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When preparing for the widespread adoption of Electric Vehicles (EVs), an important issue is to use a
proper EVs’ charging/discharging scheduling model that is able to simultaneously consider economic
and environmental goals as well as technical constraints of distribution networks. This paper proposes
a multi-objective operational scheduling method for charging/discharging of EVs in a smart distribution
system. The proposed multi-objective framework, based on augmented e-constraint method, aims at
minimizing the total operational costs and emissions. The Vehicle to Grid (V2G) capability as well as
the actual patterns of drivers are considered in order to generate the Pareto-optimal solutions. The Bend-
ers decomposition technique is used in order to solve the proposed optimization model and to convert
the large scale mixed integer nonlinear problem into mixed-integer linear programming and nonlinear
programming problems. The effectiveness of the proposed resources scheduling approach is tested on
a 33-bus distribution test system over a 24-h period. The results show that the proposed EVs’ charg-
ing/discharging method can reduce both of operation cost and air pollutant emissions.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Electric Vehicles (EVs) have often been suggested as a helpful
solution to reduce oil consumption and air pollutant emissions
where concerns about oil security and availability and the negative
environmental impact of petroleum-based transportation systems
increase. Due to energy efficiency and environmental advantages
over conventional vehicles, the future of EVs seems promising
[1,2]. However, the integration of EVs in electric power systems
poses new technical, economic, policy and regulatory challenges
[3]. Heavy intermittent electrical loads due to EVs’ charging/dis-
charging may, in fact, create bottlenecks and limit the capacity
supply thus, exposing the power system to severe security risks.

On the other hand, EVs can offer benefits due to their flexibility
in charging and discharging time span and introduce a useful con-
cept called ‘‘Vehicle-to-Grid’’ (V2G) capability [4]. V2G is defined
as the option to return the stored electrical energy to the grid from
the vehicle’s battery. In other words, an EV can act as a controllable
load as well as a distributed storage device. Being connected to the
electricity network when not in use, the battery of an EV can sup-
ply power during peak load times and thus increase the reliability
of the grid [5,6]. As a result, taking into account the total number of
available EVs in a locality, distributed storage capacity provided by
V2G can have a relevant impact on distribution system operation.

EV owners may also make money by using the stored energy in
their vehicles; the battery of EV can discharge as well as charge
according to the owner convenience. Moreover, V2G capability
provides some valuable power system services such as regulation,
spinning reserve, and peaking capacity [4]. Conversely, the power
system operation and control, in which a large number of EVs ap-
pears as additional electricity demand, can be significantly chan-
ged from the present ones without EVs [7,8], also thanks to the
future smart grid that can activate the V2G capability where EVs
are intelligently utilized as Distributed Energy Resources (DERs).
Although EVs have lots of economical and environmental advanta-
ges, they will introduce further complexity to planning and opera-
tion of smart grids. So, the integration of EVs into power system
requires new methods and more computational resources [7–9].

In [10], a day-ahead energy resource scheduling model for
smart grids including a large number of EVs has been proposed.
The paper introduced a new demand response model provided
by EVs in which the vehicle owners could offer energy reduction
or shifting by changing their trip plan. In [11], a real-time load
management method for coordinating the charging of multiple
Plug-in Electric Vehicles (PEVs) in a smart distribution system
has been proposed. The real-time control strategy is based on the
minimization of total costs of generated energy and energy losses.
In [12], an economic dispatch model considering the uncertainties
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Nomenclature

Acronyms
EV Electric Vehicle
PHEV Plug-in Hybrid Electric Vehicle
PEV Plug-in Electric Vehicle
DER Distributed Energy Resource
DG Distributed Generator
DSO Distribution System Operator
TSO Transmission System Operator
ISO Independent System Operator
PLCC Power Line Carrier Communication
DC Data Concentrator
MDM Meter Data Management
DMS Distribution Management System
EVMS Electric Vehicle Management System
MINLP Mixed-Integer Nonlinear Programming
MILP Mixed-Integer Linear Programming
NLP Nonlinear Programming

Sets
t index of optimization periods, t = 1, 2, . . . , 24
v index of electric vehicles, v = 1, 2, . . . , Nv

i index of DGs, i = 1, 2, . . . , I
f index of objective functions, f = cost, emission
k index of Pareto-optimal solutions, k = 1, . . . , K
n, m index of buses, n, m = 1, 2, . . . , N

Variable: (1) Binary variable
u(i, t) on/off status (1/0) of the non-renewable DG i in period t
X(v, t) binary variable of EV v related to discharge state in per-

iod t
Y(v, t) binary variable of EV v related to charge state in period t

(2) Continuous variable
Fcost total expected cost ($)
FEmission total emission (kg)
Pgrid(t) scheduled hourly power from the main grid in period t

(kW)
CDG(i, t) hourly cost of DG i in period t ($)

SU(i, t) start up cost of DG i in period t ($)
PDG(i, t) active output power of DG i in period t (kW)

PDch
EV ðv; tÞ power discharge of EV v in period t (kW)

PCh
EV ðv; tÞ power charge of EV v in period t (kW)

EmDG total emission of DGs (kg)
Emgrid total emission of the main grid (kg)
Loss(t) total power losses of distribution network during period

t (kW)
Es(v, t) state of charge related to EV v in period t (kW h)
Pinj(n, t) net injected active power to node n (p.u.)
Qinj(n, t) net injected reactive power to node n (p.u.)
V(n, t) voltage at node n in period t (p.u.)

