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A B S T R A C T

This research aims at scheduling a set of Batch Processing Machines (BPMs) used to test printed circuit boards in
an electronics manufacturing facility. The facility assembles and tests printed circuit boards (or jobs) of different
sizes. The BPMs can process a batch of jobs as long as the total size of all the jobs in a batch does not exceed the
machine’s capacity. The objective is to minimize the total weighted tardiness, thereby minimize the total penalty
incurred by the company for late deliveries. The problem under study is known to be NP-hard. Consequently, a
Particle Swarm Optimization (PSO) algorithm has been proposed. Likewise, a heuristic is proposed to simulta-
neously group the jobs into batches and schedule them on a machine. The effectiveness of the PSO algorithm is
examined using random instances and the results were compared to a differential evolution algorithm and a
commercial solver used to solve a mixed-integer linear program. Experimental results indicate that the PSO
algorithm is very competitive on smaller problem instances and reports better quality solutions in a short time on
larger problem instances.

1. Introduction

This research work was motivated by a practical application ob-
served at an electronics manufacturing and testing facility. The elec-
tronics manufacturer assembles and tests printed circuit boards for
different customers. Depending upon the application in which the
printed circuit boards are used, they vary in size. After assembling all
the components to the board, the board itself is subjected to a thermal
cycling test in an environmental stress screening chamber to identify
any early fallouts. The chamber is capable of testing multiple printed
circuit boards simultaneously as long as the boards can fit in the
chamber. When the boards are grouped for testing, the testing time of
the entire batch is dictated by the board that requires the longest testing
time. When customers ask the manufacturer to test, they provide the
minimum time for which the boards need to be tested. Consequently,
the manufacturer is allowed to test a board for more than what the
customer prescribed. However, if the manufacturer decides to test for a
longer period of time, their machines are overused for which the cus-
tomer does not pay the manufacturer. If not properly planned, poor
batching and scheduling can lead to costly late deliveries. The manu-
facturing facility has several chambers each with different capacity. The
scheduler’s responsibility is to form the batches and schedule them on

the chambers so that the company can avoid any penalties associated
with late deliveries. The printed circuit boards are referred to as jobs
and the chambers as machines, in this paper, to remain consistent with
the scheduling literature.

The chambers can process several jobs simultaneously. Such ma-
chines are referred to as batch-processing machines (BPMs) in the lit-
erature. In scheduling jobs on these machines, the jobs are first grouped
into batches and later the batches are scheduled on the machines. As
the jobs are grouped into batches, the start time and completion time of
all the jobs in a batch are identical. In the application under study, the
sizes of the jobs vary and the capacity of the machines are non-iden-
tical. The BPM can process a batch of jobs as long as the total size of all
the jobs does not exceed its capacity. BPMs occur frequently in manu-
facturing and service environments such as semiconductor burn-in
operations, environmental stress screening chambers, chemical pro-
cesses in tanks and kilns, wafer fabrication process, testing electrical
circuits, heat-treating furnaces in the metalworking industries, material
handling and transportation vehicles, food and pharmaceutical in-
dustries, among others.

The objective of the problem under study is to minimize total
weighted tardiness (i.e. total weighted tardy deliveries from the com-
pany’s perspective). The scheduling problem considered in this research
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is NP-hard, consequently a Particle Swarm Optimization (PSO) algo-
rithm is proposed and its performance is evaluated in the paper through
an experimental study.

The remainder of the paper is organized as follows. The scheduling
problem under study is described in Section 2. The literature reviewed
on BPM scheduling problems and PSO are presented in Section 3. A
mathematical formulation of the problem under study is presented in
Section 4. The proposed PSO algorithm and the experimental study
conducted is explained in detail in Section 5. Section 6 presents the
conclusions.

2. Problem description

Given a set J of n jobs and a set M of q non-identical BPMs, the
scheduling problem under study is to determine how the jobs should be
batched and scheduled on the BPMs to minimize the Total Weighted
Tardiness (TWT). The BPMs can process a batch of jobs as long as the
total size of all the jobs in a batch does not exceed the machine capacity
in which it is processed. Since there are only n jobs, the maximum
number of batches needed is also n (i.e. assuming one job per batch will
result in n batches). Once the processing of a batch is started, it cannot
be stopped prematurely.

The capacities (Sm) of the machines ∈m M( ) are non-identical. The
processing time (pj), size (sj), and weight or priority (wj) of each job

∈j J( ) are given. Each job can be processed on any BPM. Any job can be
grouped with any other job as this study does not consider job in-
compatibility. There is also no precedence relationship among the jobs.
All jobs in a batch are processed simultaneously. The processing time of
batch b in machine m is Pbm and it is equal to the longest processing
time of all the jobs that constitute the batch. Once a machine starts
processing a batch, no additional jobs can be introduced or removed
from the batch. Two interdependent decisions are to be made to sche-
dule the jobs on the machines. These decisions include (1) how to group
the jobs into batches and (2) how to schedule the batches formed on a
machine. These decisions cannot be separated as the composition of the
batch affects the batch processing time and, hence, the tardiness.

The problem under study can be denoted using the standard three
field notation in scheduling literature α|β|γ of Graham, Lawler, Lenstra,
and Kan (1979) as Pm|p-batch, sj, Sm|TWT. When the sizes of all the jobs
are equal and if there is only one machine, whose capacity is such that it
can process only one job at a time, then the problem under study re-
duces to a single (or discrete) machine scheduling problem with TWT as
the objective (i.e. 1||TWT). Since this reduced problem was proven to
be NP-hard by Lawler (1977), the problem under study is also NP-hard.
Commercial solvers may require prohibitively long computational time
to find optimal solutions for the problem under study (or in general any
NP-hard scheduling problem). Consequently, heuristics and metaheur-
istics are commonly developed to solve difficult to solve scheduling
problems. This research proposes a Particle Swarm Optimization (PSO)
algorithm to solve the problem under study and evaluates its perfor-
mance, in terms of solution quality and computational time, by com-
paring the results with a commercial solver used to solve the mathe-
matical formulation and a differential evolution algorithm (Amouie,
2014). A brief review of successful application of PSO to solve a variety
of scheduling problems can be found in the literature review section.

