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   Abstract –This paper proposes a novel high-conversion-ratio 
high-efficiency isolated bidirectional DC–DC converter. The 
proposed converter is operated in the step-down stage. The DC-
blocking capacitor in the high-voltage side is used to reduce the 
voltage on the transformer, and the current-doubler circuits are 
used in the low-voltage side to reduce the output current ripple. 
The energy stored in the leakage inductance is recycled to the 
DC-blocking capacitor. When the proposed converter is operated 
with a step-up function, dual current-fed circuits on the low-
voltage side are used to reduce the current ripples and conduction 
losses of the switches in the low-voltage side. The voltage-doubler 
circuit in the high-voltage side increases the conversion ratio. The 
proposed converter can achieve high conversion with high 
efficiency. Experimental results based on a prototype 
implemented in the laboratory with a high voltage of 200 V, low 
voltage of 24 V, and output power of 200 W verify the 
performance of the proposed converter. The peak efficiency of 
the proposed converter in the high-step-down and high-step-up 
stages is 96.3% and 95.6%, respectively.  

 

Index Terms – High conversion ratio, current-fed converter, 
voltage-doubler circuit, current-doubler rectifier, synchronous 
rectifier. 

I.  INTRODUCTION 

The extensive use of fossil fuels and nuclear energy has caused 
major pollution and safety problems, such as the nuclear 
accident in a power plant in Fukushima, Japan. Therefore, to 
reduce environmental damage, many countries have 
committed to developing green energy, such as solar and wind 
energy [1]–[8]. In addition to improvements in the conversion 
efficiency of green energy, the storage and reuse of excess 
energy have become important research topics. Thus, high-
step-up/step-down converters have become important research 
subjects. Converters with high conversion ratios can be used in 
energy storage systems, high-intensity discharge lamps, high 
power applications, communication power, solar power, and 
uninterruptible power supplies. These converters are designed 
by combining switched-capacitor cells, coupled-inductor 
techniques, and Z source techniques [9]–[21].  
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Compared with high-step-up and high-step-down converters, 
bidirectional high-conversion-ratio converters can significantly 
reduce the overall system volume, cost, and number of 
components. Non-isolated bidirectional topologies with high 
conversion ratios have been presented in lectures [18]–[27]. 
These non-isolated bidirectional converters can be constructed 
by using coupled inductors [18]–[21], switched-capacitor 
techniques [22]–[25], and cascade techniques [26], [27] to 
obtain a high conversion ratio with an appropriate duty ratio. 
However, non-isolated converters fail to meet the safety 
standards of galvanic isolation in many applications. 
Numerous isolated bidirectional converters with high-
conversion-ratio applications have been presented in many 
papers [28]–[39]. Bidirectional isolated DC–DC converters 
derived from push–pull topologies [28], full-bridge topologies 
[29]-[31], [42], and series-resonant full-bridge [32] converters 
can increase the conversion ratio by adjusting the turns ratio of 
the transformer. However, a high turns ratio increases the 
transformer size. The conversion ratio of bidirectional DC–DC 
converters can be improved with current-doubler techniques 
[33], [34], voltage-doubler techniques [35], [36], Z source [37], 
and cascade techniques [38], [39] to increase the conversion 
ratio.  
 

 
 
Fig. 1 Configuration of a distributed generation system. 