Parameters
Dt total hourly demand in period t (kW)

Cv ;t
Dch discharge price of EV v in period t ($/kW h)

Egrid;t
CO2

average emission rate of the main grid generation sys-
tem in period t (kg/kW h)

EDG;i
CO2

emission rate of DG i (kg/kW h)

Xt hourly electricity price of open market ($/kW h)

Pmin
i minimum output power limits of DG i (kW)

Pmax
i maximum output power limits of DG i (kW)

Sci start-up cost of DG i ($)
ai, bi, ci cost coefficients of DG i

gC
v grid-to-vehicle charging efficiency coefficient for EV v

gD
v vehicle-to-grid discharging efficiency coefficient for EV v

Ev ;t
trip required energy for traveling of EV v in period t (kW h)

PMax
Dch;v maximum power discharge of EV v (kW)

PMax
Ch;v maximum power charge of EV v (kW)

Wmax
v maximum level of state of charge for EV v (kW h)

Wmin
v minimum level of state of charge for EV v (kW h)

Emax
Bat;v maximum capacity of battery of EV v (kW h)

Yn,m element (n, m) of the admittance matrix
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of EVs and wind generators has been presented. Optimal charge/
discharge of EVs was carried out using probability distributions
of the charge/discharge behaviors of EVs as well as Rayleigh prob-
ability distribution function for wind speed. However, the emission
reduction target was not taken into account in the model. A new
load management strategy for optimal charging of Plug-in Hybrid
Electric Vehicles (PHEVs) to reduce peak load has been proposed
in [13]. Implementing a game theory approach, PHEV’s charging
has been seen as a game among all users with the objective of min-
imizing the cost of charging for car owners’. However, the V2G
capability has not taken into account in the paper.

A planning method for optimal utilization of the power system
infrastructure during off-peak times for charging PHEVs has been
proposed in [14]. The proposed planning model has focused on
environmental and economic issues with the purpose to integrate
large number of PHEVs into the electric grid, considering the most
relevant planning uncertainties. In [15], the role of EVs in the de-
mand side management and the grid balancing for the UK electric-
ity network has been assessed. Results showed that electric vehicle
owners would benefit from flexible charging and selling tariffs,
with the majority of revenue derived from V2G participation in
balancing markets. In order to handle the power challenges in
presence of EVs, a multi-objective Distributed Generators (DGs)
allocation method has been proposed in [16]. The method im-
proved the voltage profile and minimized distribution power losses
considering time-dependent load of a parking lot of EVs.

In [17], a method for planning the charging of EVs including grid
constraints has been presented. The method establishes an individ-
ual charging plan for each vehicle and avoids distribution network
congestion while satisfying the requirements of the individual vehi-
cle owners. New methodology for estimating the electric energy
and power consumption by light-duty EVs have been proposed in
[18]. It has been assumed that a certain percentage of PEVs has been
operated as pure electric vehicles in charge mode; however, this
percentage was totally dependent on travel patterns and can
change from day to day. In [19], a unit commitment model with
V2G using the particle swarm optimization in order to reduce costs
and emissions in smart grids has been presented. A heuristic meth-
od for minimizing the EV charging cost in response to time-of-use
price in a regulated market has been presented in [20]. The results
demonstrated that peak demand can be reduced by using the pro-
posed control strategy for EVs. In [21], an analytical method which
is able to model the electric load behavior of multitudes of EVs has
been presented. A simplified stochastic model has been established
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based on non-homogeneous semi-Markov processes for the grid
connectivity of electric vehicles over a 24-h period.

In this paper, a multi-objective approach for electric vehicle
scheduling in a smart distribution grid is presented in which the
environmental and economic issues as well as various driving pat-
terns of EVs owners are taken into account. The innovative contri-
butions of the proposed method are highlighted as follows:

� To include a novel conceptual model for an electric vehicle
management system that can be applied to real cases.
� To consider various types of EV owners’ driving patterns in the

charging/discharging scheduling method.
� To evaluate the emission reduction target in the EVs charging/

discharging scheduling in a smart distribution grid.

The rest of the paper is organized as follows: Section 2 describes
the electric vehicle management system conceptual model. In Sec-
tion 3, the resource scheduling is formulated. Some simulation re-
sults are described in Section 4 and finally the concluding remarks
are presented in Section 5.

2. Proposed system architecture

In the proposed model, the Distribution System Operator (DSO)
is responsible for resources scheduling in the distribution network.
The interactions between DSO and its upstream regulator (Inde-
pendent/Transmission System Operator (ISO/TSO)) as well as its
downstream actors and components are shown in Fig. 1 [22–25].

