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Abstract— Optimal power flow (OPF) is a classical nonlinear,
large-scale, non-convex problem. It is used as a tool to determine
the optimal operating point ofthe electric power system, improv-
ing its performance. Usually its resolution complexity is rather
increased in the presence of discrete control variables, which
poses as a challenge for the application of general classical non-
linear optimization algorithms. In this paper, the Evolutionary
Particle Swarm Metaheuristic algorithm that combines features
of classical optimization methods and non-deterministic methods
is proposed to solve a specific class of OPF problems, the Optimal
Reactive Power Dispatch with discrete control variables such
as in-phase transformer taps. Two strategies have been used to
initialize the control variables. In order to validate the proposed
method, tests have been performed on IEEE 14, 30, 57, 118 and
300 bus systems.

I. INTRODUCTION

The deregulation on electric power systems (EPS) brought
new paradigms for planning and operation. In this new sce-
nario, optimization techniques to aid decision-making plays
a key role in EPS planning and operation, specially when
considering the limited natural resources. The decision-making
is, in general, guided by economic efficiency criteria to save
generation and transmission costs.

Due to the increase of electric power demand in Brazil,
several studies in the field of EPS has been made in order
to achieve a safer and more economical operation. While
some authors have used optimization algorithms packages,
with specific methods for solving real problems [1], [2], others
use metaheuristics [3], [4] to achieve a balance between the
solution quality and computational cost.

A special optimization problem in EPS is known as Optimal
Power Flow (OPF). The OPF is a nonlinear, large-scale,
constrained and non-convex problem. It is used as a tool to
determine the best operation point, improving its performance.
The first OPF model was proposed by Carpentier [5], and
since then several methods have been proposed to solve this
problem. One specific OPF is the Optimal Reactive Power
Dispatch problem. The difference to general OPF is due to
the fact that control variables are related to reactive power
control.

The formulation of real problems as nonlinear optimization
problems, such as the OPF, is found in various areas of knowl-
edge such as engineering, mathematics, agronomy, economics,

among others. These problems are often difficult to solve
because of its nonlinearity. Different mathematical approaches,
such as the Gradient Method [6]; Interior Point Method [7]
and Newton-Raphson Method [8] have been applied to find a
solution to the OPF problem. These approaches are named as
classical or deterministic methods.

Besides the classical approaches, heuristic (or non-determi-
nistic) methods have also been used to solve the OPF problem,
such as Evolutionary Programming [9], Genetic Algorithm
[10] and Particle Swarm Optimization (PSO) [11].

The PSO was originally developed by a social psychologist
named James Kennedy and an electrical engineer, Russell
Eberhart, in 1995. It emerged from experiments with algo-
rithms that modeled the behavior of many bird species in their
search for food. Over the years, new research addressed varia-
tions of the original PSO algorithm. Miranda and Fonseca [12]
presented a new metaheuristic known as Evolutionary Particle
Swarm Optimization (EPSO), which put together the best
features of Evolutionary Programming and PSO.

According to Frank et al. [13], deterministic approaches
can be computationally much faster than non-deterministic
approaches. However, the deterministic methods are limited
to provide optimal solutions and the quality of the solution
is sensitive to the starting point. To overcome the fact the
algorithm can get stuck in a local optimum, local search
techniques can be combined with the global search procedures
provided by non-deterministic methods. Taking this fact into
account, in this paper a hybrid nonlinear programming method,
which is a combination of deterministic and non-deterministic
methods is proposed.

The kernel of the method is the EPSO metaheuristic to solve
the Optimal Reactive Power Dispatch, which is a variation of
the Optimal Power Flow. In this problem, the controls are
mainly related to reactive power such as voltage regulation,
transformer taps, shunt elements. The objective function is the
minimization of system losses and the discrete control vari-
ables associated with in-phase transformers taps are modeled
accordingly to provide the best solution performance.

To evaluate the performance of the proposed method, tests
were carried out using the IEEE test cases of 14, 30, 57, 118
and 300 buses [14].