3. Literature review

Research work on scheduling batch processing machines has re-
ceived attention from a variety of fields (including metal working in-
dustry, chemical processing, and electronics manufacturing). One of the
pioneers in this field is Ikura and Gimple (1986) who presented efficient
algorithms to schedule a single batch processing machine. Later, sig-
nificant research efforts in the development of algorithms have been
proposed. Lee, Uzsoy, and Martin-Vega (1992) presented dynamic
programming based algorithms to minimize several performance

measures on a single batch processing machine. They also extended a
number of heuristics developed for parallel identical unit processing
machines to the case of parallel batch processing machines. Chandru,
Lee, and Uzsoy (1993) proposed heuristics to minimize the total com-
pletion time on identical parallel batch processing machines. Uzsoy
(1995) examined a number of problems related to the scheduling of
batch processing machines with incompatible job families. He devel-
oped efficient optimal algorithms to minimize makespan (Cmax), max-
imum lateness (Lmax) and total weighted completion time for static
problems where all jobs are available simultaneously. This work was
also extended to problems with parallel identical batch processing
machines. Problems with dynamic job arrivals were later considered
and an efficient optimal algorithm for minimizing Cmax and several
heuristics to minimize Lmax were provided. Brucker, Mikhail, and
Shafransky (1998) examined batch scheduling on parallel machines
with respect to deadlines. They showed that the problem is NP-hard for
two identical machines, unit processing times, unit set-up times, and a
common deadline. A family of approximation algorithms for the general
problem with unrelated machines was constructed and a new dynamic
rounding technique was developed. The computational complexity for
their algorithm was also examined. A review on scheduling with
batching, giving details of the basic algorithms, and referencing other
significant results is presented in Potts and Kovalyov (2000). Moreover,
various heuristics have been developed to schedule batch processing
machines. A list of these studies is Wang and Uzsoy (2002), Mönch,
Balasubramanian, Fowler, and Pfund (2003), Balasubramanian, Mönch,
Fowler, and Pfund (2004), Chang, Damodaran, and Melouk (2004),
Damodaran, Manjeshwar, and Srihari (2006), Malve and Uszoy (2007),
Kashan and Karimi (2008), Raghavan and Venkataramana (2009),
Damodaran, Velez-Gallego, and Maya (2009), Damodaran and Vélez-
Gallego (2012), Damodaran, Ghrayeb, and Guttikonda (2013) and Liu,
Ng, and Cheng (2014) among others. On-line algorithms for scheduling
on parallel batch processing machines have been proposed in Nong,
Cheng, and Ng (2008) and Yuan, Ng, and Cheng (2011) as well.

There are several studies that address tardiness based scheduling
objectives on parallel batch processing machines. Kurz (2003) discussed
results on the structure of job-to-batch assignments in an optimal
schedule for minimizing total weighted tardiness in the parallel batch
processing machine scheduling problem. Mönch et al. (2003) attempted
to minimize total weighted tardiness on parallel batch machines with
incompatible job families and unequal ready times of the jobs. They
proposed two different decomposition approaches. The first approach
forms fixed batches, then assigns these batches to the machines using a
genetic algorithm (GA), and finally sequences the batches on individual
machines. The second approach first assigns jobs to machines using a
GA, then forms batches on each machine for the jobs assigned to it, and
finally sequences these batches. Raghavan and Venkataramana (2009)
developed an efficient algorithm for solving the scheduling problem in
a system of parallel processors with the objective of minimizing total
weighted tardiness. They proposed the ant colony optimization ap-
proach for this problem. Liu, Ng, and Cheng (2009) considered the
problem of scheduling jobs with release dates on parallel unbounded
batch processing machines to minimize the maximum lateness. They
developed a polynomial-time approximation scheme for the problem to
minimize the maximum delivery completion time, which is equivalent
to minimizing the maximum lateness from the optimization viewpoint.
Chiang, Cheng, and Fu (2010) proposed a memetic algorithm with a
new genome encoding scheme to search for the optimal or near-optimal
batch formation and batch sequence simultaneously. They addressed
the problem of scheduling identical parallel batch machines with in-
compatible job families and dynamic job arrival. More recently,
Gokhale and Mathirajan (2014) considered unequal release times, in-
compatible job families, non-identical job sizes, heterogeneous batch
processors, and allowance for job splitting in the system of parallel
processing with the objective of minimizing total weighted tardiness.
They proposed heuristic algorithms to address this problem. Amouie
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(2014) considered the same problem under study in this research and
proposed a heuristic based on column generation and a Differential
Evolution (DE) meta-heuristic to minimize the weighted tardiness for
non-identical parallel batch processing machines.

PSO is a metaheuristic commonly used to solve machine scheduling
problems in the literature. Based on the metaphor of social interaction
and communication such as bird flocking and fish schooling, PSO was
first introduced to optimize various continuous nonlinear functions by
Kennedy and Eberhart (1995). Later, the algorithm was modified to
introduce a new parameter called inertia weight (Shi & Eberhart, 1998)
and reworked to operate on discrete binary variables
(Kennedy & Eberhart, 1997). PSO is particularly different from other
evolutionary-type methods because it does not use the filtering opera-
tion (such as crossover and/or mutation), and the members of the entire
population are maintained throughout the search procedure so that
information is socially shared among individuals to direct the search
towards the best position in the search space (Tasgetiren, Liang,
Sevkli, & Gencyilmaz, 2007). This algorithm has been successfully ap-
plied in several scheduling problem as the singe machine scheduling
(Anghinolfi& Paolucci, 2009), parallel machine scheduling
(Kashan & Karimi, 2009; Lin, 2013; Niu, Zhou, &Wang, 2010), flow
shop scheduling (Liao, Tseng, & Luarn, 2007; Pan, Tasgetiren, & Liang,
2008; Tang &Wang, 2013; Tasgetiren et al., 2007; Yang,
Chou, & Chang, 2014), job shop scheduling (Shao, Weiqi, Liu, & Zhang,
2013), and patient scheduling (Kanagaa & Valarmathi, 2012), among
others. However, in the literature, studies that have approached the
parallel batch processing machine scheduling problem using PSO al-
gorithms are limited. Damodaran, Diyadawagamage, Ghrayeb, and
Vélez-Gallego (2012) proposed a PSO algorithm for minimizing make-
span of non-identical parallel batch processing machines. Chang, Chen,
and Ma (2013) studied the scheduling problem of minimizing max-
imum lateness on parallel identical batch processing machines with
dynamic job arrivals and incompatible job families. Damodaran, Rao,
and Mestry (2013) addressed the multi-stage flow shop scheduling
problem. They proposed a PSO algorithm, with three different heur-
istics to update the particle’s positions, for scheduling batch processing
machines such that the makespan is minimized. To the best of our
knowledge, there is no published literature on the problem under study
with the characteristics considered in this research using the PSO al-
gorithm. The effectiveness of the proposed PSO algorithm is evaluated
in this research by comparing the solutions from the proposed PSO
approach with a DE algorithm proposed in Amouie (2014). The solution
quality is also evaluated by comparing the PSO solution with a com-
mercial solver used to solve the formulation presented in Section 4.