2.1. Advanced metering infrastructure

The smart metering system architecture of a real pilot project is
considered for the proposed distribution network configuration
[26] as shown in Fig. 2. It consists of:

� Smart meters with Power Line Carrier Communication (PLCC),
installed at the customer premises. They may be single phase
or three phase smart meters. Also, the smart meter of medium
and large customers could directly be connected to the utility
by using General Packet Radio Service (GPRS). Moreover, the
electric parameters of each feeder in the secondary part of the
main substation (63/20 kV) as well as those in distribution sub-
station transformers (20/0.4 kV) are measured by smart meters.
So, the distribution losses of each line in Medium Voltage (MV)
and Low Voltage (LV) network can be easily calculated.
� Data Concentrators (DC) installed in proximity of 20 kV/400 V

substation distribution transformers in order to manage all
smart meters measured data from each installation at LV net-
work. Data concentrators integrate PLCC that exchange infor-
mation with smart meters and communicate with central
meter data management systems.
Fig. 1. Interactions between DSO and participants.
� Meter data management system mainly Meter Data Management
& Repository (MDM/R) systems in which the received unpro-
cessed data from all meters or sensors are collected and pro-
cessed in order to deliver the required data to DSO and
application systems.
� Electric vehicle charging point available at each home or work-

place recognized as the charging plug that is an electricity plug
equipped with PLCC modem that sends the EV data to a smart
meter. In this case, we propose an identification chip to install
in EVs: when an EV connects to an electricity plug, this chip
sends a signal to a smart meter. As soon as the smart meter rec-
ognizes an EV connection, it sends its charging and discharging
data to the MDM/R.

2.2. Electric vehicles management system

EVs should be integrated with other distributed resources of
distribution network. An application system that is responsible
for EVs integration and coordination with other distribution appli-
cation systems should be, thus, defined within the Distribution
Management System (DMS). A new application system, named
Electric Vehicles Management System (EVMS), is presented in this
paper that can be viewed as a sub-system or module within the
DMS. It is responsible for EVs charging/discharging scheduling
and management in the smart distribution network.

The EVMS acquires EV owners’ information from MDM system
or from the Customer Information System (CIS) and, also receives
EVs charging/discharging measured data from MDM system. Geo-
graphical Information System (GIS) provides geospatial informa-
tion on the network topology and parameters and provides EVs
resource geospatial information through CIS.

EVMS is responsible for maintaining a relational database of EVs
resources, their attributes, and their historical behavior/patterns
before charging/discharging events. Customers can agree and
sign-up to participate in one or more charging/discharging events.

Customer enrollment business processes are carried out by
using a cell phone application or an internet portal. Each EV owner
who is willing to participate in charging/discharging programs
could fill out the form and insert the required information. The
information flow of EVMS is shown in Fig. 3.
3. Energy resources scheduling formulation

This section presents the mathematical formulation of the pro-
posed EVs scheduling methodology including the multi-objective
optimization and decomposition technique. The assumptions con-
sidered in the proposed method are also discussed as follows.

The hourly electricity prices for electricity, as well as average
emission rate of the main grid’s power plants through the next
24-h period are available. The DSO is responsible for EVs charg-
ing/discharging management as well as energy scheduling in the
distribution system [27].

EV owners that are willing to participate in charging/discharg-
ing program should submit their trip and parked time to EVMS
for the next 24-h using their internet or cell phone portal. EV own-
ers receive an incentive price for their vehicles’ discharging. This
incentive price is calculated based on the difference between elec-
tricity prices in the charging and discharging periods. Also, an addi-
tional incentive may be considered for EV owners due to their
share in emission reduction. The EV owners have, therefore, en-
ough motivation to participate in the charging/discharging sched-
uling program that is managed by DSO.

On the other hand, DSO benefits from proper charging/discharg-
ing scheduling of EVs: charging EVs in periods with low electricity
prices and discharging their stored energy in periods with high



Fig. 2. Advanced metering architecture.

Fig. 3. Electric vehicle management system diagram.
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electricity prices reduce the total operational costs of the system.
Moreover, by taking into account the emission rate of power pro-
duced in the electric industry, the proper charging and discharging
of EVs could reduce the air pollutant emission.

However, the stochastic behavior of EVs’ owners in the presence
of incentives is not considered in this study and it is assumed that
the EVs owners carry out charge/discharge in a scheduled time.
The stochastic character of consumers that may not accept incen-
tives and will be able to use their EVs when this is necessary and
the consequent uncertainties related to the charge/discharge pro-
cedure will be considered by the authors in a future work.

In order to use the proposed method for a real distribution sys-
tem, some technical and regulatory requirements should be taken
into account. First, the distribution system should be equipped
with AMI system to measure the charge/discharge amount of each
EV [28]. Moreover, AMI system can detect the EV connection point
while it plugs into the charging point socket in all places in the dis-
tribution network. EVs need to have an identification chip in order
to be recognized while connected to the electricity network. A two-
way communication link between EV owners and EVMS is required
for enrollment in charge/discharge programs as well as for com-
munication of the charging cost and incentives for EV owners.
The available customer portal for billing and energy management
programs may simultaneously be used for this purpose. Regarding
to the regulatory requirement, the value of incentives for EVs own-
ers due to their voluntary participation in V2G program should be
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clearly determined. Also, an incentive price for the carbon emission
reduction is required.