 
The distributed generation system shown in Fig. 1 indicates 
that bidirectional dc-dc converter plays a very important role 
between energy storage device (Battery) and voltage bus.  The 
function of the bidirectional converter is to transfer energy 
between the battery and the DC bus.  The energy generated 
from the renewable source(s) will be transferred to the dc 
voltage bus. Load(s) may be connected with dc voltage bus 
and ac utility grid. Battery is used to provide energy to dc 
voltage bus when the grid voltage outage and renewable 
energy sources can't provide enough energy to the load 
connected with dc voltage bus. This paper proposes a high-
conversion-ratio isolated bidirectional DC–DC converter for 
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distributed generation applications, the topology configuration 
of which is shown in Fig. 2.  The circuit includes high voltage 
VHV; high-voltage capacitor C1 and DC-blocking capacitor C2; 
four active switches S1, S2, S3, and S4; a transformer T1; two 
inductors L1 and L2; a low-voltage capacitor C3; and low 
voltage VLV. The gate signals of S1 and S2 in the high-step-
down stage are interlaced by a phase shift of 180 degrees, and 
S3 and S4 are synchronous rectifiers. In the high-step-up mode, 
the gate signals of S3 and S4 are greater than 50% and are 
controlled by a phase shift of 180 degrees. The gate signals of 
S1 and S2 are smaller than 50% and are controlled by a phase 
shift of 180 degrees with synchronous rectifiers [40],[41]. The 
function of the proposed bidirectional converter is like the 
“double voltage step-down” instead of LLC mode. (When S1 is 
turned on, the voltage on the primary winding is reduced by 
half because of the capacitor C2. Thus the voltage gain can be 
reduced by half by adding C2 in series with the half bridge 
converter.) This converter is controlled with duty control on 
frequency control so that the effect of leakage inductance can 
be neglected. The proposed cannot achieve ZVS on the high 
voltage side power switches but the low voltage side 
synchronous rectifier can achieve ZVS. Thus, the turn ratio 
can be reduced as compared with the traditional half bridge 
converter. The size of the transformer can be decreased by 
using a voltage-doubler circuit with low turns ratio, so that a 
lower turns ratio is needed on the secondary side. The features 
of the proposed converter are as follows:  1) It meets the safety 
standards of galvanic isolation; 2) The size of the transformer 
can be reduced; 3) The energy in the leakage inductance of the 
transformer can be recycled; 4) It has a high conversion ratio; 
5) The low-voltage side has low ripple current; 6) 
Synchronous rectifiers improve system efficiency. 

 

 
Fig. 2. Schematic of proposed high-conversion-ratio isolated bidirectional 
DC–DC converter. 

II. OPERATING PRINCIPLES OF PROPOSED CONVERTER  

To simplify the analysis of the proposed converter, the 
following are assumed over one switching period: 
1) C1, C2, and C3 are large enough; thus, VLV, VC2, and VHV 

are regarded as constant. 
2) All active switches are regarded as ideal. 
3) L1 is equal to L2. 
4) The turns ratio of transformer T1 is n = N1/N2, and the 

leakage inductance LLk is considered in the analysis, 
where N1 and N2 are the winding turns in high-voltage and 
low-voltage sides, respectively. 

5) The parasitic inductors, capacitors, and resistors of circuit 
traces are ignored. 
 

(A) Step-Down Stage 

The key waveforms of the proposed converter in the high-
step-down stage in continuous-conduction mode (CCM) 
operation are illustrated in Fig. 3. The main switches are S1 
and S2; S3 and S4 are the synchronous rectifiers. The 
operating mode of the proposed converter can be divided 
into ten operating modes over one switching period:   

1) Mode I [t0, t1]: During this interval, S1 and S3 are on, 
while S2 and S4 are off. The equivalent circuit is shown in 
Fig. 4(a). The current iLk increases linearly. VHV and C1 
provide energy to L1, C3, and VLV via T1. C2 is charged by 
VHV and C1. The energy stored in L2 is transferred to C3 
and VLV. Switch current iS1 is equal to iLk, and switch 
current iS3 is equal to iL1+iL2. The voltage across S2 is 
equal to VHV, and that across S4 is equal to (VHV−vC1)/n. 
This operating mode ends when S1 is turned off at t = t1. 
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Fig. 3. Key waveforms of proposed isolated bidirectional converter in high-
step-down stage during CCM operation. 
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2) Mode II [t1, t2]: During this interval, S3 is on while S1, S2, 

and S4 are off. The equivalent circuit is illustrated in Fig. 
4(b). The leakage current iLk flows into the anti-parallel 
diode of S2 to charge C2 and to clamp the maximum 
voltage spike of S1 such that the energy stored in Llk can 
be recycled. The energy stored in L2 continues to release 
energy to C3 and VLV. The energy stored in L1 is released 
through the anti-parallel diode of S4 to C3 and VLV. This 
operating mode ends when iLk is equal to zero at t = t2. 

3) Mode III [t2, t3]: During this interval, S3 is on, while S1, S2, 
and S4 are off. The equivalent circuit is illustrated in Fig. 
4(c). The voltages across S1 and S2 are VHV/2. The voltage 
across winding N2 is equal to zero. The anti-parallel diode 
of S4 conducts to achieve zero-voltage switching (ZVS) 
condition. Through this diode flows inductor current iL1 to 
release energy to C3 and VLV, which continuously receive 
the energy stored in L2. This operating mode ends when 
S4 is turned on at t = t3. 

