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In this paper a stochastic multi-objective economical/environmental operational scheduling method is
proposed to schedule energy and reserve in a smart distribution system with high penetration of wind
generation. The proposed multi-objective framework, based on augmented e-constraint method, is used
to minimize the total operational costs and emissions and to generate Pareto-optimal solutions for the
energy and reserve scheduling problem. Moreover, fuzzy decision making process is employed to extract
one of the Pareto-optimal solutions as the best compromise non-dominated solution. The wind power
and demand forecast errors are considered in this approach and the reserve can be furnished by the main
grid as well as distributed generators and responsive loads. The consumers participate in both energy and
reserve markets using various demand response programs. In order to facilitate small and medium loads
participation in demand response programs, a Demand Response Provider (DRP) aggregates offers for
load reduction. In order to solve the proposed optimization model, the Benders decomposition technique
is used to convert the large scale mixed integer non-linear problem into mixed-integer linear program-
ming and non-linear programming problems. The effectiveness of the proposed scheduling approach is
verified on a 41-bus distribution test system over a 24-h period.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Air pollution and global warming have been recognized for
years the main critical environmental issues in many countries.
Accordingly, there has been an international movement in the pro-
motion of renewable technologies for electricity generation and
the development of national emissions limits [1]. A number of
directives for controlling emissions are currently in place, that
have particular impact on the electricity industry, such as the Kyo-
to Protocol [2], the Large Combustion Plant Directive [3], and the
National Emissions Ceilings Directive [4]. Moreover, any imposed
constraint on system operation results in an increase in operation
costs and may have a detrimental effect on emissions [5]. With
proper scheduling of electricity resources, such as low-carbon
power plant technologies, renewable generation units and Demand
Response (DR), the air pollutant emissions can be, however, re-
duced. The proper scheduling of electricity resources can be ad-
dressed by implementing the so called ‘‘smart grid’’ approach.
Demand response (DR) is one of the key approaches that can
fully be enabled by smart grids. DR is a set of actions taken to re-
duce consumer electricity consumption when contingencies, such
as unit outage or unpredictable change in demand or renewable
generation, occur that threaten supply demand balance. Moreover,
if market conditions that raise electric supply costs occur, DR is one
of the best solutions. In other words, DR programs and tariffs may
be designed to improve the reliability of the electric grid or to low-
er the use of electricity during peak hours, thus reducing the total
system operation costs.

The implementation of real-time information systems, Ad-
vanced Metering Infrastructure (AMI), improved communication
capabilities [6], intelligent sensors, and improved infrastructure
for control systems will, in fact, transform the conventional distri-
bution system into a Smart Grid [7]. It will bring flexibility in dis-
tribution system operations via online control of Distributed
Energy Resources (DERs) and will allow demand side management
programs actuation [8]. An energy management system (EMS)
aiming at optimizing the smart grid’s operation has been proposed
in [9]. The EMS behaves as a sort of aggregator of distributed en-
ergy resources allowing the SG participating in the open market.
By integrating demand side management (DSM) and active man-
agement schemes (AMS), it permits an enhanced exploitation of
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renewable energy sources and a reduction of the customers’ energy
consumption costs with both economic and environmental bene-
fits. In [10], a methodology for optimal reconfiguration of distribu-
tion networks integrated with an Optimal Power Flow (OPF) is
presented. The Benders decomposition algorithm is applied for
solving the problem. However, renewable generation and demand
response programs are not considered.

On the other end, environmental concerns that arise due to the
operation of fossil fuel fired electric generators, change the
classical economic electricity operational planning problem into a
multi-objective emission/economic operational planning problem
[11–13]. A multi-objective emission/economic dispatch for trans-
mission system based on AC load flow has been presented in
[11]. In [12], a generation dispatch model with large scale wind
systems is proposed in which environmental and fuel costs are
modeled by using a multi-objective method. A multi-objective
optimal power flow is used in [13] to simulate how the parties’
incentives affect the choice of Distributed Generators (DGs) capac-
ity within the limits of the existing network. The authors explored
the costs, benefits and tradeoffs associated with DGs in terms of
connection, losses and, in a simple fashion, network deferral.

In [14], a method for energy resource scheduling in smart distri-
bution system has been presented in which day, hour and 5 min
ahead scheduling were considered. The short-term scheduling
has been used to re-schedule the previously obtained program tak-
ing advantage of the better accuracy of short-term wind forecast-
ing in order to obtain more efficient resource scheduling
solutions. In [15], an agent-based model has been used to validate
a smart grid environment. Moreover, the paper presented a meth-
od based on demand able to mitigate the impact of wind power
variability, primarily through thermostatically controlled loads.
The result showed that a smarter grid has the potential to balance
fluctuations and intermittencies occuring when multiple and inter-
mittent suppliers are integrated into the distribution system. A
methodology for day-ahead energy resource scheduling in a smart
distribution system has been presented in [16]. DG units and elec-
tric vehicles as well as the distribution network constraints have
been taken into account in the model. Also, the paper focused on
the reduction of the execution time allowed by the proposed mod-
el by using a modified particle swarm optimization.

In this paper a multi-objective approach for energy and reserve
scheduling of distribution systems is presented in which various
types of demand response programs are taken into account. The
innovative contributions of the proposed method are highlighted
as follows:

� Include and aggregate wind generation and load demand uncer-
tainties in distribution systems operational planning model.
� Evaluate load demand participations in both energy and reserve

scheduling.
� Include the emission reduction target in distribution systems

operation.

The rest of the paper is organized as follows: Section 2 describes
different types of demand response programs. Wind generation
and electricity demand uncertainties are modeled in Section 3. In
Section 4, the stochastic scheduling of energy and reserve is formu-
lated. Some simulation results are described in Section 5, and final-
ly concluding remarks are presented in Section 6.