II. OPTIMAL REACTIVE POWER DISPATCH (ORPD)

This section presents the problem formulation with con-
tinuous and discrete variables and the use of a discretization
function to deal with the discrete variables.

A. ORPD with continuous and discrete variables

The transformer taps and the equivalent susceptances of
capacitor banks and shunt reactors are modeled as control
variables in the problem formulation with continuous and
discrete variables. Therefore, the model is defined as:
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where V and θ are vectors representing the magnitude and
phase angle of voltages in all system buses; t is the vector
of in-phase transformers taps; bsh is the vector of capacitor
banks and shunt reactors equivalent susceptances; Pk and
Qk represent, respectively, the net active and reactive power
injections at bus k; QGk

is the generated reactive power at
bus k; Qshk is the reactive power injected by the shunt elements
at bus k; Pkm and Qkm are the active and reactive power flow
at the branch k−m; θkm is the phase angle difference between
the voltages at buses k and m; B is the set of all system
buses; G′′ is the set of all generation buses; G′ is the set of
all generation buses except the slack bus; C is the set of all
load buses; Bsh is the set of all buses with voltage magnitude
controled by capacitor banks and shunt reactors; L is the set
of branches k−m representing the transmission lines; T is the
set of branches k −m representing the in-phase transformers
with variable tap; vk is the set of buses connected to the bus
k; Dsh

k is the set of all discrete values that the capacitor banks
and shunt reactors equivalent susceptances may assume; Dtap

km

is the set of all discrete values that the transformer taps may
assume.

B. Discretization Function to deal with discrete variables

Soler et al. [2], [15] proposed an approach in which the
discrete variables are treated as continuous variables by in-
corporating sinusoidal functions into the objective function
of the problem, turning the nonlinear continuous and discrete
programming problem into a nonlinear programming problem
with only continuous control variables.

Consider the following nonlinear programming problem:

min f(x) (8)
subject to: gi(x) = 0 i = 1, . . . , p (9)

hi(x) ≤ 0 i = 1, . . . , q (10)

xmin
1i ≤ x1i ≤ x

max
1i i = 1, . . . ,m1 (11)

x2i ∈ Dxi
i = 1, . . . ,m2 (12)

where x1i ∈ Rm1 is the vector of continuous variables and
x2i ∈ Dx ⊂ Rm2 is the vector of discrete variables; with
x = (x1, x2); Dxi

is the set of discrete values for each variable
x2i ; f : Rm1 × Rm2 → R; g : Rm1 × Rm2 → Rp, with
p < m1 +m2; and h : Rm1 × Rm2 → Rq .

The function φ : R→ R to deal with discrete variables x2
is, according to Soler et al. [15], defined as:

φ(yi) =
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where β > 0 is an integer parameter that determines the
shape of (13); ysupi and yinfi are discrete values immediately
above and below yi, respectively; ymin

i and ymax
i are the

minimum and maximum quantities from the set of discrete
values Dxi , respectively; and αi is a constant defined in the
interval [0;π] such that (13) is canceled in yi = x2i ∈ Dxi .

The function given in (13) is formulated as:

φ(yi) =

{
0 yi ∈ Dxi

ρ > 0 otherwise
(14)

That is, equation (13) is null if and only if yi assumes
discrete values. By incorporating (13) in the objective function
(8) for each discrete variable, the following modified problem
is obtained:

min f(x) + γ

m2∑
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φ(x2i) (15)

subject to: gi(x) = 0 i = 1, . . . , p (16)
hi(x) ≤ 0 i = 1, . . . , q (17)
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where γ > 0 is a penalty parameter that controls the
sinusoidal function amplitude; x1 ∈ Rm1 and x2 ∈ Rm2 are
the vectors of continuous variables, with x = (x1, x2) and
x ∈ Rn; f : Rn → R; g : Rn → Rp, with p < n; and
h : Rn → Rq . In the above modified problem, the functions
f , g and h are class C2 and xmin

