity
consumption behavior and pattern are considered in the proposed
method. The types of customers and their involvement in DR pro-
grams are described in this section.
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Fig. 2. The steps price-quantity offered package of an industrial customer.
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Industrial customer

Industrial customers are usually characterized by heavy loads.
As every factory comprises more than one production line, the
energy curtailment in each production line has a distinct price offer
pertaining to its production. So, industrial customers offer their
load curtailment as a multi steps package.

Fig. 2 depicts a typical price-quantity offer package containing
four pairs where ok is the price offer at step k. For each hour, an
industrial customer submits its price-quantity offer as a package.
At each hour, LMax is the maximum load reduction and LMin is the
minimum load reduction that an industrial customer can carry
out. Let assume, for example, that in an energy scheduling proce-
dure, L3 kW of load reduction are accepted from an industrial cus-
tomer. It is paid at o1 for L1, o2 for L2 � L1, and o3 for L3 � L2. The
equations used for modeling the behavior of the ith industrial cus-
tomer are the following ones from (1) to (4).

Li
Min 6 li

1 6 Li
1 ð1Þ

0 6 li
k 6 Li

k � Li
k�1

� �
8 k ¼ 2; . . . ;K: ð2Þ

ICEði; tÞ ¼
X

k

li
k ð3Þ
IPEði; tÞ ¼
X

k

oi
k:l

i
k ð4Þ

At each hour, the sum of the scheduled energy reduction and
reserve provided by each industrial load should not be greater than

its maximum load reduction offer Li
Max

� �
. This means that the

uncommitted load reduction capacity of each industrial customer
in the energy scheduling can be scheduled for the reserve require-
ment. The reserve provided by each industrial customer is
calculated as follows:

ICEði; tÞ þ ICRði; tÞ 6 Li
Max ð5Þ

IPRði; tÞ ¼ ICRði; tÞ � qI;Rði; tÞ ð6Þ
Commercial customer

Commercial consumers always offer the maximum amount of
possible load reduction at the desired price for curtailment to
MGO. The equations used for modeling the behavior of the com-
mercial customer b, participating in both energy reduction and
reserve commitment are given as follows:

CCEðb; tÞ þ CCRðb; tÞ � CCmax
b ðb; tÞ ð7Þ

CPEðb; tÞ ¼ CCEðb; tÞ � qC;Eðb; tÞ ð8Þ

CPRðb; tÞ ¼ CCRðb; tÞ � qC;Rðb; tÞ ð9Þ
Residential customer

In the proposed method, it has been assumed that every house
in the MG control area has an automatic controller and energy
management system. It includes a Home Energy Scheduler (HES)
that is a package including smart meter, microcontroller and an
In-Home Display (IHD). The HES also receives some command
signals from the MGO and is able to send some data signal to it.
As most of people are not interested to pay attention to their
energy consumption and prices, they do not perform energy man-
agement activities. The HES gives a remote control of the in-home
appliances to the MGO to allow faster regulation and control
according to the current situation.
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In a typical house, there are different electric appliances.
Residential demand response programs usually try to achieve a
reduction and/or a shifting of energy consumption. Reducing
consumption is performed by interruptible appliances like heating,
ventilation, and air-conditioning (HVAC) systems, lamps and
refrigerators. In this type of household appliances, the energy con-
sumption is reduced in a specific period but is not shifted to
another time period. The shiftable appliances such as dishwasher
and washer-dryer can shift their working period to another time
period, instead.

The MGO receives HES data through the communication link.
Then, the MGO considers the residential customer load curtailing
or shifting in the scheduling program. Constraint (10) shows that
sum of energy reduction and reserve commitment of each residen-
tial customer at every hour should be lower or equal to the maxi-
mum amount of its offers. The equations used for modeling the
behavior of the hth residential customer are the following ones.