2. Demand response programs and providers

In this section the different types of demand response models
used in this paper are described. The way DR agents participate
in these DR programs is also presented.
2.1. Demand response programs

The demand response programs implemented in the proposed
method are categorized in demand energy reduction and demand
reserve as follows [17].
2.1.1. Demand bidding/buyback programs
Demand bidding/buyback programs encourage heavy consum-

ers (like industrial and commercial loads) to offer load reductions
at a price at which they are willing to be curtailed.
2.1.2. Ancillary Services Market Programs
In this type of programs, customers can bid load curtailment as

reserve capacity for the system. If their bids are accepted, they are
paid at the reserve price for their involvement and for remaining in
standby. If their load curtailments are needed, they are called by
the Independent System Operator (ISO) or Distribution System
Operator (DSO), and can be also paid at their accepted offer price
for load reduction.
2.2. Demand Response Service Provider (DRSP)

Service Providers (SPs) are defined as the organizations provid-
ing services to electrical customers and to utilities. An electric
utility may be a SP, but that is not essentially the case. In some
states, such as Texas, the electricity market has been restructured
so that a SP may be a company completely distinct from the elec-
tric utility and customers can choice among competing SPs.
Several third-party service providers offer demand response
aggregation, energy management services, and other similar of-
fers [18].

Actors in the service provider domain carry out services to sup-
port the business processes of electric network producers, distrib-
utors, and customers. These business processes range from
conventional utility services, such as billing and customer account
management, to improved customer services, such as management
of energy use and home energy generation.

Demand Response Providers (DRPs) are also some types of
SPs that provide demand response services to electrical custom-
ers and to utilities. DRPs aggregate small electricity customer’s
response; they register smaller customers, aggregate their of-
fers, and submit the aggregated offers on behalf of them in
the wholesale market. DRPs are to be paid for their services if
they improve the operation of the electric grid. An Energy Ser-
vices Interface (ESI) serves as the information management
gateway through which the customer domain interacts with
DRPs. The DRP acts as a medium between DSO and small cus-
tomers and enables the participation of small customers in
the DR programs.

In this paper, some DRPs are defined in order to aggregate
offers for load reduction made by their determined consumers.
Fig. 1 depicts a typical price–quantity offer package containing
four pairs where ow is price offer in step w. For each hour, a
DRP submits its price–quantity offer as a package. Each step
in the typical price–quantity offer package submitted by a cus-
tomer that is willing to reduce its consumption is shown in
Fig. 1. At each hour, LMax is the sum of all loads reduction
and LMin is the minimum load reduction that a customer can
carry out. For example, let assume that in an energy scheduling
procedure, L3 kW of load reduction are accepted from a DRP.
The DRP is paid at o1 for L1, o2 for L2 � L1, and o3 for L3 � L2.
The equations for the ith DRP are the following ones from
(1)–(4).
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Fig. 1. The steps price–quantity offered package of DRP.

Fig. 2. An indicative wind speed distribution model.
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X
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w � l

i
w ð4Þ

where li
w is the accepted load reduction of DRP i at step w of the

price–quantity offer package; DPE(i, t) and DCE(i, t) are, respectively,
the total accepted load reduction quantity and payment for the ith
DRP in period t.

At each hour, the sum of scheduled energy reduction and
reserve provided by each DRP should not be greater than its max-

imum load reduction offer Li
Max

� �
. This means that the uncommit-

ted load reduction capacity of each DRP’s offer package during
energy scheduling can be also scheduled for reserve requirement.
The reserve prepared by DRPs is calculated as follows:

DPEði; tÞ þ DPRði; tÞ 6 Li
Max ð5Þ

DCRði; tÞ ¼ DPRði; tÞ � qR;pði; tÞ ð6Þ

where DPR(i, t) and qR,p(i, t) are the scheduled reserved provided by
DRP i and the reserve price for being in standby in period t, respec-
tively; Li

Max is the maximum quantity of load reduction offered by
DRP i, and DCR(i, t) is the reserve cost that is paid to DRP.

On the other hand, large consumers, corresponding to industrial
and commercial customers, can directly participate in DR pro-
grams. These consumers offer their quantity–price pair offers for
load reduction or in order to provide reserve to the system opera-
tor. The equations of individual loads (ILs), participating in both
energy reduction and reserve supply programs, are given as
follows:

ILEðb; tÞ þ ILRðb; tÞ 6 ILmax
b ðb; tÞ ð7Þ

ICEðb; tÞ ¼ ILEðb; tÞ � qE;lðb; tÞ ð8Þ

ICRðb; tÞ ¼ ILRðb; tÞ � qR;lðb; tÞ ð9Þ

where ILE(b, t) and ILR(b, t) are, respectively, the scheduled load
reduction and reserve prepared by consumer b in period t;
ILmax

b ðb; tÞ is the maximum load reduction offered by consumer b
in period t; qE,l(b, t) and qR,l(b, t) are the price offers of consumer b
for energy reduction and for being in standby for reserve in period
t, respectively. The cost of load reduction and committing reserve,
that are paid to individual loads participating in DR programs, are
ICE(b, t) and ICR(b, t), respectively.

3. Wind generation and demand uncertainty modeling

In this section, the wind generation and demand modeling con-
sidered in the scheduling approach are explained.

3.1. Wind generation modeling

The Rayleigh probability density function (PDF) is regularly
used as a proper expression model of wind speed behavior [19].
Rayleigh PDF is a special case of Weibull PDF in which the shape
index is equal to 2.

f ðvÞ ¼ 2v
c2

� �
exp � v

c

� �2
� �

ð10Þ

where (v), c and v are Rayleigh PDF, scale index and wind speed,
respectively. If the mean value of the wind speed (vm) for a site is
known, then the scaling index c can be calculated as in (11) and (12)

vm ¼
Z 1

0
vf ðvÞdv ¼

Z 1

0

2v2

c2

� �
exp � v

c

� �2
� �

dv ¼
ffiffiffiffi
p
p

2
c ð11Þ

c ’ 1:128vm ð12Þ

In order to integrate the output power of the wind-based DG
units as a multi-state variable in the distribution energy scheduling
formulation, the continuous Rayleigh probability density function
has been divided into intervals, in each of which the wind speed
is within specific limits. The number of intervals is carefully se-
lected for the Rayleigh distribution because a small number of
intervals decreases the accuracy, whereas a large number increases
the problem complexity. A 5-interval wind speed probability dis-
tribution function is illustrated in Fig. 2. The probability of each
interval (Pw) is calculated using Eq. (13):

pw ¼
Z vw2

vw1

f ðvÞdv ð13Þ

where vw1 and vw2 are the speed limits of interval w. The output
power of the wind turbine corresponding to each interval, is
calculated by using the wind turbine power curve parameters as
described by Eq. (14). In order to simplify the analysis, the average
value of each interval (vaw) is used to calculate the output power for
each interval.