3.1. Objective function and constraints

The proposed EVs scheduling model has two objective func-
tions: cost (Fcost) and emission (FEmission). The multi-objective func-
tion of the proposed model is presented as follows:

MinimizefFcost; FEmissiong ð1Þ
3.1.1. Cost function
The total operation cost of the distribution network where is

integrated with large number of EVs represents the cost objective
function of the multi-objective model that should be minimized.
The cost objective function is given as follows:

FCost ¼
XT

t¼1

PgridðtÞ �Xt þ
XI

i¼1

ðCDGði; tÞ þ SUði; tÞÞ þ
XNv

v¼1

PDch
EV ðv ; tÞ � Cv;t

Dch

" #
ð2Þ

where Pgrid(t) and Xt are the scheduled purchased power from the
main grid and the hourly electricity price in period t; I is the number
of DGs; CDG(i, t) and SU(i, t) represent the hourly fuel and startup
costs of DG i in period t, respectively; Nv is the total number of
EVs; PDch

EV ðv; tÞ and Cv ;t
Dch are power discharge and discharge price of

EV v in period t; In this study, the duration period t is considered
equal to 1 h. As a result, the charge/discharge scheduling period
length is same as one in generation scheduling.

The fuel cost of a generator can be expressed mainly as a func-
tion of its real power output and can be modeled by a quadratic
polynomial [29]. The operational cost of a distributed generation
unit (like a diesel generator) with a quadratic cost function CDG(i,
t) is given by [22]:

CDGði; tÞ ¼ ai � uði; tÞ þ bi � PDGði; tÞ þ ci � P2
DGði; tÞ ð3Þ

where ai, bi and ci represents the cost coefficient of DGs; PDG(i, t) and
u(i, t) are the active output power and the binary variable which
shows the on or off state of DG i in period t, respectively.

To implement a linear programming approach, the nonlinear
cost function of DG is approximated by a linear function that for
practical purpose is indistinguishable from the nonlinear model.
This method is detailed in [30].

3.1.2. Emission function
The distribution loads are supplied by both of DGs installed in

distribution network and conventional power plants connected
to the main grid as well as EVs discharging energy. The CO2 emis-
sions of DGs (EmDG) are calculated as follows:

EmDG ¼
XT

t¼1

XI

i¼1

EDG;i
CO2
� PDGði; tÞ ð4Þ

where EDG;i
CO2

is CO2 emission rate of the DG i.
The average CO2 emission of the main grid’s power plants

(Emgrid) due to generating electricity for supplying the distribution
system demand is calculated as follows:

Emgrid ¼
XT

t¼1

Egrid;t
CO2
� PgridðtÞ ð5Þ

where Egrid;t
CO2

is the average CO2 emission rate of the main grid’s
power plants at hour t.

The objective function of total emission during the planning
period is calculated as follows:

FEmission ¼ Emgrid þ EmDG ð6Þ

The constraints of this model are described below:
3.1.3. Constraints
Load balance

PgridðtÞ þ
XI

i¼1

PDGði; tÞ þ
XNv

v¼1

PDch
EV ðv ; tÞ

¼ Dt þ
XNv

v¼1

PCh
EV ðv ; tÞ þ LossðtÞ 8t 2 f1; . . . ; Tg ð7Þ

where PDch
EV ðv; tÞ and PCh

EV ðv; tÞ are, respectively, power discharge and
charge of vehicle v in period t; Dt represents the total hourly active
demand in period t; Loss(t) represent the total power losses of the
distribution network in period t.

EVs constraints. In each period of scheduling, the EV charge and
discharge are not simultaneous:

Xðv; tÞ þ Yðv; tÞ 6 1 8t 2 f1; . . . ; Tg;
8v 2 f1; . . . ;Nvg; X;Y 2 f0;1g ð8Þ

where X(v, t) and Y(v, t) are, respectively, the binary variables of EV
v related to power discharge and charge states in period t.

The battery energy balance for each vehicle should be consid-
ered. The state of charge variable (Es(v, t)) represents the stored en-
ergy in the battery of vehicle v at the end of period t. The energy
consumption for traveling in period t Ev ;t

trip

� �
has to be considered

jointly with the energy remained from the previous period and
the charge/discharge in the period [10].

Esðv; tÞ ¼ Esðv; t � 1Þ þ gC
v � PCh

EV ðv; tÞ � Ev ;t
trip �

1
gD

v

� PDch
EV ðv ; tÞ 8t 2 f1; . . . ; Tg; 8v 2 f1; . . . ;Nvg ð9Þ

where gC
v and gD

v represent, respectively, the grid-to-vehicle charg-
ing and vehicle-to-grid discharging efficiency coefficients of EV v.