RCEðh; tÞ þ RCRðh; tÞ � RCMaxðtÞ ð10Þ
RPEðh; tÞ ¼ RCEðh; tÞ � qR;E ð11Þ
RPRðh; tÞ ¼ RCRðh; tÞ � qR;R ð12Þ

The shiftable appliances constraint which shows the time limitation
of their performance is given as follows:

Xse

t¼ss

dðt;h; tyÞ ¼ sw ð13Þ
HDAðt; h; tyÞ ¼
X
sw

dðt; h; tyÞ � HDAnðh; tyÞ ð14Þ

For shiftable load scheduling, ss and se represent the desired
start and end time of the shiftable appliances working period,
and sw is the required time that they need to perform their appli-
cations. Also, it is assumed that the working period of the shiftable
appliances cannot be interrupted.
Demand response programs

In this paper, an incentive payment oriented demand response
scheme is considered for MG short term operational planning. In
the assumed load management program, three types of incen-
tive-based demand response programs are considered as follows:

� Demand bidding/buyback programs – Demand bidding/buyback
programs encourage heavy consumers (like industrial and com-
mercial loads) to offer load reductions at a price at which they
are willing to be curtailed.
� Ancillary Services Market Programs – In this type of program cus-

tomers can bid load curtailment as reserve capacity for the sys-
tem. If their bids are accepted, they are paid at the reserve price
for their involvement and for remaining in standby. If their load
curtailments are needed, they are called by the MGO, and can be
also paid at their accepted offer price for load reduction.
� Direct load control – Direct load control (DLC) programs refer to

programs in which a utility or system operator remotely shuts
down or cycles a customer’s electrical equipment on short
notice. In the proposed approach, the MGO is able to control
some appliance of household directly. For example, it may con-
trol lighting, thermal comfort equipment (i.e., heating, ventilat-
ing, and air conditioning), refrigerators, and pumps.

More details about these programs are available in [34].
Wind and solar generation modeling

It is assumed that wind turbines and PV units are installed in
the MG. As the wind and solar have a probabilistic nature, the out-
put power of these units is intermittent. To model the uncertain-
ties related to wind and PV generation, two different probability
density functions are implemented.

Wind generation modeling

The Rayleigh probability density function (PDF) is regularly
used as a proper expression model of wind speed behavior in each
forecasted period [35]. Rayleigh PDF is a special case of Weibull
PDF in which the shape index is equal to 2.

fwðvÞ ¼ ðk1=cÞðv=cÞðk1�1Þe�ðv=cÞk1 ð15Þ

where k1 and c are, respectively, shape factor (dimensionless) and
scale factor (it shares the unit of v). The probability of the wind
speed state v during any specific hour is calculated using (16):

qðvÞ ¼
Z v2

v1

fwðvÞdv ð16Þ

where v1 and v1 are the wind speeds limits of state v.
The output power of the wind turbine is calculated using the

wind turbine power curve parameters as described by Eq. (17). In
order to simplify the analysis, the average value of each interval
(va) is used to calculate the output power in that interval:

PwðvÞ ¼

0; 0 6 va 6 vci

Prated � ðva�vciÞ
ðvr�vciÞ

; vci 6 va 6 v r

Pratedv r 6 va 6 vco

0; vco 6 va

8>>><
>>>:

ð17Þ

where vci, vr and vco are the cut-in speed, rated speed and cut-off
speed of the wind turbine, respectively.

Solar generation modeling

The output of PV unit mainly depends on irradiance. The distri-
bution of hourly irradiance at a particular location usually follows
a bimodal distribution, which can be seen as a linear combination
of two unimodal distribution functions [36,37]. A Beta PDF (fb(/))
is utilized for each unimodal [36], as set out in the following:

fbð/Þ¼
CðaþbÞ

CðaÞCðbÞ�/ða�1Þ �ð1�/Þðb�1Þ for 06/61;aP 0;b P 0

0 otherwise

(

ð18Þ

To calculate the parameters of the Beta distribution function
(a, b), the mean (l) and standard deviation (r) of the random var-
iable are utilized as follows:

b ¼ ð1� lÞ � l� ð1þ lÞ
r2 � 1

� �
ð19Þ

a ¼ l� b
1� l

ð20Þ

The probability of the solar irradiance state (q(/)) during any spe-
cific hour can be calculated as follows:

qð/Þ ¼
Z ;2

;1

fbð/Þ:d/ ð21Þ

where £1 and £2 are the solar irradiance limits of state £.
Given the irradiance distribution and irradiance-to-power con-

version function, the PV power distribution can be obtained. The
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irradiance-to-power conversion function used in this paper is sim-
ilar to that used in [38]:

