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Wind and solar energy introduced significant operational challenges in a Microgrid (MG), especially
when renewable generations vary from forecasts. In this paper, forecast errors of wind speed and solar
irradiance are modeled by related probability distribution functions and then, by using the Latin hyper-
cube sampling (LHS), the plausible scenarios of renewable generation for day-head energy and reserve
scheduling are generated. A two-stage stochastic objective function aiming at minimizing the expected
operational cost is implemented. In the proposed method, the reserve requirement for compensating
renewable forecast errors is provided by both responsive loads and distributed generation units. All types
of customers such as residential, commercial and industrial ones can participate in demand response
programs which are considered in either energy or reserve scheduling. In order to validate the proposed
methodology, the proposed approach is finally applied to a typical MG and simulation results are carried
out.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Increasing penetration of renewable energy generation in
electric grid implies that system operators will need to manage
the variable and uncertain nature of renewable resources like wind
and solar in order to continuously maintain the electricity genera-
tion and consumption balance [1,2]. This requires operational
changes and procurement of greater quantities of various ancillary
services. Traditionally, many of these power system services have
been provided exclusively by generators. However, over the past
decade, alternative resources like demand response have become
increasingly capable of providing a greater number and quantity
of such electric grid services [3,4].

Microgrid (MG), as a small part of a power system, is a low volt-
age distribution network, comprising various Distributed
Generators (DG), storage devices, and controllable loads, that faces
with intermittent renewable power generation management [5].
Regarding the credibility of MGs, in recent years, there have been
several research projects on the design, control, and operation of
MGs throughout the world, such as the CERTS microgrid in USA
[6,7], the smart poly-generation microgrid pilot project of the Uni-
versity of Genoa in Italy [8], and the energy integration test project
carried out by NEDO in Japan [9]. As with all new technologies, the
initial price of MGs is going to be expensive, but when they will
built in scale and the cost of solar, wind, and other renewables will
continue to fall, MGs will become increasingly cost-effective as
well as efficient. Financial benefits of MGs may be observed as
direct economic benefits, impacting both the capital and operating
costs of the power system, or less directly, as service and environ-
mental benefits [10,11].

However, the optimization of a MG has important differences
from the case of a large power system and its conventional energy
and reserve scheduling problem [12]. The control and scheduling
of Distributed Energy Resources (DERs), including renewable
generation in a MG, have been studied in many works [13–15]. A
dynamic modeling and control strategy for a sustainable MG
primarily supplied by wind and solar energy has been presented
in [16]. The study considered both wind energy and solar
irradiance changes in combination with load power variations.

Focusing on uncertainty of renewable sources, the wind speed
and solar irradiance forecasting problem in a MG has been investi-
gated in [17,18]. In [17], an artificial neural network has been used
to forecast wind speed and optimal set points of DERs and storage
devices have been determined based on the forecasted data in such
a way that the total operation cost and the net emissions are
simultaneously minimized. In [18], a day-ahead power forecasting
module has been presented in order to provide the Photovoltaic
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(PV) output data for DER scheduling in a MG. However, providing
reserve for compensating wind and PV power fluctuations has
not been taken into account within the day-ahead DER scheduling.
A stochastic programming approach for reactive power scheduling
of a MG, considering the uncertainty of wind power has been pre-
sented in [19]. Monte Carlo simulation enhanced by scenario
reduction technique has been used to simulate plausible states of
wind power and find an optimal operating strategy of DGs. In
[20], MG intelligent energy management under cost and emission
minimization has been investigated. Moreover, a fuzzy logic expert
system has been implemented for battery scheduling. The
proposed approach can handle uncertainties regarding the fuzzy
environment of the overall MG operation and the uncertainty
related to the forecasted parameters. The estimation model of
spinning reserve requirement in a MG was proposed in [21]. In
the proposed method, the uncertainty of wind and solar genera-
tion, as well as the unreliability of units and uncertainties caused
by load demand, are considered. The approach aggregated various
uncertainties in order to reduce the computational burden. The
demand side reserve and load participation in energy markets
was not considered in the model. In [22], a method for modeling
the output powers of renewable DGs by using historical data has
been presented. The method provides hourly generation and load
profile considering the intermittent nature of renewable genera-
tion. The power dispatch problem of DGs for optimal operation
of a MG has been proposed in [23]. The reserve has been scheduled
for variations in load demand and the power outputs of non-
dispatchable DGs while the objective function aims at minimizing
the fuel cost during the grid-connected and islanded modes. In
[24,25], wind speed, solar irradiance and load demand in each hour
have been modeled by probability distribution functions (PDFs).
Then, PDFs are truncated into a limited number of states; every
scenario in each day-ahead period consists of a state derived from
wind speed, solar irradiance and load demand discrete PDFs.