Fig. 3. Seven-interval approximation of the Gaussian distribution.

Fig. 4. Scenario tree for combination of wind generation and demand forecasted
values.
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PwðvÞ ¼

0; 0 6 vaw 6 vci

Prated � ðvaw�vciÞ
ðvr�vciÞ

; vci 6 vaw 6 v r

Prated; v r 6 vaw � vco

0; vco 6 vaw

8>>><>>>: ð14Þ

where vci, vr and vco are the cut-in speed, rated speed and cut-off
speed of the wind turbine, respectively.

3.2. Load modeling

The power system operator should forecast the amount of
demand at each of the following hours and days. As the anticipat-
ing process has some errors, the demand forecast will not be 100%
accurate [20,21]. Thus, the uncertainty about future demand is
modeled by a number of states. The demand forecast uncertainty
is often modeled by a normal probability distribution function as
illustrated in Fig. 3 [22–25]. For creating a limited number of
demand states during each hour, it is generally sampled from the
distribution curve shown in Fig. 3.

In the proposed model, the error associated to load demand is
assumed to be normally distributed and the weights pd are given
by the area under the curve between the lower and upper limits
of each interval j.

pd ¼
1

rd

ffiffiffiffiffiffiffi
2p
p

Z uj

lj

e�ðx�df Þ
2=2r2

d dx ð15Þ

where uj and lj are, respectively, the upper and lower limits of load
demand in each interval; df and rd are the net forecast demand and
the standard deviation for normal PDF, respectively.

3.3. Scenario combination

In order to combine different states of wind and demand fluctu-
ations, the scenario tree model is used in the proposed method
[26,27]. As seen from Fig. 4, each scenario consists of two different
states of wind generation and demand forecasted values. Each sce-
nario is assigned a weight ps, that reflects the possibility of its
occurrence. Scenarios considering possible wind power variation
and demand fluctuation at each hour are taken into account.

4. The stochastic energy and reserve scheduling

In the proposed model, energy and reserve scheduling in the
distribution network are managed by the DSO. The interactions be-
tween the DSO and other participants are shown in Fig. 5 [9,28,29].

In order to model the wind power generation and load demand
uncertainties within the energy and reserve scheduling, a two-
stage stochastic programming framework is implemented. In this
procedure, the electrical energy required to supply demand loads
should be scheduled while simultaneously considering the uncer-
tainty associated to wind power and load demand. Hence, variables
pertaining to the energy and reserve costs and payments that are
made before the realization of any scenario should be considered
in the first stage of this model. These variables for each time period
include:

1. Scheduled input power from the main grid and scheduled
power for DGs.

2. Scheduled load reduction for each individual load or DRP.



Fig. 5. Interactions between DSO and participants.

Scenario 1 Scenario 2 Scenario 3

Scenario 4Scenario n

Fig. 6. The solution space of stochastic optimization.
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3. Scheduled spinning reserve for the main grid and DGs.
4. Scheduled reserve for each individual load or DRP.

In the second stage of the model, variables pertaining to each
particular scenario at each time period should be considered. These
variables, which are related to the actual operation of the distribu-
tion system, include:

1. The dispatching (using) of scheduled spinning reserve commit-
ted by the main grid and DGs.

2. The dispatching (using) of scheduled reserve by each individual
load or DRP.

3. The involuntarily load shedding by each consumer.
4. The wind power production.
5. The power flow variables, namely, voltage magnitudes and

angles at each bus, power losses in every line, flow through each
line and power injection at every bus.

The two-stage stochastic model presented in this paper for
short term energy and reserve scheduling in a distribution system
is formulated as a two-stage stochastic programming problem: the
first stage denotes the day-ahead scheduling with its constraints,
while the second stage denotes the distribution system operation
and its constraints. In the proposed method, the scheduling vari-
ables pertaining to the first stage correspond to the market deci-
sions, that also reflect the realizations of stochastic processes
without being explicitly linked to one specific realization, but to
all of them. The cost objective function to be minimized groups
separately those terms representing the costs concerning the
electricity market and those representing the costs incurred during
the actual operation of the distribution system. In other words, in
the distribution system operation procedure, after running the
day-ahead scheduling program, the DSO should announce the
scheduling results related to the required power and curtailed load
demand to the ISO, DGs’ owner and DR participants. The conse-
quent related payments for all actors should be also determined.

In the first stage, the scheduling variables are, therefore, ob-
tained as a result of the optimization procedure and used for deter-
mining the set points of DGs power, load demand reduction and
main grid input power, as well as for payments calculation. The
first stage variables (scheduled variable) do not belong to any sce-
nario and are determined in order to announce the results and for
payment calculation. Since the scheduling variables are not linked
to one specific realization, but depend from all of them and due to
wind generation and load demand uncertainties, the final dis-
patching results will be determined only during the real time oper-
ation. The scheduling variables, determined as a result of the first
stage, will be, thus, different from the dispatching variables that
are determined during the real time operation. Their difference
will determine generation and consumption variations, as well as
costs and payments changes, depending on what scenario will oc-
cur in real time.

The probability of each scenario will determine its importance
and effect on the scheduled result. In Fig. 6, a simple solution space
for a stochastic optimization problem is shown. Each scenario has
an optimal solution according to its allocated wind generation and
demand parameters. The scheduled variables should be deter-
mined in such a way that the cost of corrective actions for changing
the scheduled parameters is minimized. The corrective actions
comprise additional absorbed power from the main grid, additional
load demand reduction or increment of power generation from DG
units.

Scheduled variables represent the outputs of this model which
determines the generation and consumption program of the distri-
bution system through the next 24 h. It is worth noting that sched-
uled variables determine contracting amounts of electricity and
reserve for that the DSO should pay to the electricity market oper-
ator and DRPs. The difference between active power variables of
DGs and main grid as well as load demand reduction in the first
and second stage are taken into account as reserve (corrective ac-
tions). In other words, a scenario variable determines the correc-
tive actions that the operator should perform if that scenario
happens in order to operate the system in a secure and economic
mode. In each scenario, there is a tradeoff between the amount
of reserve requirement and the expected energy not served.