The discharge and charge limit for each EV considering the bat-
tery discharge rate is given as follows [7]:

PDch
EV ðv ;tÞ6 PMax

Dch;v �Xðv;tÞ 8t2f1; . . . ;Tg; 8v 2f1; . . . ;Nvg ð10Þ

PCh
EV ðv;tÞ6 PMax

Ch;v �Yðv ;tÞ 8t2f1; . . . ;Tg; 8v 2f1; . . . ;Nvg ð11Þ

where PMax
Dch;v and PMax

Ch;v are the maximum power discharge and charge
of EV v.

Depletion of EV battery up to a certain minimum level Wmin
v

� �
and charging up to a maximum level Wmax

v
� �

are ensured by Eqs.
12, 13 to prevent loss of battery life [8].

Esðv; tÞ 6 Wmax
v 8t 2 f1; . . . ; Tg; 8v 2 f1; . . . ;Nvg ð12Þ

Esðv; tÞP Wmin
v 8t 2 f1; . . . ; Tg; 8v 2 f1; . . . ;Nvg ð13Þ

where Wmin
v and Wmax

v is defined based on the battery capacity limit
for each EV that are calculated as follows:

Wmax
v ¼ /max

v � Emax
Bat;v 8v 2 f1; . . . ;Nvg ð14Þ

Wmin
v ¼ /min

v � Emax
Bat;v 8v 2 f1; . . . ;Nvg ð15Þ

where Emax
Bat;v represents the maximum capacity of battery of EV v;

/max
v and /min

v are, respectively, the maximum and minimum per-
centage of battery capacity considering battery life.

The vehicle battery discharge and charge limits considering,
respectively, the battery state of charge and the battery capacity
and the previous period stored energy are given as follows [9]:

1
gD

v
�PDch

EV ðv;tÞ6 Esðv;t�1Þ 8t2f1; . . . ;Tg; 8v 2f1; . . . ;Nvg ð16Þ

gC
v �PCh

EV ðv;tÞ6Wmax
v �Esðv ;t�1Þ 8t 2f1; . . . ;Tg; 8v 2f1; . . . ;Nvg ð17Þ
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The required stored energy in EVs’ battery in order to travel the
specific distance in each trip is given as follows [9]:

Es v ; tq
last

� �
P Ev;t

trip;q 8t 2 f1; . . . ; Tg;
8v 2 f1; . . . ;Nvg; Dtrip � t ð18Þ

where tq
last represents the last period when the EV is connected to

the grid before start qth trip in period tq
last þ 1; Ev;t

trip;q is the required
energy of EV v for trip q in period t.

DG constraints. The distributed generation units have a maximum
and minimum generating capacity beyond which it is not feasible
to generate due to technical reasons. Generating limits are speci-
fied as upper and lower limits for the real and reactive power
outputs.

PDGði; tÞ 6 Pmax
i � uði; tÞ 8t 2 f1; . . . ; Tg; 8i 2 f1; . . . ; Ig ð19Þ

PDGði; tÞP Pmin
i � uði; tÞ 8t 2 f1; . . . ; Tg; 8i 2 f1; . . . ; Ig ð20Þ

where Pmin
i and Pmax

i are the minimum and maximum limits of ith
DG output power; u(i, t) represents the on/off state of DG.

The startup cost (SU(i, t)) of DG units is calculated as follows:

SUði; tÞ ¼ Sci � ðuði; tÞ � uði; t � 1ÞÞ ð21Þ

SUði; tÞP 0 ð22Þ

where Sci is the start up cost of ith DG.

Power flow constraints

Pinjðn;tÞ¼
XN

m¼1

jVðn;tÞjjVðm;tÞjjYn;mjcosðdðm;tÞ�dðn;tÞþhn;mÞ 8n;t ð23Þ

Qinjðn;tÞ ¼�
XN

m¼1

jVðn;tÞjjVðm;tÞjjYn;mjsinðdðm;tÞ�dðn;tÞþhn;mÞ 8n;t ð24Þ

where N is the total number of buses; n and m are index for buses;
|V(n, t)| is voltage amplitude at node n; d(n, t) is voltage angle at
node n; |Yn,m| is element (n, m) of the admittance matrix; hn,m is
the angle of Yn,m; Pinj(n, t) and Qinj(n, t) are the net injected active
and reactive power to node n, respectively.

The other network operation constraints are as follows:

jSðn;m; tÞj 6 Smax
n;m 8t 2 f1; . . . ; Tg; 8n;m 2 f1; . . . ;Ng ð25Þ

Vmin
n 6 Vðn; tÞ 6 Vmax

n 8t 2 f1; . . . ; Tg; 8n 2 f1; . . . ;Ng ð26Þ

PgridðtÞ 6 Pmax
sub 8t 2 f1; . . . ; Tg ð27Þ

where |S(n, m, t)| is the apparent power flow from node n to m; Smax
n;m

is the capacity of the line/cable between node n and node m; Vmax
n

and Vmin
n are the maximum and minimum voltage magnitude at

node n, respectively; Pmax
sub is the maximum power drawn from the

main substation.

3.2. Multi-objective augmented e-constraint method

In order to deal with the trade-off between reducing the cost
and the amount of air pollutants emission produced by conven-
tional generators, the augmented e-constraint method is used in
the proposed method [31,32].