2 , xmax
2 ∈ Rm2 are the

vectors of lower and upper limits of continuous variables,
respectively, with xmin

2i = min {Dxi
} and xmax

2i = max {Dxi
}

for i = 1, . . . ,m2.
As sin(y) = 0 only when y = nπ, where n ∈ Z, the

constant α in the penalty function (13) is determined in respect
of x2 ∈ Dx as follows:
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As α ∈ [0;π], n must be equal to the next higher integer
closest to:

x2
xsup2 − xinf2
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The parameter α is the same for every interval of Dx

and the penalty process consists in solving a sequence of
modified problems (15) until all variables associated with the
original problem discrete variables assumes discrete values.
The initialization of the parameter γ is critical to the solution
of the problem, and it is given by:

γk+1 = cγk (22)

where c is the growth factor of γ and k represents the kth

iteration of the algorithm. The parameter γ is updated in the
next iteration if the absolute difference between a variable xk2
and its closer discrete value is less then a given tolerance. This
condition is given by:∣∣∣∣xk2 − x′2∣∣∣∣∞ ≤ ε (23)

where x′2 ∈ Dxi
is the closest discrete value from the

variable xk2 , for i = 1, . . . ,m2, and ε = 10−3 is the
discretization tolerance of the algorithm.

III. EVOLUTIONARY PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO), according to Kennedy
and Eberhart [16], simulates the migration and aggregation of
a flock of birds looking for food. By analogy, the flock of birds
represents the set of solutions, each bird represents a particle
or a candidate solution, and the food is the objective function
of the optimization problem. The particles p run through the
search space with a velocity following the best position found
by the particles themselves and by all the flock in the search
of a goal. These best positions are called pbest and gbest ,
where pbest is the best position found by the particle; and
gbest is the best position found by all the particle set. At the
end of the process, the best solutions related to the objective
function, called as fitness solutions, are presented as the result
of the optimization problem.

The Evolutionary PSO (EPSO) algorithm was proposed by
Miranda and Fonseca [12] and it is an optimization method
based on evolution strategy [17], [18] and the PSO method.
The EPSO puts together the best features of both algorithms.
This is because there is an exchange of information between
the solutions while they move in the search space. The EPSO is
also an evolutionary computing method, wherein the solution
characteristics are mutated and passed to future generations
by a selection mechanism.

The particle motion rule in the EPSO generates as descen-
dant a new particle according to the following transformation
process:

xk+1
p = xkp + vk+1

p (24)

The velocity parameter, vpk+1
, is obtained as follows:

vk+1
p = wk∗0pv

k
p+w

k∗
1p (pbestp−xkp)+wk∗2p (gbest

k∗−xkp) (25)

where the weighting parameters w∗0p, w∗1p and w∗2p are
named as inercia, memory and cooperation, respectively. These
parameters mutate as follows:

wk∗[0,1,2]p = wkp + τN(0; 1) (26)

where N(0, 1) is a normally distributed random variable
with zero mean and unit variance and τ is a learning parameter.

The global best is randomly distributed as follows:

gbestk∗ = gbestkp + τ ′N(0; 1) (27)

Both τ e τ ′ can be treated either as fixed numbers or as
parameters subject to mutation.

IV. PROPOSED METHODOLOGY

In this section we present the proposed methodology, which
used two different ways to initialize the control variables. The
first one uses the result obtained from the third iteration of
the OPF problem solution through the Gradient Method [6]
and the other one initializes the control variables using the
values found in the IEEE database. The final solution of the
problem is then given by the EPSO metaheuristic proposed
by Miranda and Fonseca [12]. The algorithm steps of the
proposed methodology are as follow:

Algorithm 1: Proposed Algorithm Steps.