The involuntarily load shedding is used in this model to prevent
committing more reserve in some scenarios with low probability of
occurrence and refers to unplanned load shedding in which the
operator should pay damage cost for power interruptions. The
need to cover all power curtailment due to wind generation and
demand forecast errors by providing reserve, irrespective of their
likelihood of occurrence, will decrease the overall social welfare
and, particularly, may sharply increase the incremental costs of re-
serve and energy [30]. The Value of Lost Load (VOLL) is defined as
the value that an average consumer loses from an unsupplied kWh
of energy. The value of these reductions can be expressed as a cus-
tomer damage function. While an involuntarily load shedding for a
consumer occurs, the damage cost is paid at VOLL to this con-
sumer. In the proposed two-stage stochastic model, the Energy
Not Served (ENS) term in the second stage could affect the result
of the first stage. In other words, the involuntary load shedding
is required when the power shortage due to wind curtailment oc-
curs in a scenario. If reserve is allocated in order to cover wind
power curtailment, the involuntary load shedding is not required.
So, the optimization method carries out a trade-off between ENS
and reserve costs in order to minimize the total costs.



156 A. Zakariazadeh et al. / Energy Conversion and Management 78 (2014) 151–164
Let’s assume, for example, that a diesel generator is scheduled
to generate 800 kW power in a specific hour (first stage). In other
hand, if a scenario where 200 kW of wind curtailment occurs, it
is needed to compensate this power shortage by an energy
resource like DGs, main grid power plants or demand response.
Let’s suppose in this period the diesel generator has the lowest en-
ergy cost, the scenario variable for the diesel generator is set at
1000 kW. It means that when this scenario occurs in real time,
the diesel generator (that has been scheduled at 800 kW power
output) should increase its power up to 1000 kW in order to cover
the wind energy curtailment. So, this additional active power of
200 kW is calculated as a reserve for the diesel generator.

4.1. Assumptions

In this model the following assumptions are considered [28,31].

� Wind generation is assumed to be a regulated activity and thus
wind producers are not considered competitive agents in the
market and, thus, are paid at a regulated tariff.
� The distribution system operator (DSO) is responsible for

energy and reserve scheduling in a distribution system. DSO
purchases its energy and reserve requirements from the whole-
sale electricity market.
� The wholesale hourly electricity price for energy and reserve, as

well as average emission rate of the main grid’s power plants
through the next 24-h period are available.

4.2. Objective function and constraints

The proposed distribution energy and reserve scheduling meth-
od aims at minimizing two objective functions: cost (Fcost) and
emission (FEmission). The stochastic multi-objective optimization
problem is formulated as follows:

MinimizefFcost; FEmissiong ð16Þ

The total expected cost (Fcost) of the distribution network repre-
sents one of the objective functions that should be minimized
[25,32]. The cost objective function has two parts: the first one
(CC) is the sum of contracting energy and reserve costs that should
be paid to the market operator and to consumers participating in
DR programs, while the second part represents the total opera-
tional costs associated to the considered scenarios.

The first part of cost objective function, representing the pay-
ment costs of electricity and reserve during the total scheduling
horizon is given as follows:

CC ¼
XT

t¼1

PgridðtÞ � TaE
gðtÞ þ RgridðtÞ � TaR

gðtÞ
h
þ
XJ

j¼1

CDGðj; tÞ þ RDGðj; tÞ � CR
DGjðtÞ þ

X
b2Nl

ICEðb; tÞ þ ICRðb; tÞ

þ
X
i2I

DCEði; tÞ þ DCRði; tÞ þ
XW
w¼1

kw
t � PwðtÞ

#
ð17Þ

where Pgrid(t) and Rgrid(t) are, respectively, the scheduled purchased
energy and reserve from the main grid in period t. TaE

gðtÞ and TaR
gðtÞ

are the hourly and reserve price of energy, respectively; J is the
number of DGs and CDG(j, t) represents the hourly fuel cost of DG j
in period t; RDG(j, t) and CR

DGjðtÞ are the spinning reserve provided
by DG j and the price of reserve, respectively; Pw(t) and kw

t are the
active power of wind turbine w and the cost of wind energy in per-
iod t, respectively [33–35].

The second part of cost objective function takes into account the
operational costs associated to each scenario (SC(s)) that includes
the costs associated to the energy as well as deployment of reserve
for the considered scenario and its probability of occurrence (p(s)).

The operational cost associated to each scenario is given as
follows:

SCðsÞ ¼
XT

t¼1

Psgridðs; tÞ � TaE
g þ

XJ

j¼1

CsDGðj; t; sÞ þ
X
b2Nl

ICsðb; t; sÞ
"

þ
X
i2I

DCsði; t; sÞ þ ENSðs; tÞ � vollðtÞ
#

ð18Þ

where Psgrid(s, t) is the required purchased power from the main grid
in period t and scenario s; CsDG(j, t,s) represents the operational cost
of DG j in period t and scenario s; DCs(i, t,s) and ICs(n, t,s) are, respec-
tively, the costs associated to both groups of load reductions in per-
iod t and scenario s, respectively; ENS(s, t) and voll(t) are the
Expected Energy Not Served (EENS) and the Value of Lost Load
(VOLL), respectively.

The fuel cost of a generator can be generally expressed as a
function of its real power output and can be modeled by a qua-
dratic polynomial [36]. The operational cost of a DG unit (like a die-
sel generator) with a quadratic cost function CDG(j, t) is given by [9]:

CDGðj; tÞ ¼ aj � uðj; tÞ þ bj � PDGðj; tÞ þ cj � P2
DGðj; tÞ ð19Þ

where aj, bj and cj represent the cost coefficients of DGs; PDG(j, t) and
u(j, t) are the active output power and the binary variable which
shows the on/off state of DG j in period t, respectively.

Accordingly, the DG cost in each scenario (CsDG(j, t,s)) is calcu-
lated as follows:

CsDGðj; t; sÞ ¼ aj � usðj; t; sÞ þ bj � PsDGðj; t; sÞ þ cj � Ps2
DGðj; t; sÞ

ð20Þ

where PsDG(j, t,s) and us(j, t,s) are the active power and the on/off
state of the DG j in period t and scenario s, respectively. In order
to implement a linear programming approach, the non linear
cost function of DG is approximated by a linear function that,
for practical purpose, is indistinguishable from the non-linear
model [37].