4) Mode IV [t3, t4]: During this interval, S1 and S2 are off, 
while S3 and S4 are on. The equivalent circuit is illustrated 
in Fig. 4(d). S4 achieves ZVS when it is turned on with the 
synchronous rectifier and thus improves system efficiency. 
The energy stored in L1 and L2 is simultaneously 
delivered to C3 and VLV. Switch currents iS3 and iS4 are 
equal to iL1 and iL2. Current iLt equals iL1+iL2; thus, its 
ripple current can be reduced. This operating mode ends 
when S3 is turned off at t = t4. 

5) Mode V [t4, t5]: During this interval, S4 is on, while S1, S2, 
and S3 are off. The equivalent circuit is illustrated in Fig. 
4(e). The energy stored in L1 and L2 is simultaneously 
released to C3 and VLV. This operating mode ends when S2 
is turned on at t = t5. 

6) Mode VI [t5, t6]: During this interval, S2 and S4 are on, 
while S1 and S3 are off. The equivalent circuit is illustrated 
in Fig. 4(f). C2 provides energy to N2 through T1 to release 
energy to L2, C3, and VLV. Switch current iS2 is equal to 
−iLk, and iS4 is equal to iL1+iL2. The voltage across S1 is 
equal to VHV, and that across S3 is equal to (VHV−vC1)/n. 
The energy stored in L1 is transferred to C3 and VLV. This 
operating mode ends when S2 is turned off at t = t6. 

7) Mode VII [t6, t7]: During this interval, S1, S2, and S3 are off 
while S4 is on. The equivalent circuit is illustrated in Fig. 
4(g). The leakage current iLk flows into the anti-parallel 
diode of S1 to charge VHV and C1 and to clamp the 
maximum voltage spike of S2 such that the leakage energy 
can be recycled. The energy stored in L1 continues to 
release energy to C3 and VLV. The energy stored in L2 is 
released through the anti-parallel diode of S3 to C3 and 
VLV. This operating mode ends when iLk is equal to zero at 
t = t7. 

8) Mode VIII [t7, t8]: During this interval, S1, S2, and S3 are 
off, while S4 is on. The equivalent circuit is illustrated in 
Fig. 4(e). The anti-parallel diode of S3 conducts to achieve 
ZVS condition. Through this diode flows inductor current 
iL2 to release energy to C3 and VLV, which continuously 
receive the energy stored in L1. This operating mode ends 
when S3 is turned on at t = t8. 

9) Mode IX [t8, t9]: During this interval, S1 and S2 are off, 
while S3 and S4 are on. The equivalent circuit is illustrated 

in Fig. 4(d). S3 achieves ZVS when it is turned on with the 
synchronous rectifier. The energy stored in L1 and L2 is 
simultaneously delivered to C3 and VLV. This operating 
mode ends when S4 is turned off at t = t9. 

10) Mode X [t9, t10]: During this interval, S1, S2, and S4 are off, 
while S3 is on. The equivalent circuit is illustrated in Fig. 
4(c). The energy stored in L1 and L2 is released via S3 and 
the anti-parallel diode of S4, respectively, to release energy 
to C3 and VLV. This operating mode ends when S1 is 
turned on at t = t10. 
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(d) Modes IV and IX 
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Fig. 4. Equivalent circuits of isolated bidirectional DC–DC converter in high-
step-down stage over one switching period during CCM operation: (a) mode I, 
(b) mode II, (c) modes III and X, (d) modes IV and IX, (e) modes V and VIII, 
(f) mode VI, and (g) mode VII.  
 

(B) Step-Up Stage 

The key waveforms of the proposed converter in the high-
step-up stage in CCM operation are shown in Fig. 5. The main 
switches are S3 and S4; S1 and S2 are the synchronous rectifiers. 

The operating mode of the proposed converter can be divided 
into ten operating modes over one switching period: 
1) Mode I [t0, t1]: During this interval, S3 and S4 are on while 

S1 and S2 are off. The equivalent circuit is shown in Fig. 
6(a). The energy stored in LLk is released via the anti-
parallel diode of S1 to VHV and C1. Therefore, the leakage 
energy can be recycled, and the voltage of S2 is clamped at 
VHV. VLV and C3 simultaneously provide energy to L1 and 
L2. This operating mode ends when iLk is equal to zero at t 
= t1. 