4. Mathematical formulation

The problem under study can be formulated as a mixed integer
linear program. The notation used in the formulation is presented
below.

Sets
∈j J{ } Set of jobs

∈m M{ } Set of machines
∈b B{ } Set of batches on each machine

Parameters
pj Processing time of job j

sj Size of job j
dj Due date of job j
wj Weight (priority) of job j
Sm Capacity of machine m
BigM A very large number
Decision variables
Pbm Processing time of bth batch scheduled on machine m
Cbm Completion time of bth batch scheduled on machine m

cj Completion time of job j
Tj Tardiness of job j
Xjbm ⎧

⎨⎩

j b m1, if job is assigned to the th batch processed on machine
0, otherwise

The mixed-integer linear formulation for the problem under study is
presented below.

∑
∈

w TMinimize
j J

j j
(1)

Subject to

∑ ∑ = ∈
∈ ∈

X j J1
b B m M

jbm
(2)

∑ ⩽ ∀ ∈ ∈
∈

s X s b B m M,
j J

j jbm m
(3)

⩾ ∀ ∈ ∈ ∈P p X j J b B m M, ,bm j jbm (4)

= ∀ ∈C P m Mm m1 1 (5)

= + ∀ ∈ ∈−C C P b B m M/{1},bm b m bm1, (6)

⩾ + − ∀ ∈ ∈c C BigM X b B m M(1 ) ,j bm jbm (7)

⩾ − ∈T c d j Jj j j (8)

⩾ ∀ ∈ ∈P b B m M0 ,bm (9)

⩾ ∀ ∈ ∈C b B m M0 ,bm (10)

⩾ ∈C j J0j (11)

∈ ∀ ∈ ∈ ∈X j J b B m M{0,1} , ,jbm (12)

⩾ ∈T j J0j (13)

The objective function (1) aims to minimize the total weighted tardi-
ness. Constraint set (2) ensures that each job is processed exactly in one
batch on one machine. Constraint set (3) ensures that the machine
capacity is not violated. It ensures that for each batch formed, the total
size of all the jobs in that batch does not exceed the capacity of the
machine in which it is scheduled for processing. Constraint set (4) en-
sures that the processing time of the bth batch on machine m is at least
equal to the longest processing time job in the batch. Constraint set (5)
determines the completion time of the first batch on each machine.
Constraint set (6) calculates the completion time of the bth batch on
machine m. Constraint set (7) ensures that the completion time of job j
is not less than the completion time of the batch in which it is pro-
cessed. Constraint set (8) helps to determine the tardiness of job j based
on its completion time and due date. The tardiness of a job cannot be
less than the difference between completion time of the job and its due
date. Constraint sets (9)–(13) impose the non-negativity and binary
restrictions on the decision variables.

Even in the most straightforward scheduling environment, TWT is a
difficult objective function to minimize (Lawler, 1977). Our experi-
mental study (see Section 6) shows that IBM ILOG CPLEX, a commercial
solver widely used to solve mixed integer linear programs, takes pro-
hibitively long CPU (or run) time to solve many of the problem in-
stances generated for the problem under study to optimality. Therefore,
a PSO algorithm is proposed in this research.

5. Proposed particle swarm optimization algorithm

PSO is one of the evolutionary optimization techniques. Unlike
other evolutionary-type methods, PSO maintain the members of the
entire population throughout the search procedure (Kennedy,
Eberhart, & Shi, 2001). PSO executes a population-based search proce-
dure in which the exploring agents, called particles, move around in a
multi-dimensional search space. The movement of the particle depends
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on its current position and the velocity. The velocity of the particle is
determined by a component moving the particle towards the best po-
sition so far achieved by the particle itself (i.e. particle’s own experi-
ence), and a component moving the particle towards the best solution
so far achieved in its restricted neighborhood (local neighborhood) or
by any in the whole swarm (global neighborhood). That is, in each
iteration, each particle tries to find a new position which will improve
its fitness value, based on its previous experience and also on the po-
sition of a particle which has the best known fitness value (Damodaran
et al., 2012).

5.1. Solution representation

Solution representation is very important in designing the PSO al-
gorithm. For the problem under study, each dimension represents a job

= …j n( 1, , ). The position of the ith particle (i.e. potential solution) with
respect to the jth job in tth iteration is represented as

= … …X X X X[ , , , , ]i
t

i
t

ij
t

in
t

1 (i.e. position information for n number of jobs). At
each iteration t, a set of p particles is maintained in the population (i.e.

= …n X X[ , , ]pop
t t

p
t

1 ). Each particle is assigned a continuous set of position
values. The smallest position value (SPV) rule is then used to convert
the continuous position values of the particle to a discrete job permu-
tation (Tasgetiren, Liang, Sevkli, & Gencyilmaz, 2004). The permuta-
tion sequence (based on SPV value) is described as = … …S s s s[ , , , , ]i

t
i
t

ij
t

in
t

1 ,
where sij

t is the assignment of job j of the particle i in the processing

order at iteration t. According to the SPV rule, the jobs with smaller
position values will be considered first for batching. A simple five job
instance is shown in Table 1 to illustrate the SPV rule. The smallest
position value is =X 0.8i

t
4 , so job 4 is assigned to the first position of the

job permutation according to the SPV rule. Job 5 is assigned to the
second position of the job permutation because of its second smallest
position value. In the same way, other jobs are assigned to their cor-
responding position of the job permutation according to their position
values.