The concept and role of Demand Response (DR) in providing
reserve in a MG is very important, especially in presence of renew-
able sources. DR programs are used by electric utilities to manage
customer electricity consumption in response to supply conditions.
A number of methods such as demand management in building
[26,27], heat pumps and battery storage system management
[28] have been used to address DR programs in MGs. A real-time
pricing scheme for residential load management was proposed in
[29,30]. These papers presented an automatic and optimal scheme
for the operation of each appliance in households in presence of a
real-time pricing tariff.

In addition to participate in energy scheduling, DR programs are
being investigated for providing ancillary services such as primary
frequency regulation [31,32], spinning reserve [33–35], real time
voltage control [36] and system security improvements [37].
Basically, there are two typical approaches: indirect load control
[38] and direct load control [39]. The potential of DR in balancing
supply and demand on an hourly basis has been investigated in
[40]. Results indicated that DR has the potential to improve overall
power system operation, with production cost savings arising from
both improved thermal power plant operation and increased
wind production. Moreover, DR resources present a potentially
important source of grid flexibility and can support intermittent
renewable generation integration. The operation of an electrical
demand side management system in a real solar house has been
presented in [41]. Experimental results showed that a combination
of DR and PV generation allows the use of local control techniques
and achieves energy efficient levels.

However, analyses on renewable sources integration have not
been explicitly incorporated as reserve capacity in the MG model.

In this paper, Latin hypercube sampling (LHS) is used in order to
model plausible wind and PV generation scenarios. Using a
stochastic method, energy and reserve scheduling is carried out
by considering the generated scenarios. Moreover, the proposed
method enables all type of residential, commercial and industrial
loads to provide reserve capacity as well as load demand reduction
in presence of a DR program.

The rest of this paper is organized as follows. In Section 2 and 3
DR programs and renewable generations’ uncertainty are modeled,
respectively. The method formulation is detailed in Section 4.
Simulation results are presented in Section 5 while the paper is
concluded in Section 6.
2. Demand response participants

Different types of electricity customers with different electricity
consumption behavior and pattern are considered in the proposed
method. The types of customers and their involvement in DR
programs are described in this section:
2.1. Industrial customer

Industrial customers are usually characterized by heavy loads
and have the largest load demand among residential and commer-
cial customers. As every factory comprises more than one produc-
tion line, the energy curtailment in each production line has a
distinct price offer pertaining to its production. So, industrial
customers offer their load curtailment as a multi steps package.
The equations used for modeling the behavior of the ith industrial
customer are the following ones from (1-4).

Li
Min 6 li1 6 Li

1 ð1Þ
0 6 li
k 6 Li

kþ1 � Li
k

� �
8 k ¼ 2;3; . . . ;K ð2Þ
ICEði; tÞ ¼
X

k

li
k ð3Þ
IPEði; tÞ ¼
X

k

oi
k � l

i
k ð4Þ

where i = 1, 2, . . ., I represents an index used to identify industrial
customers; index k = 1, 2, . . ., K represents the step of price-quantity
offer package; li

k and oi
k are the accepted load reduction and the

offer price of industrial customer i in step k of price-quantity offer
package; Li

k is the maximum load reduction of industrial customer
i in step k; Li

Min is the minimum load reduction that an industrial
customer can carry out; ICE(i, t) and IPE(i, t) are the total scheduled
load reduction quantity and related cost prepared by the industrial
customer i in period t.

At each hour, the sum of the scheduled energy reduction and
reserve provided by each industrial load should not be greater than
its maximum load reduction offer ðLi

MaxÞ. This means that the
uncommitted load reduction capacity of each industrial customer’s
offer package in the energy scheduling can be scheduled for the
reserve requirement. The reserve provided by each industrial
customer is calculated as follows:

ICEði; tÞ þ ICRði; tÞ 6 Li
Max ð5Þ
IPR i; tð Þ ¼ ICR i; tð Þ � qR
i;t ð6Þ

where t represents index of optimization period; ICR(i, t), IPR(i, t)
represent the scheduled reserve and its cost provided by industrial
customer i in period t, respectively; qR

i;t is price offer for providing
reserve.
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2.2. Commercial customer