Ppvð/Þ ¼ gpv � Spv � / ð22Þ
Scenario generation

A 5-interval wind speed and solar irradiance discrete probabil-
ity distribution functions are considered for wind and PV genera-
tion fluctuation at each hour, respectively. In order to combine
different states of wind and PV fluctuations in each period, a
scenario tree technique is used [39]. It is supposed that the wind
speed and the solar irradiance have no correlation and each sce-
nario consists of two different states of wind and PV generations.
Each scenario is assigned a weight ps = q(v) � q(/) that reflects
its possibility of occurrence in the future.
Stochastic scheduling formulation

To model the wind and PV power generations’ uncertainties
within the MG energy and reserve scheduling, a two-stage stochas-
tic programming framework is developed. In the stochastic
method, all plausible states of wind and solar generation in each
hour are modeled by generating different scenarios. The schedul-
ing of energy resources is carried out for all scenarios in order to
analyze the changes in power requirements while each of scenar-
ios happens. The output result of this scheduling method is defined
as the optimum solution that has the minimum operational cost if
each of scenarios occurs in real time. So, the output result variables
are different from scenario variables and are located in the first
stage of objective function. The difference between output vari-
ables and scenario variables of DGs and responsive loads are
defined as reserve. In other words, reserve is used in order to
match the power shortage while renewable power generations
suddenly decrease.

The involuntarily load shedding is used in the stochastic
method to prevent committing more reserve in some scenarios
with low probability. The amount of shed load in each scenario
multiplied by the probability of scenario occurrence represents
the Expected Energy Not Served (EENS). The Value of Lost Load
(VOLL) rate is used in order to calculate the load shedding cost in
each scenario; it is defined as the value that an average consumer
loses from an unsupplied kW h of energy [15]. Within the optimi-
zation procedure, a tradeoff between reserve and involuntary load
shedding costs is carried out in order to allocate optimum amount
of reserve. For example, allocating more reserve for a scenario with
very low probability in which high amount of wind or solar power
shortage will occur is not necessary.

The total expected cost (Ecost) of the MG represents the cost
objective function of the stochastic method that should be mini-
mized [16,40]. The cost objective function has two parts: the first
one is the sum of contracting energy and reserve costs (output
variables) which should be paid to the market operator, DG owners
and to customers participating in DR programs, while the second
part represents the operational cost associated to each scenario
(scenario variables). Set s = 1, . . . ,S shows the scenarios number;
so, scenario variables are distinguishable from output variable by
using index s.

The non-ideal states of renewable power generation are taken
into account within the energy and reserve scheduling by consid-
ering different scenarios in the carried out analysis. For example,
if we consider a non-ideal case in which a wind or solar power sud-
denly reduces, the operator will use the scheduled reserve in order
to compensate the renewable power shortage and maintain the
balance between electricity generation and consumption. In other
words, in the case that wind and solar power are different from the
predicted values, a reserve capacity is scheduled by using the pro-
posed method in order to compensate the sudden shortage of the
renewable generation.

Objective function definition

The first part of cost objective function takes into account the
total contracting energy and reserve costs (CF1) and represents
the payment costs of electricity and reserve in the total scheduling
horizon as follows:

CF1 ¼
XT

t¼1

PgridðtÞ � TaE
gðtÞ þ

XJ

j¼1

fCDGðj; tÞ þ RDGðj; tÞ � CR
DGjðj; tÞ

"

þSUðj; tÞg þ
X

i

IPEði; tÞ þ IPRði; tÞ þ
X

b

CPEðb; tÞ þ CPRðb; tÞ

þ
X

h

RPEðh; tÞ þ RPRðh; tÞ
#

ð23Þ

The second part of cost objective function takes into account the
operational costs associated to each scenario (CF2(s)) and repre-
sents the cost associated to actual deployment of reserve in each
scenario as follows:

CF2ðsÞ ¼
XT

t¼1

XJ

j¼1

CsDGðj; t; sÞ þ
XB

b¼1

CPsðb; t; sÞ þ
XI

i¼1

IPsði; t; sÞ
"