The cost objective function of the stochastic energy and reserve
scheduling represents the total expected cost (Fcost) calculated as
follows:

Fcost ¼ CC þ
XS

s¼1

pðsÞ � SCðsÞ ð21Þ

where p(s) is the probability of scenario s .
Electrical loads are supplied by both DGs installed in the distri-

bution network and conventional power plants connected to the
main grid. The emissions of non-renewable DGs (EmiDG) are calcu-
lated as follows:

EmiDG ¼
XT

t¼1

XJ

j¼1

EDG
CO2
ðjÞ � PDGðj; tÞ ð22Þ

where EDG
CO2
ðjÞ is the CO2 emission rate of DG j .

The average emissions due to the power plants of the main grid
(Emigrid) are calculated as follows:

Emigrid ¼
XT

t¼1

Egrid
CO2
ðtÞ � PgridðtÞ ð23Þ

where Egrid
CO2
ðtÞ is the average CO2 emission rate of the power plants

in period t.
The objective function related to the total emissions during the

planning period is calculated as follows:

FEmission ¼ Emigrid þ EmiDG ð24Þ
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The following constraints are considered in the optimization
problem.

4.2.1. Load balance

PgridðtÞ þ
XJ

j¼1

PDGðj; tÞ þ
XW
w¼1

PwðtÞ

¼ PLðtÞ þ LossðtÞ �
X

i

DPEði; tÞ �
X

b

ILEðb; tÞ 8 t ð25Þ

where Pw(t) and PL(t) are the active power of wind turbine w and the
active demand in period t, respectively; Loss(t) represents the total
energy losses in period t .

The energy balance at each scenario should also be satisfied.

Psgridðs; tÞ þ
XJ

j¼1

PsDGðj; t; sÞ þ
XW
w¼1

Pwðs; tÞ

¼ PLðs; tÞ þ Lossðs; tÞ �
X

b

ILsðb; t; sÞ �
X

i

DPsði; t; sÞ

� ENSðs; tÞ 8 t; s ð26Þ

where Pw(s, t) and PL(s, t) are the wind active power and the active
demand in scenario s, respectively. The required load reduction
from DRPs and large loads at each scenario are defined as DPs(i, t,s)
and ILs(b, t,s), respectively. ENS(s, t) is the amount of involuntarily
load shedding at each scenario which should be subtracted from
load demand. This amount of load reductions pertaining to a
specific scenario is defined as the load reserve requirement for
the condition in which this scenario occurs.
4.2.2. Demand response participants’ constraints
The scheduled reserves prepared by DRPs (DPR(i, t)) and indi-

vidual large loads (ILR(b, t)) at each hour are defined as the
additional load demand reduction of each load for each sce-
nario, if compared to its scheduled load demand reduction.
Choosing the maximum value guarantees that the scheduled
load reserve can cover load reduction’s requirement in all
scenarios.

DPRði; tÞP DPsði; t; sÞ � DPEði; tÞ 8 s; i; t ð27Þ

ILRðb; tÞP ILsðb; t; sÞ � ILEðb; tÞ 8 s; b; t ð28Þ

The reactive power reduction of each load in the demand response
program is considered proportional to the active power reduction
according to the power factor of the considered load.

4.2.3. DG power and reserve constraints
The DG units have a maximum and minimum generating capac-

ity beyond which it is not feasible to generate due to technical rea-
sons. Generating limits are specified as upper and lower limits for
the real and reactive power outputs.

PDGðj; tÞ þ RDGðj; tÞ 6 Pmax
DGj � uðj; tÞ 8 j; t ð29Þ

PDGðj; tÞP Pmin
DGj � uðj; tÞ 8 j; t ð30Þ

where Pmin
DGj and Pmax

DGj are the minimum and maximum limits of j th
DG output power, respectively; u(j, t) represents the on/off state of
jth DG.

The start up cost (SU(j, t)) of the DG units is calculated as
follows:

SUðj; tÞ ¼ ScostðjÞ � ðuðj; tÞ � uðj; t � 1ÞÞ ð31Þ

SUðj; tÞP 0 ð32Þ

where Scost(i) is the start up cost of jth DG.
The spinning reserves (RDG(j, t)) provided by DGs and the main
grid (Rgrid(t)) are calculated as follows:

RDGðj; tÞP PsDGðj; t; sÞ � PDGðj; tÞ 8 j; t; s ð33Þ

RgridðtÞP Psgridðs; tÞ � PgridðtÞ 8 s; t ð34Þ

The ramp-rate limits of DGs are given as follows [38]:

PDGðj; tÞ � PDGðj; t � 1Þ 6 RUj 8 j; t ð35Þ

PDGðj; t � 1Þ � PDGðj; tÞ 6 RDj 8 j; t ð36Þ

where RUj and RDj represent, respectively, ramp-up and ramp-down
rate limits of DG j

The minimum up/down time limits of DGs are given as follows
[38]:

Xon
j ðt � 1Þ � Ton

j

h i
� uðj; t � 1Þ � uðj; tÞ½ �P 0 8 j; t ð37Þ

Xoff
j ðt � 1Þ � Toff

j

h i
� uðj; tÞ � uðj; t � 1Þ½ �P 0 8 j; t ð38Þ

where Xon
j ðtÞ and Xoff

j ðtÞ represent, respectively, the time duration
for which DG j has been on and off in period t; Ton

j and Toff
j are

the minimum up and down time of DG j, respectively.

4.2.4. Power flow constraints

Pinjðn;tÞ¼
XN

m¼1

jVðn;tÞjjVðm;tÞjjYn;mjcosðdðm;tÞ�dðn;tÞþhn;mÞ 8n;t

ð39Þ

Qinjðn;tÞ¼�
XN

m¼1

jVðn;tÞjjVðm;tÞjjYn;mjsinðdðm;tÞ�dðn;tÞþhn;mÞ 8n;t

ð40Þ

where N is the total number of buses; n and m are indexes for buses;
|V(n, t)| is the voltage amplitude at node n; d(n, t) is the voltage angle
at node n; |Yn,m| is the element (n,m) of the admittance matrix; hn,m

is the angle of Yn,m; Pinj(n, t) and Qinj(n, t) are the net injected active
and reactive power to node n, respectively.