Commercial consumers always offer the maximum amount of
possible load reduction at the desired price for curtailment. The
equations used for modeling the behavior of the commercial cus-
tomer b, participating in both energy reduction and reserve com-
mitment are given as follows:

CCEðb; tÞ þ CCRðb; tÞ 6 CCmax
b;t ð7Þ

CPEðb; tÞ ¼ CCEðb; tÞ � qE
b;t ð8Þ

CPR b; tð Þ ¼ CCR b; tð Þ � qR
b;t ð9Þ

where b = 1, 2, . . ., B represents index of commercial customers,
CCE(b, t) and CCR(b, t) are the scheduled load reduction and reserve
provided by commercial customer b in period t; CCmax

b;t represents
the maximum quantity of load reduction offered by commercial
consumer b in period t. qE

b;t and qR
b;t are the price offer of commercial

customer b for energy reduction and the committing reserve in per-
iod t, respectively; CPE(b, t) and CPR(b, t) are the cost due to load
reduction and committing reserve provided by commercial
customer b in period t.

2.3. Residential customer

Due to the highest energy demand in the industrial and com-
mercial sector, most of researches have been focused on energy
management in this area. However, the residential sector should
be also considered, as this sector is the one that experiences the
strongest increase of load demand. Moreover, because of the num-
ber of users in the residential sector, its consumption is increasing
in recent years, reaching the 28.8% of the total electricity consump-
tion in the EU [42]. Therefore, the energy management in the
residential sector is an important task for the power system
operators, as already shown in [43].

In this paper, the residential customer is allowed providing load
curtailing or shifting if involved in DR programs. Constraints (10)
show that sum of energy reduction and reserve commitment of each
residential customer at every hour should be lower or equal to the
maximum amount of its offers. The equations used for modeling
the behavior of the hth residential customer are the following ones.

RCEðh; tÞ þ RCRðh; tÞ 6 RCmax
t ð10Þ

RPEðh; tÞ ¼ RCEðh; tÞ � qE
h;t ð11Þ

RPRðh; tÞ ¼ RCRðh; tÞ � qR
h;t ð12Þ

where h = 1, 2, . . ., H represents index of residential customers
(home); RCE(h, t) and RCR(h, t) are the scheduled load reduction
and the reserve provided by residential customer h in period t.
RCmax

t represents the maximum quantity of load reduction offered
by residential customer h in period t; qE

h;t and qE
h;t the price offer

of residential customer h for energy and committing reserve in per-
iod t, respectively; RPE(h, t) and RPR(h, t) represent the cost due to
load reduction and committing reserve provided by residential cus-
tomer h in period t.

The shiftable appliances constraint which shows the time limi-
tation of their performance is given as follows:

Xse

t¼ss

dðt; h; tyÞ ¼ sw ð13Þ

HDAðt; h; tyÞ ¼
X
sw

dðt; h; tyÞ � PNom
h;ty ð14Þ
where indices h and ty represent the hth residential customer and
the tyth shiftable appliance, respectively; PNom

h;ty is the nominal power
consumption of shiftable appliances ty at home h that turn on in
period t ðss 6 t 6 seÞ; d(t, h, ty) is on/off status (1/0) of home
appliances ty at home h and in period t. For shiftable load scheduling,
ss and se represent the desired start and end time of the shiftable
appliances working period, respectively, and sw is the working
period. Also, it is assumed that the working period of the shiftable
appliances cannot be interrupted.
3. Uncertainty modeling of renewable generation

It is assumed that wind turbines and PV units are installed in
the MG. As the wind and solar have a probabilistic nature, the out-
put power of these units is intermittent. To model the uncertain-
ties related to wind and PV generation, two probability density
functions are implemented.

3.1. Wind generation modeling

The Rayleigh probability density function (PDF) is regularly
used as a proper expression model of wind speed behavior in each
forecasted period [44]. Rayleigh PDF is a special case of Weibull
PDF in which the shape index is equal to 2.

f wðvÞ ¼
2v
c2

� �
exp � v

c

� �2
� �

ð15Þ

where fw(v), c and v are Rayleigh PDF, scale index and wind speed,
respectively. If the mean value of the wind speeds (vm) for a site is
known, then the scaling index c can be calculated as shown in (16)
and (17):

vm ¼
Z 1

0
vfwðvÞdv ¼

Z 1

0

2v2

c2

� �
exp � v

c

� �2
� �

dv ¼
ffiffiffiffi
p
p

2
c ð16Þ

c ’ 1:128vm ð17Þ

The output power of the wind turbine is calculated using the
wind turbine power curve parameters as described by Eq. (18).