þ
XH

h¼1

RPsðh; t; sÞ þ ENSðs; tÞ � VOLLðtÞ
#

ð24Þ

To implement a linear programming approach, a linear cost
function of DG is considered. The cost function CDG(j, t) is given by:

CDGðj; tÞ ¼ aj � uðj; tÞ þ bj � PDGðj; tÞ ð25Þ

where aj and bj are, respectively, cost coefficients of DG j. Accord-
ingly, the DG cost in each scenario (CsDG(j, t, s)) is calculated as
follows:

CsDGðj; t; sÞ ¼ aj � usðj; t; sÞ þ bj � PsDGðj; t; sÞ ð26Þ

The cost objective function of the stochastic energy and reserve
scheduling represents the total expected cost (Ecost) calculated as
follows:

Minimize,

Ecost ¼ CF1þ
XS

s¼1

pðsÞ � CF2ðsÞ ð27Þ

where p(s) is the probability of scenario s.

Constraints

The constraints of the stochastic optimization method are
described below:

Load balance

PgridðtÞ þ
XJ

j¼1

PDGðj; tÞ þ
XW
w¼1

PowðtÞ þ
XPV

pv¼1

PopvðtÞ þ gþ � PþB ðtÞ

� P�B ðtÞ

¼ PLðtÞ þ LossðtÞ �
X

i

ICEði; tÞ �
X

h

RCEðh; tÞ

�
X

b

CCEðb; tÞ 8 t ð28Þ

The energy balance at each scenario should also be satisfied.
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PgridðtÞ þ
XJ

j¼1

PsDGðj; t; sÞ þ
XW
w¼1

Ps
wðs; tÞ þ

XPV

pv¼1

Ps
pvðs; tÞ þ gþ

� PþB ðtÞ � P�B ðtÞ

¼ PLðtÞ þ Lossðs; tÞ �
X

i

ICsði; t; sÞ �
X

b

CCsðb; t; sÞ

�
X

h

RCEðh; t; sÞ � ENSðs; tÞ 8 t; s ð29Þ

where Ps
wðs; tÞ and Ps

pvðs; tÞ represent, respectively, the output power
of wind turbine w and of PV system pv in period t and scenario s .

Demand response participants’ constraints
The scheduled reserves offered by Industrial (ICR(t)), commer-

cial (CCR(t)) and residential (RCR(t)) customers at each hour are
defined as the additional load demand reduction of each customer
in each scenario if compared to its scheduled load demand reduc-
tion. The selection of the maximum value guarantees that the
scheduled load reserve can cover load reduction’s requirement in
all scenarios. In other words, the reserve provided by a customer
is the largest amount of load reduction deviation in all possible
scenarios away from the scheduled ones.

ICRði; tÞP ICsði; t; sÞ � ICEði; tÞ 8 s; i; t ð30Þ

CCRðb; tÞP CCsðb; t; sÞ � CCEðb; tÞ 8 s; b; t ð31Þ

RCRðh; tÞP RCsðh; t; sÞ � RCEðh; tÞ 8 s;h; t ð32Þ

The reactive power reduction of each load in the demand
response program is considered proportional to the active power
reduction according to the power factor of the considered load.

Non-renewable DG power and reserve constraints
The non-renewable distributed generation units have a maxi-

mum and minimum generating capacity beyond which it is not
feasible to generate due to technical reasons. Generating limits
are specified as upper and lower limits for the power outputs.

PDGðj; tÞ þ RDGðj; tÞ 6 Pmax
DGj :uðj; tÞ 8 j; t ð33Þ

PDGðj; tÞP Pmin
DGj :uðj; tÞ 8 j; t ð34Þ

The start up cost (SU(j, t)) of DG units is calculated as follows:

SUðj; tÞP Scj � ðuðj; tÞ � uðj; t � 1ÞÞ ð35Þ

SUðj; tÞP 0 ð36Þ

The spinning reserves (RDG(j, t)) provided by DGs is calculated as
follows:

RDGðj; tÞP PsDGðj; t; sÞ � PDG j; tð Þ 8 j; t; s ð37Þ

Regarding the Eq. (37), the DG power output deviation in each sce-
nario (PsDG) if compared to the scheduled one (PDG) is considered as
the DG reserve (RDG).