In this method, only the range of emission objective function
(FEmission) is calculated, since Fcost is the main objective function.
Then, the range of the objective function FEmission is divided to k
equal intervals. Therefore, there are in total (k + 1) grid points for
FEmission. Thus, (k + 1) optimization sub-problems must be solved
where some of these sub-problems may have infeasible solution
space. The problem has the following form:

min Fcost � d� S2

r2

� �� �
ð28Þ

subject to : FEmission þ S2 ¼ ek
2; S2 2 Rþ

where

ek
2 ¼ FEmission

max � FEmission
max � FEmission

min

q2

 !
� k; k ¼ 0;1; . . . ; q2 ð29Þ

where d is a scaling factor; S2 is a slack variable; FEmission
max and FEmission

min

represent the maximum and minimum values of the emission
objective function, based on the payoff table, respectively; ek

2 is
the k th range of FEmission; r2 is the range of the total air pollutants

emission FEmission
max � FEmission

min

� �
, and q2 is the number of equal part.

It should be noted that S2 is a slack variable which is defined to
prevent inefficient solutions by the original e-constraint method
[31]. d� S2

r2

� �
is considered in Eq. (28) (instead of S2) in order to

prevent any scaling problem. In fact, d is a scaling factor selected
in order to make the slack variable S2 comparable with the cost
objective function [32].

In solving each of the sub-problems all the constraints of the
model should be also considered. By solving each optimization
sub-problem, one Pareto-optimal solution is obtained. With a high-
er number of grid points, a denser efficient set is obtained but with
a higher computational time. A trade-off between the density of
the efficient set and time consuming is always necessary. In this
paper, the number of intervals for the objective function FEmission

is considered to be equal to 10.

3.3. Best compromise solution

When the Pareto-optimal solution is obtained, one of the solu-
tions is chosen as the best compromise solution. Fuzzy set is intro-
duced here to handle the problem [33]. Here a linear membership
function lk

f

� �
is described for each of the objective functions, i.e.

FCost and FEmission:

lk
f ¼

1; Fk
f 6 Fmin

f

Fmax
f �Fk

f

Fmax
f �Fmin

f

� 	
; Fmin

f 6 Fk
f 6 Fmax

f

0; Fk
f P Fmax

f

8>>><
>>>:

ð30Þ

where Fk
f and lk

f represent, respectively, the value of the fth objec-
tive function in the kth Pareto-optimal solution and its membership
function. For each of k solution, the membership function can be
normalized as follows:

lk ¼
Pp

f¼1xflk
fPK

k¼1

Pp
f¼1xflk

f

ð31Þ

where xf is the weight value of the fth objective function in the
multi-objective mathematical programming problem also, K is the
number of Pareto-optimal solutions. The weight values xf can be
selected by the operator based on the importance of economic issue
and environmental allowance. The solution with the maximum
membership function lk is the most preferred compromise solution
based on the implemented weight factors and so is selected as the
best Pareto-optimal solution.

3.4. Computation technique

The multi-period energy resource scheduling problem formu-
lated in the paper is a large-scale Mixed Integer Nonlinear



A. Zakariazadeh et al. / Energy Conversion and Management 79 (2014) 43–53 49
Programming (MINLP) optimization problem. MINLP optimization
techniques require significant computer means and the execution
times are not compatible with the short-term energy and reserve
scheduling [10,34]. Therefore, in order to have a fast response for
optimization problems with many variables, it is necessary to
use alternative methodologies. In order to make the proposed
model applicable for real size distribution networks with large
number of EVs, and overcome the difficulties related to solving
nonlinear optimization problems with binary variables, a fast and
robust optimization technique known as Benders decomposition
is implemented in this paper [35].

The basic idea behind this method is to decompose the problem
into two simpler parts: the first part, called master problem, solves
a relaxed version of the problem and get values for a subset of the
variables. The second part, called sub-problem (or auxiliary prob-
lem), receives the values for the remaining variables while keeping
the first ones fixed, and uses these to generate Benders cuts for the
master problem. The master and auxiliary problems are solved
iteratively until no more cuts can be generated [36]. The combina-
tion of the variables found in the last master and sub-problem iter-
ation is the solution to the original formulation [37]. This method
allows to appropriately treat the non-convexity associated with
binary variables and to divide the global problem into two smaller
problems which are easier to solve.

In the proposed model, the Benders technique divides the origi-
nal problem into a mixed integer linear programming (MILP) mas-
ter problem (Eqs. (1)–(22)) and a Nonlinear Programming (NLP)
sub-problem (Eqs. (23)–(27)). Fig. 4 shows the procedure of this
method. More details on Benders decomposition and its features
are available in [38] and its implementation in optimal power flow
problem is described in [39].