PwðvÞ ¼
0; 0 6 vaw 6 vci

Prated � vaw�vcið Þ
ðvr�vciÞ

; Pratedv r 6 vaw 6 vco vci 6 vaw 6 v r

0; vco 6 vaw

8><
>: ð18Þ

where vci, vr and vco are the cut-in speed, rated speed and cut-off
speed of the wind turbine, respectively.

3.2. Solar generation modeling

The output of PV mainly depends on irradiance. The distribu-
tion of hourly irradiance at a particular location usually follows
a bimodal distribution [45,46], which can be seen as a linear
combination of two unimodal distribution functions [47]. A Beta
PDF is utilized for each unimodal [13,15], as set out in the
following:

f bðsiÞ¼
C aþbð Þ
C að ÞC bð Þ�siða�1Þ�ð1�siÞðb�1Þ for 06si61;aP0;bP0

0 otherwise

(

ð19Þ

where si represents the solar irradiance (kW/m2). To calculate the
parameters of the Beta distribution function (a, b), the mean (l)
and standard deviation (r) of the random variable are utilized as
follows:



Fig. 1. The procedure in Latin hypercube sampling method.

Fig. 2. The original and reduced scenario by K-means clustering algorithm.
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b ¼ ð1� lÞ � l� ð1þ lÞ
r2 � 1

� �
ð20Þ
a ¼ l� b
1� l

ð21Þ

Given the irradiance distribution and irradiance-to-power
conversion function, the PV power distribution can be obtained.
The irradiance-to-power conversion function used in this paper is
similar to that used in [48]:

PpvðsiÞ ¼ gpv � Spv � si ð22Þ

where Ppv(si) represents PV output power (kW) for irradiance si; gpv

and Spv are the efficiency (%) and total area (m2) of PV, respectively.
Fig. 3. Typical microg
3.3. Scenario generation

In this paper, the Latin hypercube sampling (LHS) is imple-
mented in order to combine and generate scenarios of wind and
solar power generations. The LHS method offers great benefits in
terms of increased sampling efficiency and faster run time com-
pared to the traditional Monte Carlo sampling method [49]. As a
result, LHS method is used to generate samples of wind speed
and solar irradiation. The LHS method is divided into two steps
including sampling and combination. In the sampling step, 4000
samples are generated to represent the stochastic nature of wind
speed and solar irradiation. For this end, the cumulative distribu-
tion function of wind speed and solar irradiation are divided into
4000 intervals with equal probability of 1/4000. Then for each ran-
dom variable, i.e., wind speed and solar irradiation, the following
procedure, as shown in Fig. 1, is applied.

For i = 1 to 4000 DO

Step 1: A value is randomly selected from each interval. The
sampled cumulative probability at interval ith is:

Probi ¼
1

4000

� �
ru þ

ði� 1Þ
4000

ð23Þ

where ru e (0, 1) is a uniformly distributed random number.
Step 2: The sampled value is transformed into the value xi using
the inverse of the distribution function F�1:

xi ¼ F�1ðProbiÞ ð24Þ

END FOR
rid test system.
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Fig. 4. Daily load curves for the three load types of The MG.

Table 1
The technical and economical features of diesel generators.

Unit Cost coefficient Technical constraints

aj ($) bj ($/kW h) cj ($/kW h2) Startup ($) Pmin (kW) Pmax (kW)

DG1 0.184 0.091 0.0061 0.15 30 300
DG2 0.221 0.142 0.0056 0.21 40 400
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Fig. 5. Mean value of hourly wind speed.
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Fig. 6. Mean value of hourly solar irradiance.

Table 2
Standard deviations of solar irradiance and wind speed.

Hour Solar r Wind r Hour Solar r Wind r

1 – 0.021 13 0.282 0.179
2 – 0.047 14 0.265 0.235
3 – 0.078 15 0.237 0.292
4 – 0.114 16 0.204 0.347
5 – 0.128 17 0.163 0.430
6 0.035 0.137 18 0.098 0.487
7 0.110 0.135 19 0.032 0.463
8 0.182 0.139 20 – 0.460
9 0.217 0.157 21 – 0.421

10 0.253 0.138 22 – 0.417
11 0.273 0.129 23 – 0.420
12 0.284 0.152 24 – 0.464

Table 3
Hourly price of open market.

t 1 2 3 4 5 6
$/MW h 47.47 31.64 31.65 32.60 40.78 38.64
t 7 8 9 10 11 12
$/MW h 158.95 384.14 67.27 52.29 44.59 108.49
t 13 14 15 16 17 18
$/MW h 60.64 40.88 28.50 38.75 35.55 112.42
t 19 20 21 22 23 24
$/MW h 575.58 87.72 35.06 47.18 61.27 33.90

Table 4
Price-quantity offer package for kW industrial customers (IC).