The other network operation constraints are as follows:

jSðn;m; tÞj 6 Smax
n;m 8n;m; t ð41Þ

Vmin
n 6 Vðn; tÞ 6 Vmax

n 8n; t ð42Þ

PsubðtÞ 6 Pmax
sub 8 t ð43Þ

where |S(n,m, t)| is the apparent power flow from node n to m; Smax
n;m

is the capacity of the line/cable between node n and node m; Vmax
n

and Vmin
n are the maximum and minimum voltage magnitudes at

node n, respectively; Psub(t) is the power output from the main
substation.

4.3. Multi-objective mathematical programming problems

In Multiobjective Mathematical Programming (MMP) there are
different objective functions and there is no single optimal solution
that simultaneously optimizes all the objective functions. In MMP
the concept of optimality is replaced with that of efficiency or Par-
eto optimality. The efficient (or Pareto optimal, non-dominated,
non-inferior) solutions are the solutions that cannot be improved
in one objective function without deteriorating their performance
in at least one of the rest [39]. In these cases the decision makers
are looking for the ‘‘most preferred’’ solution. The method that
has been used in this paper is augmented e-constraint method.
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This method is described as follows and more details are available
in [40,41].

4.3.1. Augmented e-constraint method
In the proposed method, there is a challenge between reducing

the cost and the amount of air pollutants emissions produced by
conventional generators. In order to assess the trade-off between
reducing the cost and the amount of air pollutants emissions pro-
duced by conventional generators, augmented e-constraint meth-
od is used in the proposed method.

For this model, only the range of the objective function FEmission

is calculated in the augmented e-constraint method, while Fcost is
the main objective function. Then, the range of the objective func-
tion FEmission is divided to k equal intervals. Therefore, there are in
total (k + 1) grid points for FEmission. Thus, (k + 1) optimization sub-
problems must be solved where some of these subproblems may
have infeasible solution space. The problem has the following form
[40,41]:

min Fcost � d� S2

r2

� �� �
ð44Þ

subject to:

FEmission þ S2 ¼ e2; S2 2 Rþ

where

e2 ¼ FEmission
max � FEmission

max � FEmission
min

q2

 !
� k; k ¼ 0;1; . . . ; q2 ð45Þ

where d is a small number (usually between 10�3 and 10�6); S2 is an

interval variable; FEmission
max and FEmission

min represent the maximum and
minimum values of the individual objective function, total air pol-
lutants emission, based on the payoff table, respectively; e2 is the
kth range of FEmission; r2 is the range of the total air pollutants emis-

sion FEmission
max � FEmission

min

� �
, and q2 is the number of equal part.

When solving each of the sub problems all the constraints of the
model should be also considered. By solving each optimization
sub-problem, one Pareto-optimal solution is obtained. With higher
number of grid points, a denser efficient set is obtained but with a
higher computational time. A trade-off between the density of the
efficient set and time consuming is always necessary. In this paper,
the number of intervals for the objective function FEmission is consid-
ered to be equal to 10.

4.3.2. Best compromise solution
When the Pareto-optimal solution is obtained, one of the solu-

tions is chosen as the best compromise solution. Fuzzy sets are
introduced here to handle the problem [42] and a linear member-
ship function ðlk

i Þ is described for each of the objective functions,
i.e. FCost and FEmission:

lk
i i¼cost;emission ¼

1; Fk
i 6 Fmin

i

Fmax
i �Fk

i

Fmax
i �Fmin

i

� �
; Fmin

i 6 Fk
i 6 Fmax

i

0; Fk
i P Fmax

i

8>>><>>>: ; ð46Þ

where Fk
i and lk

i represent the value of the ith objective function in
the kth Pareto-optimal solution and its membership function,
respectively. For each of the k solutions, the membership function
can be normalized as follows:

lk ¼
Pp

i¼1xilk
iPm

k¼1

Pp
i¼1xilk

i

ð47Þ

where xi is the weight value of the ith objective function in the
MMP problem also, m is the number of Pareto-optimal solutions.
The weight values xi can be selected by the operator based on
the importance of economic issue and environmental allowance.
The solution with the maximum membership function lk is the
most preferred compromise solution based on the implemented
weight factors and so is selected as the best Pareto-optimal
solution.

4.4. Computation technique

The energy and reserve scheduling problem formulated in the
paper is a large-scale Mixed Integer Nonlinear programming
(MINLP) optimization problem. MINLP optimization techniques
require significant computer means and the execution times
are not compatible with the short-term energy and reserve
scheduling [14,16]. Therefore, it is necessary to use alternative
methodologies in order to have fast response for optimization
problems with many variables. In order to make the proposed
model applicable for real size distribution networks with large
number of consumers and overcome the difficulties related to
the solution of nonlinear optimization problems with binary
variables, a fast and robust optimization technique, known as
Benders decomposition, is implemented in this paper [43]. The
use of Benders decomposition to address optimization problems
allows a lower processing time if compared with MINLP ap-
proaches for solving large dimension complex problems. The
proposed solution technique is also designed for real size smart
distribution systems scheduling in which there are time-coupling
constraints like ramping constraints and minimum operation
time, as well as energy storages and electric vehicles. The distri-
bution energy resource scheduling is known as a complex MINLP
optimization problem and the proposed solution method could
significantly reduce the execution time of the day-ahead energy
and reserve scheduling.

The basic idea behind this method is to decompose the problem
into two simpler parts: the first part, called master problem, solves
a relaxed version of the problem and get values for a subset of the
variables. The second part, called sub-problem (or auxiliary prob-
lem), receives the values for the remaining variables, while keeping
the first ones fixed, and uses these to generate cuts for the master
problem [44]. The master and auxiliary problems are solved itera-
tively until no more cuts can be generated. The combination of the
variables found in the last master and sub-problem iteration is the
solution to the original formulation. This method allows appropri-
ately treating the non-convexity associated with binary variables
and dividing the global problem into two smaller problems which
are easier to solve.