2) Mode II [t1, t2]: During this interval, S3 and S4 are on, 
while S1 and S2 are off. The equivalent circuit is shown in 
Fig. 6(b). VLV and C3 continue to provide energy to L1 and 
L2. iL1 and iL2 are equal to iLt/2. Thus, the conduction 
losses of L1 and L2 and S3 and S4 are reduced, and system 
efficiency improves. The voltage across T1 is equal to zero, 
and that across S1 and S2 is equal to VHV/2. iL1 is equal to 
iS4, and iL2 is equal to iS3. C1 releases energy to VHV. This 
operating mode ends when S3 is turned off at t = t2.  
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Fig. 5. Key waveforms of proposed isolated bidirectional converter in high-
step-up stage in CCM operation. 
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3) Mode III [t2, t3]: During this interval, S4 is on, while S1, S2, 

and S3 are off. The equivalent circuit is shown in Fig. 6(c). 
L1 stores energy from VLV and C1. The anti-parallel diode 
of S2 conducts to achieve ZVS conduction. The energy 
stored in L2 is released to C2 through T1. iS4 is equal to 
iL1+iL2. The voltage across S3 is equal to VLV+vL2, that 
across the magnetizing inductance Lm is equal to 
n(VLV+vL2), that across C2 is equal to n(VLV+vL2), and that 
across S1 is equal to VHV. C1 continues to release energy 
to VHV. This operating mode ends when S2 is turned on at 
t = t3.  

4) Mode IV [t3, t4]: During this interval, S2 and S4 are on, 
while S1 and S3 are off. The equivalent circuit is shown in 
Fig. 6(d). S2 achieves ZVS when it is turned on with the 
synchronous rectifier, and thus improves system 
efficiency. L1 continues to store energy from VLV and C3. 
The energy stored in L2 continues to be released to C2 
through T1. C1 continues to release energy to VHV. This 
operating mode ends when S2 is turned off at t = t4. 

5) Mode V [t4, t5]: During this interval, S4 is on, while S1, S2, 
and S3 are off. S2 achieves ZVS when it is turned off. The 
equivalent circuit is shown in Fig. 6(c). L1 continues to 
store energy from VLV and C3. The energy stored in L2 
continues to be released to C2 via T1 and the anti-parallel 
diode of S2. C1 continues to release energy to VHV. This 
operating mode ends when S3 is turned on at t = t5. 

6) Mode VI [t5, t6]: During this interval, S3 and S4 are on 
while S1 and S2 are off. The equivalent circuit is shown in 
Fig. 6(e). The energy stored in LLk is released via the anti-
parallel diode of S2 to C2. Therefore, the leakage energy 
can be recycled, and the voltage of S1 is clamped at VHV. 
VLV and C3 provide energy to L1 and L2. This operating 
mode ends when iLk is equal to zero at t = t6. 

7) Mode VII [t6, t7]: During this interval, S3 and S4 are on, 
while S1 and S2 are off. The equivalent circuit is shown in 
Fig. 6(b). L1 and L2 simultaneously store energy from VLV 
and C3. This operating mode ends when S4 is turned off at 
t = t7. 

8) Mode VIII [t7, t8]: During this interval, S3 is on, while S1, 
S2, and S4 are off. The equivalent circuit is shown in Fig. 
6(f). The anti-parallel diode of S1 conducts to achieve 
ZVS condition. The voltage across S2 is equal to VHV, and 
that across S4 is equal to vL1+VLV. Energy from VLV and 
C3 is stored by L2. The energy stored in L1 is released to 
N2. C2 and winding N1 are linked in series to release 
energy to C1 and VHV. This operating mode ends when S1 
is turned on at t = t8. 

9) Mode IX [t8, t9]: During this interval, S1 and S3 are on, 
while S2 and S4 are off. The equivalent circuit is shown in 
Fig. 6(g). S1 achieves ZVS when it is turned on with the 
synchronous rectifier. The voltage across S4 is VLV+vL1, 
and that across S2 is VHV. L2 continues to store energy 
from VLV and C3. The energy stored in L1 continues to be 
released to N2. C2 and N1 are linked in series to release 
energy to C1 and VHV. This operating mode ends when S1 
is turned off at t = t9. 