The master problem consists of 24-h multi-objective EVs sched-
uling problem which are solved by using the MILP solver CPLEX
[40]. The sub-problem is an hourly distribution power flow with
some fixed variables received from the master problem solution
which is solved using NLP solver CONOPT [41]. Both the master
and the sub-problem are modeled in GAMS [42] on a Pentium IV,
2.6 GHz processor with 4 GB of RAM. The computation time for
the proposed multi-objective method was 14 s.
Fig. 4. Benders decomposition flowchart.
4. Case study

The proposed method was applied to a modified version of the
33-bus 22.6-kV radial distribution system given in [43] and illus-
trated in Fig. 5. The forecasted load profile of the test system for
a 24-h period is shown in Fig. 6. Table 1 provides the hourly elec-
tricity price of open market according to [44]. Also, two diesel gen-
erator and two Fuel Cell (FC) sets are installed in bus 13, 27, 8 and
19, respectively. The fuel cells and diesel generators are assumed to
have fixed power factors of 1, respectively.

The fuel cost and emission rate of diesel generator and fuel cell
units are given in Table 2 [45–48]. The main grid generation sys-
tem is typically composed of nuclear, hydro, gas steam, coal and
gas combined cycle power plants. In this case study, it is supposed
that, according to a unit commitment program at each hour, the
average CO2 emission rates of conventional power plants in the
main grid for low (hours 1–6 & 23–24), medium (hours 6–20)
and high (hours 19–22) load hours of the main grid are considered
as 0.050, 0.562, 0.985 kg/kW h, respectively [48].

It is assumed that the test radial distribution system is for a
town including residential and commercial area. The driving pat-
terns were based on a statistical survey in a real town carried
out by the authors. The information consist of trip duration of each
type of customer, start and end time of their trip and average dis-
tance travel.

People using the electrical network of this town for charging
their EVs is categorized as EV owners who:

(a) live and work in the town (EI1 & EI2),
(b) live in town but work out of town (EO1 & EO2),
(c) live in town and use EV only for going shopping and party

(SP),
(d) plan to travel to out of town in the scheduling period (TR),

and
(e) live out of town but their workplace are located in town

(OU).

EI2 and EO2 refer to employees who also use their EVs in the
evening or night for other purposes. In this study, we consider
two typical scenarios of EV charging: (1) charging at home and
(2) charging at work. The summaries of the driving pattern infor-
mation are given in Tables 3 and 4.

The number of each type of EV owners and the start and end
time of their connection to the grid is shown in Table 3. It is as-
sumed that EV owners drive with a constant speed and at an aver-
age rate of 3 kW h per hour. The average trip duration for each EV
owners and types of the trip are given in Table 4. It should be noted
that each type of EV should store enough energy in its battery in
order to cover the trip distance in the next hour.

The case study considers 3 different vehicle types, for which the
technical information has been obtained from vehicle manufactur-
ers. A typical 10 kW h battery capacity for most of EVs is selected
[11]. Also, two other vehicle types that are used in this case study
are Nissan Leaf with a battery capacity of 24 kW h and Citroen C-
Zero with a battery with 16 kW h [49,50]. Battery chargers have
some losses and therefore the energy requirement from the grid
is actually greater than the stated battery capacity. Typical battery
charge and discharge efficiency are assumed 90% and 95%, respec-
tively [51]. In order to optimize EV battery life, depletion of EV bat-
tery up to 85% of the rated battery capacity is assumed.

A standard single-phase 240 V, 16 A socket (Italian standard) is
assumed for charging point in home or work place. For this analy-
sis, a fixed charging power of 4 kW is selected because this is com-
monly available in most single-phase residential households
without having to reinforce wiring [11,52].



Fig. 5. 33 Bus distribution test system.

Fig. 6. Forecasted load profile of the distribution test system.

Table 1
Hourly electricity price of open market.

t 1 2 3 4 5 6
$/kW h 0.033 0.027 0.020 0.017 0.017 0.029
t 7 8 9 10 11 12
$/kW h 0.033 0.054 0.215 0.572 0.572 0.572
t 13 14 15 16 17 18
$/kW h 0.215 0.572 0.286 0.279 0.086 0.059
t 19 20 21 22 23 24
$/kW h 0.050 0.061 0.181 0.077 0.043 0.037

Table 3
Scenario for electric vehicle location.

Type Number Parked time

Home Workplace

EI1 200 01:00–06:00, 17:00–24:00 08:00–15:00
EI2 200 01:00–06:00, 17:00–19:00 08:00–15:00
EO1 100 01:00–05:00, 17:00–24:00 –
EO2 200 01:00–05:00, 17:00–19:00 –
SP 150 01:00–09:00, 13:00–18:00, 22:00–24:00
OU 100 – 08:00–15:00
TR 50 01:00–06:00

Table 4
The average trip duration.

EV owners Trip type/trip duration (h)

Home to work Work to home Others

EI1 1 1 –
EI2 1 1 5
EO1 2 2 –
EO2 2 2 5
SP – – 3 & 3
OU 2 2 –
TR – – 10
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To analyze the effects of cost and emission reduction purposes
on EVs scheduling, the proposed model is tested in 3 different
cases:

� Case 1: Operation cost minimization.
� Case 2: Emission minimization.
� Case 3: Multi-objective optimization.

4.1. Case 1: Operation cost minimization

The main grid, diesel generators and fuel cells scheduled active
powers in case 1 are shown in Fig. 7. Also, the charging/discharging
program of EVs is illustrated in Fig. 8. Regarding the cost minimi-
zation objective, the results show that the EVs charging are carried
Table 2
Cost and mission rate coefficients of generation sources.