Battery charge and discharge constraints
The battery used in the MG cannot charge and discharge arbi-

trary. The following constraint should be considered for the sched-
uling program of the battery:

SOCðtÞ ¼ SOCðt � 1Þ þ g� � P�B ðtÞ � PþB ð38Þ

SOCMin 6 SOCðtÞ 6 SOCMax ð39Þ

Also the charge and discharge limit should be considered as follows:

P�B ðtÞ 6 P�B Max ð40Þ
PþB ðtÞ 6 PþB Max ð41Þ
XðtÞ þ YðtÞ � 1; X;Y 2 f0;1g ð42Þ
Power flow constraints

Pinjðn; tÞ ¼
XN

m¼1

Vðn; tÞj j Vðm; tÞj j Yn;m

�� �� cosðd m; tð Þ � d n; tð Þ

þ hn;mÞ 8 n; t ð43Þ
Qinj n; tð Þ ¼ �
XN

m¼1

Vðn; tÞj j Vðm; tÞj j Yn;m

�� �� sinðd m; tð Þ � d n; tð Þ

þ hn;mÞ 8 n; t ð44Þ

The other network operation constraints are as follows:

jSðn;m; tÞj 6 Smax
n;m ð45Þ
Vmin
n 6 Vðn; tÞ 6 Vmax

n ð46Þ
PsubðtÞ 6 Pmax
sub ð47Þ

where |S(n, m, t)| is the apparent power flow from node n to m; Smax
n;m

is the capacity of the line/cable between node n and node m; Vmax
n

and Vmin
n are maximum and minimum voltage magnitude at node

n, respectively; Psub(t) is the power output from the distribution
transformer.

Computation technique

Solving the proposed mixed integer nonlinear model is very
time consuming with available commercial solvers and in some
cases the problem is not converged. In order to make the proposed
model applicable for large MG with large number of consumers,
and overcome the difficulties related to solving nonlinear optimi-
zation problems with binary variables, a fast and robust optimiza-
tion technique known as Benders decomposition is implemented
in this paper [41].

The basic idea behind this method is to decompose the problem
into two simpler parts: the first part, called master problem, solves
a relaxed version of the problem and get values for a subset of the
variables. The second part, called sub-problem (or auxiliary prob-
lem), receives the values for the remaining variables while keeping
the first ones fixed, and uses these to generate benders cut for the
master problem. The master and auxiliary problems are solved
iteratively until no more cuts can be generated. The combination
of the variables found in the last master and sub-problem iteration
is the solution to the original formulation [43].

In the proposed model, the Benders technique divides the origi-
nal problem into a mixed integer linear programming (MILP) mas-
ter problem (Eqs. (23)–(42)) and a nonlinear programming (NLP)
sub-problem (Eqs. (43)–(47)). The master problem consists of 24-
h stochastic energy and reserve scheduling problem which are
solved by using the mixed-integer linear programming (MILP) sol-
ver CPLEX [43]. The sub-problem is an hourly radial MG power
flow with some fixed variables received from the master problem
solution which is solved using non-linear programming (NLP) sol-
ver CONOPT [44]. Both the master and the sub-problem are mod-
eled in GAMS on a Pentium IV, 2.6 GHz processor with 4 GB of
RAM. More details on benders decomposition and its features are
available in [45] and its implementation in optimal power flow
problem is described in [46].
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Case study

The proposed model was tested on a typical MG, in particular a
14-bus low voltage distribution test network is considered [47].
This test system is depicted in Fig 3. Three types of customers
are considered in the MG: one hundred of residential customers,
two commercial and two medium industrial customers. Aggre-
gated daily load curves for the three load types are shown in
Fig. 4 [48]. The maximum electricity demands of the aggregated
residential, commercial and industrial customers are 200 kW,
100 kW and 300 kW, respectively. A variety of Distributed Energy
Resources (DERs), such as two diesel generators, four directly cou-
pled wind turbine (WT), and ten photovoltaic (PV) arrays are
installed in the MG. It is assumed that all DGs produce active
Table 1
Technical and economical features of diesel generators.