Using the job permutation, obtained by applying the SPV rule, the
jobs are grouped and scheduled on the machines. A heuristic is

Fig. 1. An example to illustrate the batch forming heuristic.

Table 1
Solution representation of particle Xij

t for a five-job instance.

Jobs

1 2 3 4 5

pj 29 35 37 29 36

sj 14 6 19 39 20
dj 50 36 39 35 38
wj 8 2 5 8 1

Xij
t 2 4 1.33 0.8 1

sij
t 4 5 3 1 2
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proposed to simultaneously group the jobs into batches and schedule
them on a machine. In this heuristic, whenever a machine is free, the
unscheduled jobs are chosen based on the position values to form the
batch. Initially, all the machines are free, and the machine with the
largest capacity is chosen. One job at a time is considered from the job
permutation to form a batch such that the machine capacity is not
violated. If a job does not fit in any batch, the next job in the job per-
mutation is considered. As soon as a batch is full or if there are no more
jobs which can fit in the batch, then the batch is closed and a new batch
is opened on the machine. When a job can fit in more than one existing
open batch, then the job is assigned to a batch which results in mini-
mizing the partial total weighted tardiness. Fig. 1 illustrates the heur-
istic proposed to form batches and how these batches are scheduled.

The data shown in Table 1 is used to schedule two non-identical BPMs
with capacities 50 and 40.

5.2. Initial population

In PSO, a population of particles (npop) are maintained through all
the iterations. The first seven particles of the population are generated
by first developing a job permutation using simple rules such as the
earliest due-date (EDD) rule, the earliest weighted due-date (EWDD)
rule, the shortest processing time (SPT) rule, weighted shortest pro-
cessing time (WSPT) rule, minimum slack time (MST) rule, largest
processing time (LPT) rule, and apparent tardiness cost (ATC) rule.
Once the job sequence is determined, the heuristic discussed in Section

Fig. 2. Statistical analysis of the number of iterations parameter for small problem instances.

Fig. 3. Statistical analysis of the number of particles parameter for small problem instances.

Fig. 4. Statistical analysis of the cognitive coefficient parameter for small problem instances.

M. Hulett et al. Computers & Industrial Engineering 113 (2017) 425–436

429



5.1 is applied to develop a schedule. The different rules applied to
develop the job sequence is presented below:

• EDD – jobs are arranged in non-decreasing order of their due dates
(dj)

• EWDD – jobs are sequenced in non-decreasing order of (dj/wj)

• SPT – jobs are sequenced in non-decreasing of their processing times
(pj)

• WSPT – jobs are sequenced in the decreasing order of (wj/pj)

• MST – jobs are sequenced in non-decreasing order of (dj – pj)

• LPT – jobs are sequenced in decreasing order of (pj)

• ATC – jobs are sequenced in decreasing order of a ranking index

=
⎜ ⎟
⎛
⎝

− ⎞
⎠

− −

I l e( )j
w
p

j

j

dj pj l
Kp

max( ,0)

, which is a function of the time l at which

the machine becomes free as well as of the pj, the wj, and the dj of
the remaining jobs. K is the scaling parameter that can be de-
termined empirically, and p is the average of the processing times of
the remaining jobs.

Since these seven solutions are discrete job permutations, they
should be converted into seven particles with continuous position va-
lues. For a given job permutation Si

t, the position value of job is cal-
culated by Eq. (14). The continuous position values of the other
( −n 7)pop solutions are randomly generated according to the Eq. (15).

Fig. 5. Statistical analysis of the social learning parameter for small problem instances.

Fig. 6. Statistical analysis of the inertia weight parameter for small problem instances.

Fig. 7. Statistical analysis of the number of iterations parameter for large problem instances.
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Typically =X 0.0min and =X 4.0max and r1 is a uniform random number
between 0 and 1.The initial velocities for the particles are also gener-
ated by a random scheme that is similar to the position value equation
(see Eq. (16)), where = −V 4.0min and =V 4.0max and r2 is a uniform
random number between 0 and 1.

= ⎡
⎣⎢

…
− +

… ⎤
⎦⎥

X X
n

X
n j

X, ,
1

, ,
1i

t max max max

(14)

= + − ∗X X X X r( )ij min max min
0

1 (15)

= + − ∗V V V V r( )ij min max min
0

2 (16)

5.3. Particle updates

The behavior of a particle, in each iteration t, is a compromise
among three possible alternatives: following its current pattern of ex-
ploration; going back towards its best previous position; going back
towards the best historic value of all particles (Kashan & Karimi, 2009).
The velocity of each particle in tth iteration is updated using Eq. (17).

= + − + −− − − −V w V c r pbest X c r gbest X( ) ( )ij
t t

ij
t

ij ij
t

j ij
t1 1

1 1
1

2 2
1

(17)

where w is the inertia weight which is a constant value chosen by the
user to control the impact of the previous velocity on the current

Fig. 8. Statistical analysis of the number of particles parameter for large problem instances.

Fig. 9. Statistical analysis of the cognitive coefficient parameter for large problem instances.

Fig. 10. Statistical analysis of the social learning parameter for large problem instances.
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velocity. Inertia weight is updated using = −w α w.t t 1, where α is a
decrement factor. Parameters c1 and c2 are the cognitive and social
learning coefficients, while r1 and r2 are uniform random numbers be-
tween 0 and 1. pbestij is the best position associated with the best fitness
value for job j in particle i so far in the iterative search. It can be re-
presented as = … …Pbest pbest pbest pbest[ , , , , ]i i ij in1 . gbestj denotes the best
position value for job j corresponding to the particle with the best fit-
ness value in the entire population. It is defined as

= … …Gbest gbest gbest gbest[ , , , , ]j n1 .
Eq. (18) is used to generate the new position, where Xij

t is the new
position to be generated, and −Xij

t 1 is the position of the particle from
the previous iteration.