10) Mode X [t9, t10]: During this interval, S3 is on, while S1, S2, 
and S4 are off. The equivalent circuit is shown in Fig. 6(f). 
S1 achieves ZVS when it is turned off. L2 continues to 

store energy from VLV and C3. C2 and N1 are linked in 
series to release energy to C1 and VHV. This operating 
mode ends when S4 is turned on at t = t10. 
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Fig. 6. Equivalent circuits of isolated bidirectional converter in high-step-up 
stage over one switching period during CCM operation: (a) mode I, (b) modes 
II and VII, (c) modes III and V, (d) mode IV, (e) mode VI, (f) modes VIII and 
X, and (g) mode IX. 
 

III. STEADY-STATE ANALYSIS OF PROPOSED CONVERTER 

To simplify the steady-state condition analysis of the high-
step-down and high-step-up stages in CCM, the leakage 
inductance LLk of the transformer is neglected because the 
magnetizing inductance Lm of the transformer is much larger 
than its leakage inductance. 

(A) Step-Down Stage 

The turned-on period (DTs) and turned-off period 
((1−D)Ts) of S1 and S2 in one switching period are defined as 
shown in Fig. 3. 

When S1 and S2 are the switches used in the turned-on 
period (DTs), inductor voltages vL1 and vL2 and high-capacitor 
voltage vC2 are given by  
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When S1 and S2 are the switches not used in the turned-

off period ((1−D)Ts), vL1 and vL2 for this interval are 
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The application of the principle of volt-second balance to L1 
and L2 yields  
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Based on (4), the voltage gain is 
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From (5), the voltage gain of the isolated bidirectional full-
bridge converters [30], [31] are compared with that of the 
proposed bidirectional converter in the high-step-down stage 
in CCM operation with a turns ratio of n=1.5 (Fig. 7). The 
voltage gain of the proposed converter is smaller than that of 
other converters [30], [31] when the duty cycle D is lower than 
0.5. 
The voltage stresses of all four switches are given by  
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Fig. 7. Comparison of voltage gains of the isolated bidirectional full-bridge 
converters [30], [31] and of proposed bidirectional converter in high-step-
down stage in CCM operation.  
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When the proposed converter is operated in boundary-
conduction mode, the peak currents of iL1 and iL2 and the 
average currents of IL1, IL2, and ILV can be expressed as 
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The boundary normalized magnetizing-inductance time 
constant in high-step-down stage is defined as 
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The solution of (11) yields the following expression of τStep-

down: 
 

DdownStep  1 . (12) 

 

Fig. 8 illustrates the relationship of τStep-down and D at n=1.5. If 
the normalized magnetizing-inductance time constant τL is 
higher than τStep-down in the high-step-down stage, the converter 
is operated in CCM; otherwise, it is operated in 
discontinuous-conduction mode (DCM). 
 

 
Fig. 8. Boundary-conduction mode of proposed isolated bidirectional 
converter in high-step-down stage with n=1.5.  

 (B) Step-Up Stage 

The turned-on period (DTs) and turned-off period 
((1−D)Ts) of S3 and S4 in one switching period are defined as 
shown in Fig. 5. 

When S3 and S4 are the switches used in the turned-on 
period (DTs), vL1, vL2, and vC2 are given by  
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When S4 (S3) is the switch not used in the turned-off 
period ((1−D)Ts) and S3 (S4) is the switch used in the turned-on 
period (DTs), vL1, vL2, N2, and vLm for this interval are 
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The application of the principle of volt-second balance to L1 
and L2 yields  
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The solution of (18) explains the voltage gain as follows: 
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Equation (18) can be rewritten as 
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From (20), the high-step-up voltage gain can be explained as
  

D

n

V

V
M

LV

HV
CCM 


1

2 . (21) 

 
By (21), the voltage gains of the isolated bidirectional full-
bridge converters [30], [31] and of the proposed isolated 
bidirectional converter in CCM operation with a turns ratio of 
n=1.5 are compared in Fig. 9. The voltage gain of the 
proposed converter is greater than that of the isolated 
bidirectional full-bridge converter [30], [31] in the high-step-
up stage. 

Proposed Bidirectional Converter 

Bidirectional Converters [30], [31]
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Fig. 9. Comparison of voltage gains of bidirectional converters [30], [31] and 
proposed bidirectional converter in high-step-up stage in CCM operation.  