Unit Cost coefficient Technical constraints

aj ($) bj ($/kW h) Startup ($) Pmin (kW) Pmax (kW)

DG1 0.5 0.053 0.15 30 300
DG2 0.8 0.068 0.21 40 400
power at a unity power factor. The technical aspects of two diesel
generators are shown in Table 1. The spinning reserve of DGs are
priced at a rate equal to 20% of their cost of the energy production.

The energy storage system consists of a battery with a capacity
of 30 kW which charging and discharging ramp rate limits for each
hour equal to 10 kW and 20 kW, respectively. Four wind turbines
are installed in the test system, they are of the same type: 30 kW
power rated with cut-in speed of 3 m/s, nominal speed of 12 m/s,
and cut-out speed of 25 m/s. Other specifications of the wind tur-
bines are given in [49]. Ten 10 kW PV systems are installed in the
test system: each of them is composed of 40 � 250 W solar panels
with g = 18.6% and SPV = 40 m2 [50]. The average hourly wind speed
is shown in Fig. 5, where k1 = 2 and c = vmean/0.9 m/s. The mean (l)
and standard deviation (r) of the hourly solar irradiance are taken
from [51] and shown in Table 2. The VOLL that is needed to esti-
mate the social cost caused by interruptions is taken as 1 $/kW h
[52]. The hourly energy price of Ontario electricity market on
Wednesday 23 January 2013 [53] has been assumed as shown in
Table 3. The industrial and commercial customers’ price and
amount of offers for load reduction are presented in Tables 4 and
5, respectively. It is assumed that fifty percent of residential cus-
tomers are willing to participate in DR programs during the sched-
uling horizon. In this case study, it has been assumed that each
house has a demand curtailment capability of 500 W. Also, the
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Fig. 5. Hourly mean wind speed.



Table 2
Mean and standard deviation of solar irradiance.

Hour l (kW/m2) r (kW/m2) Hour l (kW/m2) r (kW/m2)

6 0.019 0.035 13 0.648 0.282
7 0.096 0.110 14 0.590 0.265
8 0.222 0.182 15 0.477 0.237
9 0.381 0.217 16 0.338 0.204

10 0.511 0.253 17 0.190 0.163
11 0.610 0.273 18 0.080 0.098
12 0.657 0.284 19 0.017 0.032

Table 3
Hourly price of open market.

t 1 2 3 4 5 6

$/MW h 47.47 31.64 31.65 32.60 40.78 38.64
t 7 8 9 10 11 12
$/MW h 158.95 384.14 67.27 52.29 44.59 108.49
t 13 14 15 16 17 18
$/MW h 60.64 40.88 28.50 38.75 35.55 112.42
t 19 20 21 22 23 24
$/MW h 575.58 87.72 35.06 47.18 61.27 33.90

Table 4
Price-quantity offer package for industrial customers (IC).

Quantity (kW)
Price (cent/kW h)

IC1 0–5 5–10 10–50 50–70
7 15 29 41

IC2 0–5 5–20 20–30 30–60
5 7.5 31 49
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residential customers participating in a DR program have a dish-
washer and a washer dryer as shiftable appliances. The power con-
sumption of the dishwasher and the washer/dryer are assumed to
be 700 and 1200 W, respectively [53,54]. The dishwasher works
two times during each day for washing launch in the range
13:00–18:00 and dinner dishes in the range 19:00–23:00, while
each washing procedure needs one hour to wash dishes. The
washer/dryer has been scheduled by customers to work in the
range 17:00–24:00.

In order to analyze the effects of demand side participation in
the MG energy and reserve scheduling, the proposed model is
tested in the following two difference cases:

� Case 1: without considering DR programs.
� Case 2: considering DR programs.
Table 5
Commercial customers (CC) load reduction offer.

Hour CC1

Maximum reduction (kW) Price (cent/kW h)

8 15 6
9 9 7

10 5 4
13 7 10
14 7 50
15 21 60
16 7 8.5
17 10 6
18 4 10
19 15 20
20 28 30
21 10 30
22 3 30
23 6 30
Table 6 compares the operational cost of the MG with and with-
out considering DR programs. The costs of the main grid scheduled
energy, as well as of DGs scheduled energy and reserve, are com-
pared in these two cases. As shown in Table 6, this comparison
shows that the proposed model deploying DR program allows
obtaining lower total operation costs.