= +−X X Vij
t

ij
t

ij
t1

(18)

The pseudo code for the proposed algorithm can be summarized as

follows:

BEGIN
Initialize:

Global best ← + ∞f Gbest( )
Set iteration ←t 0
Create X1

0 using EDD rule, X2
0 using EWDD rule, X3

0 using SPT

rule, X4
0 using WSPT rule, X5

0 using MST rule, X6
0 using LPT rule,

and X7
0 using ATC rule

for =i particles1: 7
Convert the discrete job permutations into seven particles with

continuous position values (using Eq. (14)). Develop a schedule
using the heuristic discussed in Section 5.1 and
determine the TWT.

end for
for =i n8: pop

Create the remaining initial positions Xij
0 (using Eq. (15)) for

each particle i. Develop a schedule using the heuristic discussed in
Section 5.1 and determine the TWT.
end for
for =i n1: pop

Update personal best position Pbesti

Generate initial velocity Vij
0 (using Eq. (16))

if <f Pbest f Gbest( ) ( )i then
Update Gbest

end if
end for
while <t Fixed number of iterations or Gbest >0

do
for all particles ∈i I

Compute the velocity Vij
t for the tth iteration (using Eq.

Fig. 11. Statistical analysis of the inertia weight parameter for large problem instances.
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Fig. 12. Experimental results of IBM ILOG CPLEX vs. PSO with a due date adjustment
factor of 0.2.
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Fig. 13. Experimental results of DE vs. PSO with a due date adjustment
factor of 0.2.
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Fig. 16. Experimental results of IBM ILOG CPLEX vs. PSO with a due
date adjustment factor of 0.5.
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(17))
Update position Xij

t (using Eq. (18))
Develop a schedule using the heuristic discussed in Section

5.1 and
determine the TWT

if <f X f Pbest( ) ( )i
t

i then
Update Pbesti

end if
if <f Pbest f Gbest( ) ( )i then

Update Gbest
end if

end for
← +t t 1

end while
END

6. Computational experiments and results

Table 2 shows the parameters used to generate the problem in-
stances. Ten instances were generated for each combination of number
of jobs and due date adjustment factor γ( ). Values of γ close to 0 in-
dicate that the due dates are tight and values close to 1 indicate that the
due dates are loose. Altogether, there were 240 experimental runs to
test the solution quality of PSO. The proposed PSO algorithm was im-
plemented in Matlab 7.1. In order to evaluate the proposed PSO algo-
rithm, the solution obtained from PSO (i.e. TWT) and the run time
required to solve the problem instances were compared to a discrete
differential evolution algorithm (DE) and a commercial solver (i.e. IBM
ILOG CPLEX) that was used to solve the model presented in Section 4.
The percentage of improvement was calculated using Eq. (21). IBM
ILOG CPLEX required long run times to solve the problem instances
with 13, 15, 50, and 100 jobs; therefore, IBM ILOG CPLEX was allowed
to run for 1800 s for those instances, and the best known solution was
used for comparison.
where

= ⎡
⎣

⎛
⎝

− ⎞
⎠

⎛
⎝

+ ⎞
⎠

⎤
⎦

z μ R μ RDiscrete Uniform · 1
2

, · 1
2j

(19)

= − ∗μ T C(1 )· max (20)

∗Cmax is equal to the makespan obtained when Full Batch LPT rule is
applied. FBLPT rule is a polynomial time heuristic (Lee & Uzsoy, 1999).

=
∑ − ∑

∑
∈ ∈

∈
Improvement

w T w T

w T
%

[ (CPLEX) (PSO)]

(CPLEX)
j J j j j J j j

j J j j (21)

Two preliminary analyses were conducted to fine-tune the PSO para-
meters c1 and c2 (i.e. cognitive and social learning coefficients), inertia
weight (w), the population size (n )pop , and the number of iterations (I).
Three hundred twenty-four different experiments were conducted to
fine-tune the PSO parameters for small problem instances (i.e. 5, 7, 9,
11, 13, and 15 jobs) and one hundred sixty-two different experiments
were conducted for large problem instances (i.e. 50 and 100 jobs). The
Minitab 17 statistical software was used to perform the statistical
analyses. The levels for each one of the aforementioned PSO parameters
are provided in Table 3.

Figs. 2–6 present the results from the statistical tests conducted

Table 5
Average run time with a due date factor of 0.33.

Jobs 2 Machines 3 Machines 4 Machines

PSO CPLEX DE PSO CPLEX DE PSO CPLEX DE

5 4.8 0.6 12.48 2.1 0.3 13.46 2.2 0.3 14.89
7 9.2 1.1 13.14 4.3 0.6 13.73 5.2 1.5 15.54
9 8.5 8.3 14.61 10.0 2.1 14.05 6.3 1.0 16.57
11 15.5 270.0 15.48 8.3 6.7 14.13 11.9 0.9 16.95
13 18.0 1329.3 16.58 0.2 0.6 14.35 0.2 0.5 17.45
15 22.3 1656.9 18.17 5.6 180.5 14.60 0.2 0.6 18.17
50 255.7 1803.6 38.29 82.2 539.5 17.96 1.2 50.9 22.38
100 430.1 1800.3 66.96 223.4 1800.2 22.51 3.7 1512.6 26.80

Table 2
Parameters to generate the problem instances.

Parameters Description Values

n Number of jobs (problem size) 5, 7, 9, 11, 13, 15, 50, 100
m Number of machines 2, 3, 4
sm Machine capacity {40, 45, 50, 55}
Q Interval for job sizes =Q [1,30]
R Due date tightness =R 0.5
T Due data spread out =T 0.3
pj Job processing times Discrete uniform [0, 48]

wj Job priorities Discrete uniform [8, 48]
dj Job due dates +γ p z. ( )j j

γ Due date adjustment factor {0.2,0.33,0.5}

Table 3
Levels used to fine-tune PSO parameters.

Parameter Levels

c1 {0.5, 1, 2}
c2 {0.5, 1, 2}
w {0.6, 0.9, 1.2}
npop {100, 200}
I {100, 200}

Table 4
Average run time with a due date factor of 0.2.