1. Initialize k ← 0;
2. Initialize the particles using either the result of the third

iteration of the Gradient Method or the values in the
IEEE database;

3.Define c← 10, β ← 1, ε← 10−3 and γp ← 10−6;
4.while k < 100 do
5. Solve the power flow;
6. Obtain pbestp;
7. Obtain gbest : gbestk∗ ← gbestkp + τ ′N(0; 1);
8. Obtain the velocity:

vk+1
p ← wk∗0pv

k
p+w

k∗
1p (pbestp−xkp)+wk∗2p (gbest

∗−xkp);
9. Obtain the inercia: wk∗[0,1,2]p ← wkp + τN(0; 1);
10. Obtain the augmented function (15) by defining the

sinusoidal functions for each variable tap;
11. Solve the augmented problem (15);
12. if

∣∣∣∣xk2 − x′2∣∣∣∣∞ > ε then
13. γk+1

p ← cγkp ;
end

14. Update the control variables: xk+1
p ← xkp + vk+1

p ;
15. k ← k + 1;

end



V. RESULTS

In this section, tests performed using the IEEE test cases
of 14, 30, 57, 118 and 300 bus [14] to evaluate the efficiency
of the proposed strategies are shown. The algorithms were
implemented using Matlab 8.1.0.604 (R2013a). The power
flow problems were solved using the Power System Analysis
Toolbox (PSAT), which uses the Newton-Raphson Method.
Table I shows the characteristics of each test case.

TABLE I: Characteristics of IEEE test cases

Test System Equality
Constraints

Continuous
Variables

Discrete
Variables

14 22 27 4
30 53 59 6
57 106 113 18
118 181 235 23
300 530 599 121

For the algorithms that consider the transformer taps as dis-
crete variables, it is considered that these variables belong to
an equally spaced set of discrete values with steps of 0.0075pu.
The lower and upper limits for the taps are, respectively, 0.88
pu and 1.12 pu, with a total of 33 positions. The minimum and
maximum values for the voltage magnitudes are V min = 0.95
and V max = 1.10, respectively.

In all tests, the minimized objective function was the active
power losses in transmission lines. The equality constraints of
the problems were represented by the power flow equations
and the limits for voltage magnitudes and generated reactive
power for the continuous problem. For the discrete problem,
the transformer taps variables were constrained between its
limits. The base power for all test cases was 100 MVA and
each system was simulated using 100 particles, 100 iterations
and 10 seeds.

Tables II and III present the solutions using the IEEE
database as initial conditions for the continuous and discrete
problem, respectively.

TABLE II: Solutions using the IEEE database as initial conditions for the
control variables (continuous problem).

Test System Mean Value [MW] Best Value [MW] Time [s]

14 13.36 13.35 6
30 17.52 17.51 7
57 25.65 25.64 10

118 118.55 116.85 14
300 377.36 375.91 25

TABLE III: Solution using the IEEE database as initial conditions for the
control variables (discrete problem with the sinusoidal approach).

Test System Mean Value [MW] Best Value [MW] Time [s]

14 13.36 13.36 7
30 17.47 17.46 8
57 26.02 25.80 11

118 120.55 120.32 15
300 382.97 381.35 25

The solutions using the results of third iteration of the
Gradient Method [6] as initial conditions for all test cases are
presented in Tables IV and V for the continuous and discrete
problems, respectively.

TABLE IV: Solution using the Gradient Method to initialize the control
variables (continuous problem).

Test System Mean Value [MW] Best Value [MW] Time [s]

14 12.30 12.27 6
30 16.22 16.22 7
57 26.66 26.66 11

118 118.07 116.00 14
300 373.80 372.26 21

TABLE V: Solution using the Gradient Method to initialize the control
variables (discrete problem with the sinusoidal approach).

Test System Mean Value [MW] Best Value [MW] Time [s]

14 12.30 12.28 6
30 16.15 16.15 7
57 25.90 25.90 12

118 123.22 116.80 15
300 388.00 378.00 24

A. IEEE 14 bus

The IEEE 14 bus test case has the following characteristics:
1 slack bus, 5 buses with reactive power control, 9 load buses,
1 capacitor bank, 17 transmission lines and 3 transformers.