 
   The voltage stresses of all four switches are given by  
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When the proposed converter is operated in boundary-

conduction mode, the peak currents of iL1 and iL2 and the 
average currents of IL1, IL2, ILV, and IHV can be expressed as 
 

s
LV

s
LV

LL DT
L

V
DT

L

V
ii

21
21  , (24) 

222 11
21

LVLV
s

LV
LL

I

L

V
DT

L

V
II  , (25) 

HVLV I
D

n
I




1

2 , (26) 

sLVsLV
HV

HV DTV
nL

D
DTV

nL

D

R

V
I

21 2

1

2

1 



 .  (27) 

 
Equation (27) can be rewritten as 
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The boundary normalized magnetizing-inductance time 
constant in the high-step-up stage is defined as 
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The solution of (29) yields the following expression of τStep-up: 
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Fig. 10 illustrates the relationship between τStep-up and D at 
n=1.5. If the normalized magnetizing-inductance time 
constant τH is higher than τStep-up in the high-step-up stage, the 
converter is operated in CCM; otherwise, it is operated in 
DCM. 

 
Fig. 10. Boundary-conduction mode of proposed bidirectional converter in 
high-step-up stage at n=1.5.  

IV. DESIGN AND EXPERIMENT OF PROPOSED CONVERTER 

The laboratory prototype sample is implemented to 
demonstrate the practicability of the proposed converter. The 
system specifications and components are as follows: 
1) VLV: 24 V 
2) VHV: 200 V  
3) operating frequency: 50 kHz 
4) maximum output power Po: 200 W 
5) C1 and C2: 22 μF/450 V, metallized polypropylene film 

capacitors 
6) S1 and S2: IXFH120N25T  
7) transformer: PQ3535, core PC-40, N1:N2=1.5:1, Lm=2 mH, 

leakage inductance=0.38 μH 
8) S3 and S4: FDP075N15A 
9) L1 and L2: 780 μH 
10) C3: 2200 μF/63 V, aluminum capacitor 
The experimental results in high-step-down stage at full load 
Po = 200 W and VHV = 200 V are shown in Fig. 11. Figs. 11(a) 
and 11(b) show the waveforms of vgs1, vS1, vC2, iS1, vgs2, vS2, 
and iS1. vgs1 and vgs2 indicate that the gate signals of S1 and S2 
are interlaced by a phase shift of 180 degrees. The voltage 
across C2 is about 100 V. The voltage spike in S1 and S2 is 
about 225 V. Thus, low voltage stresses and low on-resistance 
Ron switches can be selected. iS1 is similar to iS2. Figs. 11(c) 
and 11(d) show the waveforms of vgs3, vS3, iS3, vgs4, vS4, and iS4. 
vgs3 and vgs4 are gate signals with synchronous rectifiers. vgs3, 
vS3, vgs4, and vS4 indicate that S3 and S4 achieve ZVS when 
they are turned on. The voltage spike on S3 and S4 is a little bit 
high -- about 120 V. S3, S4 utilize MOSFETs with voltage 
ratings of 150 V. The current in S3 and S4 is increased by the 
anti-parallel diode reverse-recovery effect. Fig. 11(e) shows 
the waveforms of VLV, iN2, and iLt. The low-side voltage VLV is 
24 V. The current frequency of iLt is double the operating 
frequency of the system. iLt indicates that the current is 
reduced.  