Quantity (kW)
Price (Cent/kWh)

IC1 0–5 5–10 10–50 50–70
7 15 29 41
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The Cholesky decomposition method is adopted to combine the
sampled values of wind speed and solar irradiation because this
method gives the smallest correlation coefficients between vari-
ables [50].
IC2 0–5 5–20 20–30 30–60
5 7.5 31 49
3.4. Scenario reduction technique

In stochastic programming, when the number of scenarios
increases, the runtime will also raises. It is a problem for this
approach, since for 24-h scheduling of energy and reserve, the
operator has to decide as fast as possible. An efficient scenario
reduction method is therefore required in order to decrease the
computational time required for simulating a large number of sce-
narios [50]. In this paper, K-means clustering algorithm as clarified
in [51] is selected to reduce the number of scenarios. The aim of
this algorithm is to arrange original scenarios of wind speed and
solar irradiation into clusters according to similarities. The centroid
of each cluster is defined as the mean value of wind speed and
solar irradiation allocated to each cluster. According to this
definition, the K-means algorithm is based on the iterative proce-
dure described below:

1: Select the number of required clusters based on the specific
problem.
2: Assign the initial centroid of each cluster randomly.
3: WHILE change in the cluster compositions becomes small
4: Calculate the distances between each original scenario and
each cluster centroid.
5: Assign each original scenario to the closest cluster based on
distances calculation in 3.



Table 5
Commercial customers (CC) load reduction offer.

Hour CC1 CC2

Maximum Reduction (kW) Price (kW h) Maximum Reduction (kW) Price (kW h)

8 15 6 12 14
9 9 7 24 9

10 5 4 5 12
13 7 10 – –
14 7 50 – –
15 21 60 16 12
16 7 8.5 19 8
17 10 6 25 60
18 4 10 18 60
19 15 20 10 30
20 28 30 18 10
21 10 30 21 6
22 3 30 8 20
23 6 30 – –
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6: Calculate new cluster centroids using the original scenarios
assigned to each cluster.
7: END WHILE

Each cluster represents a scenario which consists of two differ-
ent values, i.e. mean value of wind speed and solar irradiation. The
number of each cluster scenarios divided by the total number of
original scenarios provides the probability of each scenario, ps, that
reflects its possibility of occurrence in the future. An example of
scenario reduction is shown in Fig. 2.
4. Stochastic scheduling formulation

In order to perform day-ahead energy and reserve scheduling,
the Microgrid Central controller (MGCC) receives and stores
information from responsive loads and DGs (renewable and
conventional units) and the electricity market.
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Fig. 8. Scheduled energy without DR.
4.1. Objective function

To model the wind and PV power generations’ uncertainties
within the MG energy and reserve scheduling, a two-stage stochas-
tic programming framework is developed. A two-stage stochastic
microgrid energy scheduling model allows making an optimal
decision on the day-ahead energy and reserve transactions in the
first stage while considering the real-time operations with the
wind/solar power variability in the second stage. By using the pro-
posed two-stage stochastic framework, the day-ahead energy and
reserve scheduling are determined in the first stage with the objec-
tive to identify the optimal amount of electricity to be purchased
from the main grid and the commitment of DG units over the next
24 h. These first-stage decision variables do not belong to a specific
scenario. On the other hand, the variables in the second stage are
related to scenarios and vary with scenarios.

As the power output of wind and solar generating units in one
scenario is different from another, the purchased power from the
main grid and non-renewable DG units, as well as load
curtailments, change in each scenario in order to keep the balance
between generation and consumptions. Therefore, based on each
scenario, the new set points for each energy sources are
determined. The objective function EC, that should be minimized,
represents the expected operational cost in the MG mode over
the next 24 h [52,53].