Table VI shows the results for the control variables of the
discrete problem when using the Gradient Method to obtain
the initial conditions. The discrete variables of transformer taps
were processed using the sinusoidal approach.

TABLE VI: Final values of control variables for the discrete model.

Type Position Value

Voltage Bus 1 1.10
Voltage Bus 2 1.09
Voltage Bus 3 1.05
Voltage Bus 6 1.09
Voltage Bus 8 1.09

Tap Branch 4-7 0.9775
Tap Branch 4-9 0.9700
Tap Branch 5-6 0.9325

Figure 1 shows the discretization evolution of transformer
taps in IEEE 14 bus test case using the sinusoidal approach.
Although 100 iterations were performed, taps were only shown
in the figure when there was a change in their values from one
iteration to another.

Figures 2a and 2b show the convergence of the objective
function for the IEEE 14 bus test case when using, respec-
tively, IEEE database and the Gradient Method to obtain the
initial conditions.

When using the Gradient Method to obtain the initial
conditions, the objective function converged to an optimum
of better quality compared to the local optimum found using
IEEE database.
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Fig. 2: Objective function convergence for IEEE 14 bus.

B. IEEE 300 bus

The IEEE 300 bus test case has the following characteristics:
1 slack bus; 69 buses with reactive power control, 231 load
buses; 8 capacitor banks; 6 shunt reactors; 302 transmission
lines and 107 transformers.

Figure 3 shows the final values for the discrete variables
of transformer taps for the IEEE 300 bus system using the
Gradient Method to obtain the initial conditions and the
sinusoidal approach to discretize variables. The horizontal
lines in the figure represent the discrete values that transformer
taps may assume.

Figure 4 shows the discretization evolution of some trans-
former taps in IEEE 300 bus test case discrete problem
using the sinusoidal approach. Although 100 iterations were
performed, taps were only shown in the figure when there was
a change in their values from one iteration to another.

Figures 5a and 5b show the convergence of the objective
function for the IEEE 300 bus test case when using, respec-
tively, IEEE database and the Gradient Method to obtain the
initial conditions.
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VI. ANALYSIS OF RESULTS

Comparing the results shown in Tables II and IV, it was
observed that the tests where the control variables have been
initialized using the Gradient Method presented better perfor-
mance for power losses in the IEEE 14, 30, 118 and 300
bus systems for the continuous model. The same behavior
was observed for the discrete model by comparing Tables III
and V. The simulation times of all test cases were considered
acceptable.

Table VI shows that the control variables of voltage mag-
nitudes are within their maximum and minimum limits and
the discrete variables of transformer taps were successfully
discretized.

Figure 1 shows the evolution of the transformer tap dis-
cretization and Figure 3 shows that all transformer taps from
the IEEE 300 bus system successfully reached discrete values
using the sinusoidal approach.
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VII. CONCLUSION

In this study, the ROPD problem has been addressed as
a nonlinear programming problem with continuous and dis-
crete variables to minimize losses. Two different ways were
presented to initialize the control variables in the EPSO meta-
heuristic. The approach where the variables were initialized
using the Gradient Method achieved a better performance in
terms of power losses if compared with the one that used
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the IEEE database values. Thus, it can be concluded that
the Gradient Method provides a better initial condition to the
EPSO metaheuristic, facilitating the metaheuristic search.

A sinusoidal approach was used to deal with the discrete
variables of the problem. In this approach, the discrete vari-
ables are treated as continuous variables by sinusoidal func-
tions incorporated to the objective function of the problem.
Thus, the nonlinear continuous and discrete programming
problem was turned into a nonlinear programming problem
with only continuous variables.

To evaluate the performance of the proposed method, tests
were performed using the IEEE 14, 30, 57, 118 and 300 bus
systems, that are all considered as small-scale problems. The
proposed method were effective in finding good solutions to
the continuous and discrete problems for all test cases. For
further validation of the proposed method, large-scale systems
will be also considered.
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