As shown in Fig. 7, the master problem consists of 24-h
multiobjective energy and reserve scheduling problems which
are solved by using the mixed-integer linear programming
(MILP) solver CPLEX [45]. The sub-problem is an hourly distri-
bution power flow, with some fixed variables received from
the master problem solution, and is solved using non-linear
programming (NLP) solver CONOPT [46]. Both the master and
the sub-problem are modeled in GAMS [47] on a Pentium IV,
2.6 GHz processor with 4 GB of RAM. More details on Benders
decomposition and its features are available in [48] and its
implementation in optimal power flow problems is described
in [10].

The master problem’s objective function is formulated as:

MinFcost þ
XT

t¼1

a�t ð48Þ

Subject to constraints (25)–(38) as well as to emission con-
straint calculated by the augmented epsilon constraint method.
The Benders cut is calculated as follows:



Start

m=1

Solve master problem

t=1

Solve sub-problem for hour t

Get infeasibility cost 
and sensitivities

END

m=m+1

t=t+1

T=24

Any infeasibilities?

Generate a new 
benders cut

Fig. 7. Benders decomposition flowchart.
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a�t P am�1
t þ km�1

sub;t � PgridðtÞ � PgridðtÞm�1
� �

þ
XJ

j¼1

lm�1
j;t

� PDGðj; tÞ � PDGðj; tÞm�1
� �

ð49Þ

where a�t is the sub-problem cost at iteration m � 1. The Benders
linear cuts (49) couple master and sub-problem, and are updated
at each iteration.

The sub-problem checks the feasibility of the master problem
solution by mean of an AC power flow. Then, any violations in con-
straints (41)–(43) can be relieved by adjusting the imported power
through substation and output power of DGs. The objective func-
tion introduced in (50) minimizes the cost of deviations from the
master problem solution:

Min
XT

t¼1

XN

n¼1

ePsvðn; tÞ þ eQsvðn; tÞ
" #

ð50Þ

where ePsvðn; tÞ, eQsvðn; tÞ represent, respectively, the requirements of
real power, reactive power at node n and in period t. In other words,
they are the slack variables of the optimization problem that are
necessary to make the optimization problem feasible.

Pinjðn; tÞ þ ePsvðn; tÞ ¼
XN

m¼1

jVðn; tÞjjVðm; tÞjjYn;mj cosðdðm; tÞ

� dðn; tÞ þ hn;mÞ 8n; t ð51Þ

Q injðn; tÞ þ eQsvðn; tÞ ¼ �
XN

m¼1

jVðn; tÞjjVðm; tÞjjYn;mj sinðdðm; tÞ

� dðn; tÞ þ hn;mÞ 8n; t ð52Þ

PgridðtÞ ¼ PgridðtÞm $ km�1
sub;t 8 t ð53Þ

PDGðj; tÞ ¼ PDGðj; tÞm
	 


$ lm�1
j;t 8 j; t ð54Þ
Constraints (53) and (54) provide the marginal data ðksub;t and lj;tÞ
associated with the decision taken by the master problem, that is,
the sensitivity for each value of the decision variables (Pgrid(t) and
PDG(j, t)) fixed by the master problem at the same iteration. These
sensitivities are going to be applied to the formulation of the Bend-
ers cuts of the following iteration.

The Benders decomposition procedure stops when the solution
provided by the master problem is feasible, that is, the value of the
objective function computed in the slave problem is zero. This ap-
proach to Benders decomposition guarantees method convergence
for the considered problem.

Even if the Benders decomposition does not guarantee to obtain
the global optimum in all types of problems, the Benders technique
is able to find the global optimum in some MINLP optimization
problems [49–51]. In other cases, the Benders method convergence
should be examined. In order to demonstrate that the proposed
method allows obtaining the global optimum, the results obtained
with the Benders method have been compared with those obtained
by using a robust MINLP commercial solver. In particular, in order
to validate the proposed method, the hourly scheduling problem
with a MINLP commercial solver in GAMS was examined. The re-
sults of these two methods have been compared and equal results
have been obtained from the benders decomposition method. The
comparison confirmed that the proposed computation technique is
able to find the optimal solution.
5. Case study

The proposed method was applied to a modified version of the
41-bus 11.4-kV radial distribution system given in [52] and illus-
trated in Fig 8. The main substation at bus 1 is used to feed rural
area with a peak load of 16.8 MW.

Table 1 provides the hourly energy price of Ontario electricity
market on Wednesday 23 January 2013 [53]. The capacity cost
for spinning reserve from the main grid is, instead considered to
be equal to the 25% of the hourly energy price at each hour. The
forecasted load profile of the test system for a 24-h period is shown
in Fig. 9. Real average hourly wind speed is shown in Fig. 10 [54].
All wind turbines installed in the test system are of the same type
with specifications power rated of 1.1 MW, cut-in speed of 4 m/s,
nominal speed of 14 m/s, and cut-out speed of 25 m/s. The wind
turbines are located at buses 15, 19, 26, 29, 32, 35, 41. Also, two
diesel generator sets are installed at buses 14 and 28. Wind tur-
bines and diesel generators are assumed to have fixed power fac-
tors of 1 and 0.9 lagging, respectively. The VOLL, required to
estimate the social cost of interruptions, is assumed to be 1000 $/
MW h [55].

The Load buses areas of each DRP are shown in Table 2. The
DRPs’ price–quantity offer package, which is in the format of the
package presented in Section 2, is presented in Fig. 11. It is as-
sumed that individual loads (IL) participating in the DR program
are located at buses 7, 40 and 31 and their offer packages are given
in Table 3.

The fuel cost and emission rate of the two diesel generator units
are given in Table 4 [9,56,57]. The minimum up and down time of
the diesel generators are assumed to be one hour. The spinning
reserve of DGs is priced at a rate equal to the 25% of their highest
marginal cost of the energy production [58]. The main grid gener-
ation system is typically composed of nuclear, hydro, gas steam,
coal and gas combined cycle power plants. In this case study, it
is supposed, therefore, that, according to a unit commitment
program at each hour, the average CO2 emission rates of conven-
tional power plants in the main grid for low (hours 23–24 and
1–6), medium (hours 6–20) and high (hours 20–23) load hours
are of 200, 562, 985 kg/MWh, respectively [57].



Fig. 8. Forty-one bus distribution test system.