As shown in the objective function, the second-stage variables
are distinguished by index s that shows the corresponding sce-
nario. Also, the second-stage terms are multiplied by the probabil-
ity of scenarios ps in order to reflect the likelihood of each scenario
in scheduling results.
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In the first-stage part of the objective function, Pg(t) and qt
E

respectively represent, the scheduled purchased energy from the
main grid and hourly electricity price of the market in period t;
j = 1, 2, . . ., J is the index of non-renewable DGs; CDG(j, t), RDG(j, t),
qR

j and SU(j, t) are the hourly fuel cost, committed reserve, reserve
price and start-up cost of non-renewable DG j in period t, respec-
tively; IPE(i, t), CPE(b, t) and RPE(h, t) represent the costs due to load
reduction provided by industrial, commercial and residential cus-
tomers in period t, respectively; IPR(i, t), CPR(b, t) and RPR(h, t) rep-
resent the cost due to committing reserve provided by industrial,
commercial and residential customers in period t, respectively.

In the second-stage part of the objective function, ps is the prob-
ability of scenario s. Cs

DGðj; t; sÞ represents the hourly fuel cost of
non-renewable DG j in period t and scenario s; IPs(i, t, s), CPs(b, t, s),
and RPs(h, t, s) represent the cost due to required load reduction
provided by industrial, commercial and residential customers in
period t and scenario s, respectively; E(s, t) represents the amount
of involuntarily load shedding in period t and scenario s; Vt

represents the value of lost load in period t. The involuntarily load
shedding is used in this model to prevent committing more reserve
in some scenarios with low probability [54].

The fuel cost of a generator can be generally expressed as a
function of its real power output and can be modeled by a
quadratic polynomial [55]. The operational cost of a distributed
generation unit (like a diesel generator) with a quadratic cost func-
tion CDG(j, t) is given by [56]:

CDGðj; tÞ ¼ aj � uðj; tÞ þ bj � PDGðj; tÞ þ cj � P2
DGðj; tÞ ð26Þ

where PDG(j, t) represents the scheduled active output power of
non-renewable DG j in period t; aj, bj and cj represent the cost coef-
ficient of DG j.

To implement a linear programming approach, the non-linear
cost function of DG is approximated by a linear function that for
practical purpose is indistinguishable from the nonlinear model
[57]. This method is detailed in [34].

4.2. Constraints

The constraints of the stochastic optimization method are
described below:

4.2.1. Load balance

Pg tð Þ þ
XJ

j¼1

PDGðj; tÞ þ
XW
w¼1

Pt
w þ

XPV

pv¼1

Pt
pv þ gþ � PþB tð Þ � P�B tð Þ

¼ PL tð Þ �
X

i

ICE i; tð Þ �
X

h

RCEðh; tÞ �
X

b

CCEðb; tÞ 8 t
ð27Þ

where Pt
w and Pt

pv represent the mean values of wind power of wind
turbine w and the solar power of PV unit pv in period t, respectively;
PþB ðtÞ and P�B ðtÞ represent the scheduled battery discharge and
charge power in period t, respectively; g+ represents the battery
charge efficiency coefficients; PL(t) and Loss(t) represent the total
hourly demand and total network losses in period t, respectively;
ICE(i, t), CCE(b, t) and RCE(h, t) represent the scheduled load
reductions quantity prepared by the industrial, commercial and res-
idential customers in period t, respectively.

The energy balance at each scenario should also be satisfied.

Pg tð Þ þ
XJ

j¼1

Ps
DGðj; t; sÞ þ

XW
w¼1

Ps
w s; tð Þ þ

XPV

pv¼1

Ps
pv s; tð Þ þ gþ � PþB tð Þ

� P�B tð Þ

¼ PL tð Þ �
X

i

ICs b; t; sð Þ �
X

b

CCs i; t; sð Þ �
X

s

RCsðh; t; sÞ

� E s; tð Þ 8 t; s ð28Þ

where Ps
DGðj; t; sÞ represents the active output power of non-renew-

able DG j in period t and scenario s; Ps
wðs; tÞ and Ps

pvðs; tÞ represent,
respectively, the output power of wind turbine w and of PV system
pv in period t and scenario s; ICs(i, t, s), CCs(b, t, s) and RCs(h, t, s)
represent the required load reduction quantity prepared by the
industrial, commercial and residential customers in period t and
scenario s, respectively.

4.2.2. Demand response participants’ constraints
The scheduled reserves offered by Industrial (ICR(t)), commer-

cial (CCR(t)) and residential (RCR(t)) customers at each hour are
defined as the additional load demand reduction of each customer
in each scenario if compared to its scheduled load demand reduc-
tion. The selection of the maximum value guarantees that the
scheduled load reserve can cover load reduction’s requirement in
all scenarios. In other words, the reserve provided by a customer
is the largest amount of load reduction deviation in all possible
scenarios away from the scheduled ones.