Unit Cost coefficient

ai ($) bi ($/kW h) ci ($/kW h2) St

Diesel 10 0.0133 0.002 2
FC 45 0.375 – 3
out in the hours when the electricity prices are high. On the other
hand, the EVs discharging are carried out in the hours when the
electricity prices are relatively low. As shown in Fig. 7, the diesel
generators have been turned on in more hours than fuel cells
due to their lower operational cost.

4.2. Case 2: Emission minimization

Fig. 9 shows the main grid, diesel generators and fuel cells
scheduled active powers in case 2. As shown in Fig. 9, the fuel cells
have been turned on in more hours than diesel generators due to
their lower emission rate. In hours 7–22, when the average emis-
sion rate of the main grid power plants is higher than the emission
Technical constraints Emission

artup ($) Pmin (kW) Pmax (kW) CO2 (kg/kW h)

50 1000 0.890
100 1000 0.477



Fig. 7. Scheduled power resources in case 1.

Fig. 8. EVs scheduled charging/discharging program in case 1.

Fig. 9. Scheduled power resources in case 2.

Fig. 10. EVs scheduled charging/discharging program in case 2.

Table 5
Comparison between cost and emissions in cases 1 and 2.

Operation cost ($) Emissions (kg)

Case 1 13,253 63,083
Case 2 24,954 50,271
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rate of fuel cells, they have been kept turn on at their maximum
power.

The charging/discharging program of EVs in case 2 is illustrated
in Fig. 10. Regarding the emission minimization objective, the re-
sults show that the EVs are scheduled to be charged at hours with
lower emission rate and, on the other hand, to be discharged in the
hours when the emission rate of the bulk power generation is high.

A comparison between total operation cost and emission
amount in the cases 1 and 2 has been made and the results have
been shown in Table 5. As shown, if the air pollutant emissions
reduction is considered as an objective of the distribution energy
resources scheduling, the total operation cost significantly
increases.

4.3. Multi-objective optimization

In this case, the resources scheduling are carried out consider-
ing both cost and emission as objective functions. The augmented
e-constraint method is implemented to optimize the two
objectives.

The Pareto-optimal set obtained from the augmented e-con-
straint method is shown in Fig. 11. The membership functions
are used to evaluate each solution of the Pareto-optimal set. Then
the best compromise solution, that has the maximum value of the
membership function, can be obtained. It should be mentioned
that in this paper it has been assumed that w1 = w2 = 0.5 as the
same importance is considered for the economic and emission
objectives in the multi-objective problem. Table 6 represents the
above procedure in tabular form. As shown, the Pareto-solution
No. 8 has been selected as the best compromise solution.

The best compromise solution results for resources scheduling
are illustrated in Figs. 12 and 13. The results show that the charg-
ing is carried out during hours 3–5, 8–9, 13, 15, 17 and 18 when the
electricity price is low. Moreover, during hours 19–22 at which the
average emission rates of the main grid generation are high, the
discharging is carried out to reduce the imported power from the
main grid.

In order to evaluate the effect of V2G capability on both the cost
and emission objectives in the proposed multi-objective method,
the energy resources scheduling has been also carried out without
using discharging capability of EVs. Total cost and emission results
of the energy resource scheduling with and without considering
V2G capability for the best compromise solutions are shown in
Table 7. The result evidence that both EVs owners and DSO can
benefit from the use of V2G capability of EV: the total operational
Fig. 11. Pareto-optimal front of the multi-objective method.



Table 6
Fuzzy based procedure used to determine the best compromise solution.

Pareto points (k) Cost ($) Emission (ton) lk

1 13,253 63.08 0.079
2 13,314 61.66 0.088
3 13,483 60.24 0.095
4 13,896 58.81 0.102
5 14,510 57.39 0.106
6 15,340 55.96 0.110
7 16,234 54.54 0.113
8 17,541 53.11 0.114
9 19,658 51.69 0.108

10 24,954 50.27 0.084

The best compromise solution 17,541 53.11 0.114

Fig. 12. Scheduled power resources in case 3.

Fig. 13. EVs scheduled charging/discharging program in case 3.

Table 7
Total cost and emission of the best compromise solutions with and without
considering V2G capability.

Cost ($) Emission (ton) EV owners revenue ($)

Without V2G 19,993 56.05 –
With V2G 17,541 53.11 1064
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cost of system and the air pollutant emission are reduced and the
EVs’ owners earn revenues from discharging their EVs stored
energy.
5. Conclusion

In this paper, a multi-objective resource scheduling of a smart
distribution system including large number of EVs has been pro-
posed. Also, a conceptual model for EVs management system was
presented. The optimization model includes the constraints associ-
ated with the EVs and distribution network. The generalized
Benders decomposition method was used to solve this large-scale
multi-period problem. This method shows good convergence prop-
erties for this application. The effects of cost and emission objec-
tives were analyzed in three different cases. Simulation results
evidenced that the inclusion of the emission objective function
has modified the charging/discharging programs in order to reduce
the total air pollutant emission.
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