Jobs 2 Machines 3 Machines 4 Machines

PSO CPLEX DE PSO CPLEX DE PSO CPLEX DE

5 7.9 0.5 12.56 8.1 0.4 13.33 8.7 0.8 14.20
7 10.4 5.6 13.27 11.8 6.7 13.54 12.5 79.8 14.63
9 13.6 84.4 14.73 15.9 266.8 13.95 9.8 417.4 15.46
11 17.7 1005.3 15.57 20.7 1345.9 14.17 22.8 1800.2 15.57
13 21.4 1799.0 16.53 23.8 1800.3 14.27 16.5 1136.7 15.71
15 26.2 1661.5 17.90 28.6 1800.5 14.58 24.0 1314.3 16.14
50 296.8 1806.5 37.83 284.7 1806.8 18.07 275.9 1750.0 19.93
100 170.9 1800.4 67.24 474.0 1800.6 22.53 477.5 1800.9 24.44

Table 6
Average run time with a due date factor of 0.5.

Jobs 2 Machines 3 Machines 4 Machines

PSO CPLEX DE PSO CPLEX DE PSO CPLEX DE

5 0.1 0.1 12.70 0.1 0.1 13.20 0.2 0.1 13.40
7 0.1 0.1 13.63 0.4 0.1 13.91 0.1 0.2 14.53
9 0.1 0.1 14.96 0.1 0.2 14.28 0.1 0.2 15.80
11 0.2 0.4 15.46 0.2 0.3 14.43 0.2 0.4 16.14
13 0.2 0.3 16.76 0.2 0.3 14.63 0.2 0.4 16.34
15 0.3 0.5 18.19 0.2 0.5 14.84 0.2 0.8 16.74
50 29.2 311.1 37.50 1.2 27.8 18.09 1.2 35.6 20.10
100 115.4 1800.4 66.29 3.8 1080.0 22.58 3.9 753.5 24.80
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while fine tuning the PSO parameters for smaller problem instances.
Based on the statistical analysis (i.e. analysis of variance), at a 0.05
level of significance, the factors affecting significantly the quality of the
solution are the cognitive coefficient c1, the cognitive and social
learning c ,2 and the inertia weight w. Considering the significance of the
factors and the % improvement, the best set of parameters for the
proposed PSO algorithm to solve smaller problem instances was se-
lected as =c 21 , =c 22 , =w 1.2, =n 200pop , and =I 100.

Figs. 7–11 show the statistical analysis for fine tuning PSO para-
meters for larger problem instances. According to the results, at a 0.05
level of significance, all the factors were affecting significantly the
quality of the solution. The PSO parameters were set to =c 11 , =c 12 ,

=w 0.6, =n 200pop , and =I 200 for 50 jobs and to =c 11 , =c 12 ,
=w 0.6, =n 200pop , and =I 100 for 100 jobs. The decrement factor α( )

was set to 0.99 for both small and large problem instances based on
several experiments that yielded better results when compared to other
values.

A similar statistical analysis was conducted in Amouie (2014) to
determine the best parameters for DE. This algorithm is controlled by
three main parameters: scaling parameter F, selection probability CR
(also known as pcr), and population size nPop. A set of experiments
were designed considering four different levels for parameters CR and
nPop, and three different levels for F. Based on interaction plots and
main effects plots for factors, the best set of parameters was selected as
F = 0.2, CR = 0.1, and nPop = 4 0.

Figs. 12 and 13 summarize the average% of improvement in TWT
with due date adjustment factor of 0.2 for instances with 2, 3, and 4
machines. From Fig. 12 it can be inferred that IBM ILOG CPLEX reports
better solutions than the PSO algorithm for smaller problem instances.
However, on 100-job problem instances the solutions from PSO out-
performed the solutions from IBM ILOG CPLEX (on average between
78.3% and 95.1%). When PSO is compared with DE (see Fig. 13), the
proposed PSO algorithm consistently outperforms DE on almost all
problem instances.

Figs. 14 and 15 present the results with a due date factor of 0.33. On
2-machine problem instances the results from IBM ILOG CPLEX were
superior to the PSO results for 5, 7, 11, 13, 15, and 50-job problem
instances, whereas PSO outperformed IBM ILOG CPLEX by 90.3% on
100-job problem instances. On 3- and 4-machine problem instances the
results from PSO matched the IBM ILOG CPLEX results for 5, 7, 9, 11,
13, 15, and 50-job problem instances. On 100-job problem instances
PSO outperformed IBM ILOG CPLEX (on average between 80 and
100%). The PSO results were far better than DE on almost all problem
instances with 2, 3, and 4 machine settings (see Fig. 15).

Figs. 16 and 17 present the results with a due date factor of 0.5. The
PSO algorithm and IBM ILOG CPLEX yielded same results for 5, 7, 9, 11,
13, 15, and 50-job problem instances. PSO outperformed IBM ILOG
CPLEX by at least 10% on 100-job problem instances. In Fig. 17 it can
be seen that the proposed PSO algorithm outperforms DE on 11, 13, 15,
50, and 100-job problem instances with two machines and yields same
results with three and four machines.

In terms of the experimental run times, the IBM ILOG CPLEX solver
was restricted to run for a maximum of 1800 s (30 min) as it failed to
converge to optimum even after running for several hours for larger
problem instances (i.e. 50 and 100 jobs). It is evident from Tables 4–6
that PSO required shorter run time when compared to IBM ILOG
CPLEX. On average, DE was much faster than PSO and IBM ILOG
CPLEX. However, PSO required shorter run time compared to DE on 4
machine problem instances with 0.33 and 0.5 due date adjustment
factors. Furthermore, the quality of the solution from PSO is far su-
perior to DE on almost all the problem instances. The commercial solver
took lesser time for five, seven and some nine-job instances. However,
as the problem instances grew in size (with respect to the number of
jobs) IBM ILOG CPLEX took longer times.

7. Conclusions

This paper considered a real world scheduling problem commonly
observed in electronics manufacturing facilities. The problem under
study required jobs to be grouped to process them as a batch on a set of
non-identical batch processing machines. As the problem under study
was NP-hard, a PSO algorithm was proposed. The PSO algorithm was
implemented in Matlab and an experimental study was conducted to
evaluate its performance – in terms of solution quality and run time.
The proposed PSO algorithm’s results were compared with a DE algo-
rithm and a commercial solved used to solve the model discussed in
Section 4.