ICR i; tð ÞP ICs i; t; sð Þ � ICE i; tð Þ 8 s; i; t ð29Þ

CCR b; tð ÞP CCs b; t; sð Þ � CCEðb; tÞ 8 s; b; t ð30Þ

RCR h; tð ÞP RCs h; t; sð Þ � RCEðh; tÞ 8 s; h; t ð31Þ

Regarding Eqs. (29)–(31), the differences between load reduc-
tions in each scenario from their scheduled values represent the
corrective actions required for each scenario. These corrective
actions are carried out by using the scheduled reserve capacity.
So, the additional load reduction in each scenario determines the
required reserve.

The reactive power reduction of each load in the DR program is
considered to be proportional to the active power reduction
according to the power factor of the considered load.

4.2.3. Non-renewable DG power and reserve constraints
The non-renewable distributed generation units have a maxi-

mum and minimum generating capacity beyond which it is not
feasible to generate due to technical reasons. Generating limits
are specified as upper and lower limits for the real and reactive
power outputs.

PDG j; tð Þ þ RDG j; tð Þ 6 Pmax
DG;j:u j; tð Þ 8 j; t ð32Þ

PDG j; tð ÞP Pmin
DG;j:u j; tð Þ 8 j; t ð33Þ

where u(j, t) represents the on/off status (1/0) of the non-renewable
DG j in period t; Pmax

DG;j and Pmin
DG;j are, respectively, the maximum and

minimum output power limits of non-renewable DG j.
The start up cost (SU(j, t)) of DG units is calculated as follows:

SUðj; tÞP Scj � ðuðj; tÞ � uðj; t � 1ÞÞ ð34Þ

SUðj; tÞP 0 ð35Þ

where Scj represents the start-up cost of non-renewable DG j.



0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Sc
h

ed
u

le
d

 p
ow

er

Hour

Wind

Pv

Grid

Diesel

Fig. 10. Scheduled energy in the case with DR.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Lo
ad

 d
em

an
d

 r
ed

u
ct

io
n

 (
k

W
)

Hour

Residential Commercial Industrial

Fig. 11. Scheduled demand curtailment in the case with DR.

M. Mazidi et al. / Energy Conversion and Management 86 (2014) 1118–1127 1125
The spinning reserves (RDG(j, t)) provided by DG units are calcu-
lated as follows:

RDG j; tð ÞP Ps
DG t; sð Þ � PDG j; tð Þ 8 j; t; s ð36Þ

Regarding the Eq. (36), the DG power output deviation in each
scenario ðPs

DGÞ is compared to the scheduled one (PDG) and the
DG reserve (RDG) is computed.

4.2.4. Battery charge and discharge constraints
The battery used in the MG cannot charge and discharge arbi-

trary. The following constraint should be considered for the sched-
uling program of the battery:

SOCðtÞ ¼ SOCðt � 1Þ þ g� � P�B ðtÞ � PþB ðtÞ ð37Þ

SOCMin 6 SOCðtÞ 6 SOCMax ð38Þ

where SOC(t) is the battery state of charge that defines how much
energy is stored in it; g� represents the battery charge efficiency
coefficients; SOCMin and SOCMax represent, respectively, the mini-
mum and maximum capacity of battery. Also the charge and dis-
charge limit should be considered as follows:

P�B ðtÞ 6 P�B Max ð39Þ

PþB ðtÞ 6 PþB Max ð40Þ

X tð Þ þ Y tð Þ 6 1; X;Y 2 0;1f g ð41Þ

where P�B Max and PþB Max represent the battery charge and discharge
ramp rate limits, respectively; X(t) and Y(t) are the binary variables
that model the battery charge and discharge state in each period.

5. Case study

The proposed model was tested on a typical MG depicted in Fig
3. Three types of customers are considered in the MG: one hundred
of residential customers, two commercial and two medium
industrial customers. The maximum electricity demand of the
aggregated residential, commercial and industrial customers are
200 kW, 100 kW and 300 kW, respectively. Aggregated daily load
curves for the three load types are shown in Fig. 4. The technical
aspects of two diesel generators installed in the MG are obtained
from [58,59] and shown in Table 1 while their cost function
calculation is described in [60].The spinning reserve of DGs are
priced at a rate equal to 20% of their highest marginal cost of the
energy production [61].