The scheduled energy and reserve in the case without consider-
ing DR programs are shown in Figs. 6 and 7, respectively. In this
case, all the required reserves are arranged by diesel generator
units. So, a part of the Diesel generators capacity should be kept
for covering renewable generation uncertainty. Also, for arranging
spinning reserve at some hours, the Diesel generators are forced to
be turned on at their minimum power output in order to be ready
(stand-by) to deliver spinning reserve.

In case 2, the operational planning is performed by considering
demand response programs. The energy scheduling and demand
participation are shown in Figs. 8 and 9, respectively. As customers
participate in energy and reserve scheduling, the grid and diesel
generators scheduled power changed. The demand participation
in reserve scheduling is shown in Fig. 10.

As shown in Fig. 9, the demand response during the hours with
high energy price is higher than during low energy price hours.
This means the MGO purchases load curtailment when the hourly
electricity price is high. Comparing Figs. 6, 8 and 10, it can be
observed that the reserve provided by customers is such that the
diesel generators are not forced to be turned on during all the
hours to provide the reserve.

The revenues of customers participating in DR programs are
shown in Table 7. Each residential customer has, in fact, a dish-
washer (700 W) and a washer/dryer (1200 W). The dishwasher is
scheduled to work at hour 15:00 and 21:00 for lunch and dinner
dishes, respectively. The washer dryer, is instead, scheduled to
work at 21:00 and 22:00. Accordingly, the saved money for the
dishwasher working in the scheduled periods is 1.68 and 8.82
cents for lunch and dinner, respectively, while for the washer/dryer
is 24 cents. The total saved money during the 24-h period is there-
fore equal to 34 cent.

The battery charge/discharge scheduling is shown in Fig. 11.
According to the hourly electricity price shown in Table 3, it’s
worth noting that the battery charging occurs during hours with
lower electricity prices and the battery discharge occurs during
hours with higher electricity prices. So, the battery charging and
discharging scheduling also determines a decrease of the MG oper-
ation costs.

In order to evaluate the effect of uncertainty of renewable gen-
erations on reserve scheduling, a specific scenario in which wind
and solar power shortages happen is analyzed. Let’s consider the
CC2

Maximum reduction (kW) Price (cent/kW h)

12 14
24 9
5 12
– –
– –
16 12
19 8
25 60
18 60
10 30
18 10
21 6
8 20
– –



Table 6
Scheduling cost comparison in two cases: with and without DR.

Cost ($) Main grid Diesel generators DR Total

Energy Energy Reserve Energy reduction Reserve

Without DR 318.81 94.16 12.12 – – 425.09
With DR 263.86 98.35 2.01 20.25 3.97 388.44
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Table 7
Customers revenue from participating in DR program.

Customers Industrial Commercial Residential

Revenue ($) 10.97 6.94 5.13

Fig. 11. Battery charge/discharge scheduling in case 2.
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scheduling results at hour 14; the predicted values for wind and
solar power in this period are 40 and 56 kW, respectively. Accord-
ing to Fig. 10, the total scheduled reserve for this period is 28 kW.
In real time (e.g. hour 14), it is assumed that the wind and solar
power suddenly changes and the available wind and solar power
are 30 and 42 kW, respectively. In this case, the operator calls
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reserve providers to deliver the scheduled reserve. The renewable
power shortage in this case is 24 kW that is compensated by 24 kW
of the 28 kW scheduled reserve capacity.

Conclusions

In this paper, an energy and reserve scheduling method for a
MG, using stochastic optimization was proposed. The approach
allows different type of customers participating in both energy
and reserve operational scheduling. Demand bidding/buyback pro-
grams, ancillary service market program and direct load control are
considered as demand response programs. Also, the uncertainties
of wind and solar generations have been modeled by related prob-
ability functions. The results show that customers’ involvement in
the energy and reserve scheduling reduces the total operational
costs of the MG. Moreover, while the customers provide reserve,
the diesel generator usage can be limited.
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