On smaller problem instances with due date adjustment factors of
0.2 and 0.33, the commercial solver outperformed PSO algorithm.
However, on 100-job problem instances the PSO algorithm out-
performed the commercial solver. On smaller problem instances with
due date adjustment factor of 0.5, the solutions obtained from PSO and
the commercial solver were comparable. However, PSO solution was
better than the commercial solver on the 100-job problem instances.
The PSO algorithm consistently outperformed DE approach on all
problem instances. When comparing the three approaches based on run
time, the commercial solver quick to solve five and seven-job instances.
However, as the problem instances grew in size (with respect to the
number of jobs) the solver required longer run times. The PSO algo-
rithm reported good quality solution for large problem instances in
acceptable time. Our experimental study helps to conclude that the
commercial solver is sufficient to solve smaller problem instances and
the proposed PSO approach can be applied for solving more challenging
problem instances with larger number of jobs. The scheduler at the
electronics manufacturing facility, who motivated this study, was re-
quired to schedule 100–200 jobs per day on 3 or 4 machines. Our ex-
perimental study indicates that the proposed PSO algorithm is effective
to solve large problem instances (i.e. 100 or more jobs). Consequently,
the study was useful to convince the company to adopt the PSO algo-
rithm to schedule their batch processing machines on a daily basis. Our
research group is now working with the company to extend the PSO
algorithm to consider jobs with non-zero release times and other ob-
jectives such as minimizing the number of tardy jobs.

References

Amouie, M. (2014). Minimizing total weighted tardiness for non-identical parallel batch
processing machines. DeKalb, Illinois: Northern Illinois University.

Anghinolfi, D., & Paolucci, M. (2009). A new discrete particle swarm optimization ap-
proach for the single-machine total weighted tardiness scheduling problem with se-
quence-dependent setup times. European Journal of Operational Research, 193, 73–85.

Balasubramanian, H., Mönch, L., Fowler, J., & Pfund, M. (2004). Genetic algorithm based
scheduling of parallel batch machines with incompatible job families to minimize
total weighted tardiness. International Journal of Production Research, 42(8),
1621–1638.

Brucker, P., Mikhail, K., & Shafransky, Y. (1998). Batch scheduling with deadlines on
parallel machines. Annals of Operations Research, 83, 23–40.

Chandru, V., Lee, C., & Uzsoy, R. (1993). Minimizing total completion on a batch pro-
cessing machine with job families. Operation Research Letters, 13(2), 61–65.

Chang, P.-Y., Damodaran, P., & Melouk, S. (2004). Minimizing makespan on parallel
batch processing machines. International Journal of Production, 42(19), 4211–4220.

Chang, J. -L., Chen, Y., Ma, X. -P. (2013). A hybrid particle swarm optimization algorithm
for parallel batch processing machines scheduling. In 13th UK workshop on compu-
tational intelligence (UKCI), Guildford, 9–11 Sept. 2013.

Chiang, T.-C., Cheng, H.-C., & Fu, L.-C. (2010). A memetic algorithm for minimizing total
weighted tardiness on parallel batch machines with incompatible job families and
dynamic job arrival. Computers & Operations Research, 37(12), 2257–2269.

Damodaran, P., Diyadawagamage, D., Ghrayeb, O., & Vélez-Gallego, M. (2012). A particle
swarm optimization algorithm for minimizing makespan of nonidentical parallel
batch processing machines. International Journal of Advanced Manufacturing
Technology, 58, 1131–1140.

Damodaran, P., Ghrayeb, O., & Guttikonda, M. (2013). GRASP to minimize makespan for
a capacitated batch-processing machine. Journal of Advanced Manufacturing
Technology, 68, 407–414.

Damodaran, P., Manjeshwar, P., & Srihari, K. (2006). Minimizing makespan on a batch
processing machine with non-identical job sizes using genetic algorithms.
International Journal of Production Economics, 103(2), 882–891.

Damodaran, P., Rao, A., & Mestry, S. (2013). Particle swarm optimization for scheduling

M. Hulett et al. Computers & Industrial Engineering 113 (2017) 425–436

435

http://refhub.elsevier.com/S0360-8352(17)30454-0/h0005
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0005
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0010
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0010
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0010
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0015
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0015
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0015
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0015
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0020
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0020
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0025
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0025
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0030
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0030
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0040
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0040
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0040
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0045
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0045
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0045
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0045
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0050
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0050
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0050
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0055
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0055
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0055
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0060


batch processing machines in a permutation flowshop. The International Journal of
Advanced Manufacturing Technology, 64, 989–1000.

Damodaran, P., & Vélez-Gallego, M. (2012). A simulated annealing algorithm to minimize
makespan of parallel batch processing machines with unequal job ready times. Expert
Systems with Applications, 39, 1451–1458.

Damodaran, P., Velez-Gallego, M., & Maya, J. (2009). A GRASP approach for makespan
minimization on parallel batch processing machines. Journal of Intelligent
Manufacturing, 22(5), 767–777.

Gokhale, R., & Mathirajan, M. (2014). Minimizing total weighted tardiness on hetero-
geneous batch processors with incompatible job families. The International Journal of
Advanced Manufacturing Technology, 70, 1563–1578.

Graham, R., Lawler, E., Lenstra, J., & Kan, A. (1979). Optimization and approximation in
deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics,
287–326.

Ikura, Y., & Gimple, M. (1986). Efficient scheduling algorithms for a single batch pro-
cessing machine. Operations Research Letters, 5(2), 61–65.

Kanagaa, E., & Valarmathi, M. (2012). Multi-agent based patient scheduling using particle
swarm optimization. Procedia Engineering, 30, 386–393.

Kashan, A., & Karimi, B. (2008). Scheduling a single batch-processing machine with ar-
bitrary job sizes and incompatible job families: An ant colony framework. Journal of
the Operational Research Society, 59, 1269–1280.

Kashan, A. H., & Karimi, B. (2009). A discrete particle swarm optimization algorithm for
scheduling parallel machines. Computers & Industrial Engineering, 56, 216–223.

Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. In IEEE international
conference on neural networks, Piscataway, NJ, USA.