The measured results in high-step-up stage at full load Po 

= 200 W and VLV = 24 V are shown in Fig. 12. Figs. 12(a) and 
12(b) show the waveforms of vgs4, vS4, iS4, iLt, vgs3, vS3, and iS3. 
vgs4 and vgs3 are phase shifts of 180 degrees with an overlap, 
which ensure that the inductor energy can be delivered to N1. 
The voltage increase in S3 and S4 is about 75 V. The current 
frequency of iLt is 100 kHz. Fig. 12(c) shows the waveforms of 
iL1 and iL2. The interleaved inductor currents iL1 and iL2 reduce 
the ripple current of iLt. Furthermore, C3 enables the selection 
of a low capacitor value. Fig. 12(d) shows the waveforms of 
vgs2, vS2, and iS2. vgs2 is a gate signal with a synchronous 
rectifier. vgs2 and vS2 indicate that S2 achieves ZVS when it is 
turned on and turned off. Fig. 12(e) shows the waveforms of 
VHV, vC2, and iLk. VHV is 200 V, and the capacitor voltage vC2 is 
about 100 V.  
Figure 13 shows the measured conversion efficiency of the 
proposed converter in the high-step-down stage. The 
maximum efficiency is 96.3% with a synchronous rectifier. 
Compared with the conversion efficiency, the efficiency with 
the synchronous rectifier is higher than that with the anti-
parallel diode. Thus, the synchronous rectifier can significantly 
improve efficiency. Figure 14 shows the measured conversion 
efficiency of the proposed converter in the high-step-up stage. 
Fig. 14 shows that the synchronous rectifier efficiency is 
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higher than the anti-parallel diode efficiency, and that the peak 
efficiency is 95.6% in the high-step-up stage. S1~S4 will suffer 
from high current spikes, which occur due to the recovery 
problem of the switches’ anti-parallel diodes, so the switch-
current waveforms presented in the experiments are slightly 
different with the operating waveforms in Figures 3 and 5. The 
proposed bidirectional converter can be applied in photovoltaic 
stand alone system, energy storage system and emergency 
power systems. The output voltage of a single PV module is 
24~40 V.  A dc-dc converter will be used to converter the PV 
output voltage to dc bus voltage and also achieving maximum 
power tracking.  The dc bus voltage is usually designed as 
200V for the 110 Vac power system. This is why we selected 
the dc bus voltage (VHV) is 200V and battery voltage (VLV) is 
24 V. In this system, the battery needs to be charged or 
discharged depending on the PV power generation and the 
load requirement. The low voltage (battery voltage) with 24 V 
can prove the high efficiency of the proposed converter.  If the 
battery voltage is selected at 36 V or higher voltage level, the 
system efficiency will be higher because the conduction losses 
will be reduced. The proposed converter is suitable for 
portable energy storage systems, emergency power systems 
and micro DC grid systems. The power-loss analysis of the 
proposed converter in step-down mode at 200 W is shown in 
Table 1. The measured efficiency is 96.3 % and the calculated 
result is 98.1 %, because the calculated results ignore the 
reverse-recovery effect of the anti-parallel diode, iron, and 
resistance of circuit traces. 

 
 

 Time : 5 s/div

iS1 : 10A/div

vS1 : 200V/div

vgs1 : 20V/div

vC2 : 100V/div

 
(a) 

 
(b) 
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(c) 

 

 
 (d) 

 

 Time : 5 s/div

iLt : 5A/div

iN2 : 10A/div

VLV : 20V/div

 
(e) 

Fig. 11. Experimental waveforms of high-step-down stage at Po=200 W. 
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Fig. 12. Experimental waveforms of high-step-up stage at Po=200 W. 

 

 
Fig. 13. Experimental conversion efficiency of proposed isolated bidirectional 
converter in high-step-down stage. 

 

 
Fig. 14. Experimental conversion efficiency of proposed isolated bidirectional 
converter in high-step-up stage. 
 

TABLE 1. POWER-LOSS ANALYSIS OF THE PROPOSED CONVERTER IN STEP-
DOWN MODE AT FULL LOAD (200 W). 

Components Parameters Loss (W) % 

Conduction Switching
Switches S1 and S2 22 mΩ 

0.13 1.58 
0.86

Resistance of 
Transformer T1 

25 mΩ 0.13 0.07

Resistances of 
Inductors L1 and L2

35 mΩ 1.3 0.65

Conduction Switching
Switches S3 and S4 7.5 mΩ 

0.43 0.19 
0.31

Total Loss  3.76 1.9

 

V. CONCLUSIONS 

In this paper, a high-efficiency and high-conversion-ratio 
isolated bidirectional DC–DC converter with a low 
transformer turns ratio is presented. The size of the capacitor 
on the voltage side can be decreased by using current-doubler 
circuits with low current ripples. The synchronous-rectifier 
circuit can achieve zero voltage switching and improve system 
efficiency. The operating principles, steady-state analysis, and 
experimental results are discussed in detail. The efficiencies of 
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the proposed converter with synchronous rectifiers and anti-
parallel diodes are compared in the experimental results. The 
full-load efficiency in the step-down and step-up stages is near 
96.3% and 95.6%, respectively. 
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