The energy storage system consists of a battery with a capacity
of 30 kW which charging and discharging ramp rate limits for each
hour equal to 10 kW and 20 kW, respectively. Four wind turbines
are installed in the test system, they are of the same type:
100 kW power rated with cut-in speed of 3 m/s, nominal speed
of 12 m/s, and cut-out speed of 25 m/s [62]. Other specifications
of the wind turbines are given in [62]. Ten 10 kW PV systems are
considered in the MG: each of them is composed of 40 � 250 W
solar panels with g = 18.6% and SPV = 40 m2 [63]. The mean values
of hourly wind speed and solar irradiance are shown in Figs. 5
and 6 [64,65]. The variance of wind speed and solar irradiance is
also given in Table 2 [65]. The VOLL that is needed to estimate
the social cost caused by interruptions is taken as 1.5 $/kW h.
The hourly energy price of Ontario electricity market on Wednes-
day 23 January 2013 [66] has been assumed as shown in Table 3.
The industrial and commercial customers’ price and amount of
offers for load reduction is presented in Tables 4 and 5,
respectively. It is assumed that forty percent of residential customers
are willing to participate in DR programs during the scheduling
horizon. In this case study, it has been assumed that each house
has a demand curtailment capability of 500 W. Also, the residential
customers participating in a DR program have a dishwasher and a
washer dryer as shiftable appliances. The power consumption of
the dishwasher and the washer/dryer are assumed to be 700 and
1200 W, respectively [67].

In order to show the advantage of stochastic optimization in
allocating reserve for each period, the amount of scheduled reserve
using the proposed stochastic method and conventional determin-
istic one has been compared in Fig. 7. In the deterministic approach,
the amount of reserve requirement is assumed as 30% of the fore-
casted renewable power generation in each period [68,69].

As shown in Fig. 7, the scheduled reserve in the proposed sto-
chastic method is lower than the one in the deterministic method.
In the stochastic method, the amount of reserve is determined
based on the probability of scenarios and the price of reserve. So,
it is not preferred to allocate much reserve for a scenario with very
low probability.

In order to analyze the effect of DR programs, the stochastic
energy and reserve scheduling is carried out in two cases: with
and without considering DR programs.

Figs. 8 and 9 show, respectively, the scheduled energy and
reserve in the case without considering DR programs. As shown
in Fig. 9, the diesel generator units provided all the reserve in each
period. So, as illustrated in Fig. 8, one of the diesel generators must
at least be turn on during all the scheduling period in order to pro-
vide the required spinning reserve. So, during the periods with
high electricity prices, the diesel generators loose the chance to sell
energy due to the necessity of providing spinning reserve and
operator is forced to buy the energy form the main grid with a
higher price. On the other hand, during the hours when the
electricity prices are low, the diesel generator has been forced to
turn on with a higher price due to the need of providing spinning
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Table 6
Computation time vs. accuracy.

Scenario number Computation time (s) Discrepancy (%)

4000 23 0
2000 16 0.42
1000 11 0.83

500 5 1.3
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reserve. It is worth to mention that in order to provide spinning
reserve, a generator should be turned on.

The operational planning is also performed by taken into
account DR programs. Figs. 10 and 11 show, respectively, the
energy scheduling and load demand reductions. Also, the sched-
uled reserve is illustrated in Fig. 12.

Fig. 11 evidences that the load demand reductions have been
arranged during hours with high electricity prices. This means that
the operator purchases load curtailment when the hourly electric-
ity price is high. Moreover, as shown in Fig. 12, the reserve for com-
pensating wind and solar generation variability has been provided
by both diesel generators and loads. As a result, the diesel genera-
tors are turned off during the hours with low electricity prices.

In order to analyze the effect of the scenario reduction method
in the proposed method, the computation time and accuracy of
results have been compared in Table 6. In this comparison, it is
assumed that the case study with 4000 scenario is the base case
and the discrepancy with other cases is compared with the base
case. As shown, the operator can select the number of reduced sce-
nario on the basis of a trade-off analysis between the computation
time and the accuracy of the results.
6. Conclusions

In this paper, the operational scheduling problem was formu-
lated in accordance with various constraints related to the opera-
tion of a MG. The problem formulation includes allocating
reserve capacity, optimal battery scheduling, taking into account
the uncertainty of the wind and solar power generation. The Latin
hypercube sampling method has been used in order to combine
and generate different scenarios of wind and solar power genera-
tions. The results evidenced that the stochastic method allowed
lower reserve requirements if compared with the conventional
deterministic method. The inclusion of demand side participation
in both energy and reserve scheduling caused a better solution.
Moreover, the effect of K-means clustering algorithm as a scenario
reduction technique has been analyzed and the results evidenced
that this method can reduce the computation time of the proposed
stochastic method while maintaining acceptable accuracy in result.
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