Kennedy, J., Eberhart, R. (1997). A discrete binary version of the particle swarm algo-
rithm. In Proceedings of IEEE conference on systems, man, and cybernetics. Piscataway,
NJ, USA.

Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm intelligence. vol. 1, San Francisco:
Kaufmann700–720.

Kurz, M. (2003). On the structure of optimal schedules for minimizing total weighted
tardiness on parallel batch-processing machines. In IIE annual conference.

Lawler, E. (1977). A “Pseudopolynomial” algorithm for sequencing jobs to minimize total
tardiness. Annals of Discrete Mathematics, 1, 331–342.

Lee, C.-Y., & Uzsoy, R. (1999). Minimizing makespan on a single batch processing ma-
chine with dynamic job arrivals. International Journal of Production Research, 37(1),
219–236.

Lee, C.-Y., Uzsoy, R., & Martin-Vega, L. (1992). Efficient algorithms for scheduling
semiconductor burn-in operations. Operations Research, 40(4), 764–775.

Liao, C.-J., Tseng, C.-T., & Luarn, P. (2007). A discrete version of particle swarm opti-
mization for flowshop scheduling problems. Computers & Operations Research, 34,
3099–3111.

Lin, Y.-K. (2013). Particle swarm optimization algorithm for unrelated parallel machine
scheduling with release dates. Mathematical Problems in Engineering, 2013, 9.

Liu, L., Ng, C., & Cheng, T. (2009). Scheduling jobs with release dates on parallel batch
processing machines. Discrete Applied Mathematics, 157, 1825–1830.

Liu, L., Ng, C., & Cheng, T. (2014). Scheduling jobs with release dates on parallel batch
processing machines to minimize the makespan. Optimization Letters, 8(1), 307–318.

Malve, S., & Uszoy, R. (2007). A genetic algorithm for minimizing maximum lateness on
parallel identical batch processing machines with dynamic job arrivals and in-
compatible job families. Computers & Operations Research, 34, 3016–3028.

Mönch, L., Balasubramanian, H., Fowler, J. W., Pfund, M. E. (2003). Minimizing total
weighted tardiness on parallel batch process machines using genetic algorithms. In
Operations research proceedings.

Niu, Q., Zhou, T., & Wang, L. (2010). A hybrid particle swarm optimization for parallel
machine total tardiness scheduling. International Journal of Advanced Manufacturing
Technology, 49, 723–739.

Nong, Q., Cheng, T., & Ng, C. (2008). An improved on-line algorithm for scheduling on
two unrestrictive parallel batch processing machines. Operations Research Letters,
36(5), 584–588.

Pan, Q.-K., Tasgetiren, M. F., & Liang, Y.-C. (2008). A discrete particle swarm optimiza-
tion algorithm for the no-wait flowshop scheduling problem. Computers & Operations
Research, 35, 2807–2839.

Potts, C., & Kovalyov, M. (2000). Scheduling with batching: A review. European Journal of
Operational Research, 120, 228–249.

Raghavan, N., & Venkataramana, M. (2009). Parallel processor scheduling for minimizing
total weighted tardiness using ant colony optimization. The International Journal of
Advanced Manufacturing Technology, 41, 986–996.

Shao, X., Weiqi, L., Liu, Q., & Zhang, Q. (2013). Hybrid discrete particle swarm optimi-
zation for multi-objective flexible job-shop scheduling problem. The International
Journal of Advanced Manufacturing Technology, 67, 2885–2901.

Shi, Y., Eberhart, R. (1998). A modified particle swarm optimizer. In Evolutionary com-
putation proceedings. IEEE World Congress on Computational Intelligence.

Tang, L., & Wang, X. (2013). An improved particle swarm optimization algorithm for the
hybrid flowshop scheduling to minimize total weighted completion time in process
industry. IEEE Transactions on Control Systems Technology, 18(6), 1303–1314.

Tasgetiren, M. F., Liang, Y. -C., Sevkli, M., Gencyilmaz, G. (2004). Particle swarm opti-
mization algorithm for single machine total weighted tardiness. In Proceedings of the
2004 congress on evolutionary computation, CEC2004.

Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm
optimization algorithm for makespan and total flowtime minimization in the per-
mutation flowshop sequencing problem. European Journal of Operational Research,
177, 1930–1947.

Uzsoy, R. (1995). Scheduling batch processing machines with incompatibles job families.
International Journal of Production Research, 33(10), 2685–2708.

Wang, C., & Uzsoy, R. (2002). A genetic algorithm to minimize maximum lateness on a
batch processing machine. Computers & Operations Research, 29, 1621–1640.

Yang, C.-I., Chou, J.-H., & Chang, C.-K. (2014). Hybrid taguchi-based particle swarm
optimization for flowshop. Arabian Journal for Science and Engineering, 39,
2393–2412.

Yuan, J., Ng, C., & Cheng, T. (2011). Best semi-online algorithms for unbounded parallel
batch scheduling. Discrete Applied Mathematics, 159(8), 838–847.

M. Hulett et al. Computers & Industrial Engineering 113 (2017) 425–436

436

http://refhub.elsevier.com/S0360-8352(17)30454-0/h0060
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0060
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0065
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0065
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0065
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0070
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0070
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0070
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0075
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0075
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0075
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0080
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0080
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0080
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0085
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0085
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0090
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0090
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0095
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0095
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0095
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0100
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0100
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0115
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0115
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0125
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0125
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0130
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0130
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0130
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0135
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0135
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0140
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0140
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0140
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0145
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0145
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0150
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0150
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0155
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0155
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0160
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0160
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0160
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0170
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0170
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0170
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0175
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0175
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0175
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0180
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0180
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0180
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0185
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0185
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0190
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0190
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0190
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0195
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0195
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0195
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0205
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0205
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0205
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0215
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0215
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0215
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0215
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0220
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0220
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0225
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0225
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0230
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0230
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0230
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0235
http://refhub.elsevier.com/S0360-8352(17)30454-0/h0235

	Scheduling non-identical parallel batch processing machines to minimize total weighted tardiness using particle swarm optimization
	Introduction
	Problem description
	Literature review
	Mathematical formulation
	Proposed particle swarm optimization algorithm
	Solution representation
	Initial population
	Particle updates

	Computational experiments and results
	Conclusions
	References