Table 1
Hourly price of the open market.

Hour Price ($/MW h) Hour Price ($/MW h)

1 47.47 13 60.64
2 31.64 14 40.88
3 31.65 15 28.50
4 32.60 16 38.75
5 40.78 17 35.55
6 38.64 18 112.42
7 158.95 19 575.58
8 384.14 20 87.72
9 67.27 21 35.06

10 52.29 22 47.18
11 44.59 23 61.27
12 108.49 24 33.90
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Fig. 9. Forecasted load profile of the distribution test system.
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Fig. 10. Hourly wind speed forecast.

Table 2
DRPs’ support area.

DRP Bus

DRP1 4, 5, 6
DRP2 10, 13, 14
DRP3 34, 36, 37
DRP4 25, 27, 30
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In order to analyze the effects of demand side participation in
energy and reserve scheduling as well as of the emission reduction
target, the proposed method is tested in three different cases:

� Case 1: considering only the cost objective function without a
DR program;
� Case 2: considering only the cost objective function with a DR

program;
� Case 3: considering the multi-objective optimization.



Fig. 11. Price–quantity offer package of DRPs.

Table 3
Individual load offer.

IL number Bus Quantity (kW) Price ($/kW h)

1 13 400 321
2 29 1400 126
3 72 350 418
4 76 1000 580
5 80 1200 145

Table 4
Emission rate of generation sources.

Unit Cost coefficient Technical constraints Emission

aj ($) bj

($/MW h)
cj

($/MW h2)
Startup
($)

Pmin

(MW)
Pmax

(MW)
CO2

(kg/MW h)

DG1 48.40 123 153.9 1 0.08 1.1 740
DG2 31 98 120 1.2 0.05 1.2 890

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
es

er
ve

 (
M

W
)

Hour

Diesel

main grid

Fig. 12. Scheduled reserve in Case without considering DR.

Fig. 13. Scheduled reserve in Case with DR.
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5.1. Cost minimization in cases 1 and 2

The results of the optimization problem considering only the
cost objective function are given in Table 5. The costs of energy
and reserve considering the main grid, diesel generators and de-
mand response, are compared in the two cases with and without
demand side participation. As shown in Table 5, simulation results
evidence that the proposed method allows obtaining lower total
operation costs when considering DR programs.

The scheduled reserve in these two cases is shown in Figs. 12
and 13. Its worth nothing that, due to the reserve prices, when
considering the case with DR participation, the scheduled reserve
from the main grid is reduced during hours 8, 12, 18, 19 and 20.
Moreover, the DR participation in reserve scheduling allows
releasing the diesel generator capacity for delivering energy dur-
ing hour 7.
5.2. Multi-objective optimization

In this case, the energy and reserve scheduling is carried out
considering both cost and emissions as objective functions. The
Table 5
Scheduling cost comparison in two cases: with and without DR.

Cost ($) Wind power Main grid Diesel generator

Energy Reserve Energy Res

Without DR 3008 18,991 592 1005 63
With DR 3008 15,441 429 1047 41
Augmented e-constraint method is implemented in order to carry
out the multi-objective optimization. The results from the individ-
ual optimization of the cost and emission functions are shown in
Table 6 (payoff table). From the payoff table, the range of the emis-
sion objective function is obtained and used as constraint in aug-
mented e-constraint method.
DR Total

erve Energy reduction Reserve Cost ($) Emission (Ton)

– – 23,659 122.85
2175 75 22,216 118.30



Table 6
Payoff table of the augmented e-constraint method.

Function Cost minimization Emission minimization

Cost (k$) 36.763 118.301
Emission (Ton) 242.209 29.054

Fig. 14. Pareto-optimal front of the multi-objective method.

Table 7
Fuzzy based procedure used to determine the best compromise solution.

Pareto points (k) Cost ($) Emission
(ton)

lk
1 lk

2
lk

1 36,763 118.3 1.000 0.000 0.087
2 37,776 108.38 0.995 0.111 0.092
3 40,683 98.47 0.981 0.222 0.096
4 45,178 88.55 0.959 0.333 0.099
5 50,930 78.64 0.931 0.444 0.102
6 57,825 68.72 0.897 0.556 0.104
7 66,012 58.8 0.858 0.667 0.106
8 75,993 48.88 0.809 0.778 0.107
9 88,063 38.97 0.750 0.635 0.106

10 111,746 29.05 0.635 1.000 0.102

The best compromise
solution

75,993 48.88 0.809 0.778 0.107
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Fig. 15. Scheduled energy in case 2.
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Fig. 16. Scheduled energy in case 3.

Table 8
Best compromise solution with and without DR.

Energy cost (k$) Emission (ton)

Main
grid

Diesel
generator

DR Total Main
grid

Diesel
generator

Total

Without
DR

20.29 1.02 – 21.31 6.14 115.18 121.32

With DR 10.54 0.89 7.67 19.10 5.052 92.43 97.482
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The Pareto-optimal set, obtained from the augmented e-con-
straint, is shown in Fig. 14. The membership functions are used
to evaluate each member of the Pareto-optimal set. Then the best
compromise solution, having the maximum value of the member-
ship function, can be obtained. It should be mentioned that it has
been assumed w1 = w2 = 0.5 as the same importance for the two
objectives in the multi-objective problem is considered. Table 7
represents the above procedure in a tabular form.

In order to evaluate the effect of the inclusion of the objective
function related to emissions reduction in the proposed model,
the best compromise solution derived from the multi-objective
method is compared with the solution related to the case 2, in
which a single objective function, related to the operational cost,
has been considered. Figs. 15 and 16 show the scheduled energy
in cases 2 and 3, respectively.

As shown in Fig. 15, the power generation from diesel genera-
tors and the load curtailment have been contracted at hours 7, 8,
12, 18 and 19 when the electricity price is higher, thus allowing
a reduction of the operational costs. When considering also the
objective related the air pollutant reduction, the scheduling results
change. As shown in Fig. 16, the load curtailment has been con-
tracted during medium and peak hours when the average emis-
sions rate of the main grid power plants is higher. Moreover, the
diesel generators have been committed during hours 19–22 when
the emissions rate of the main grid power plant is higher than the
emissions rate of the diesel generators. Consequently, in case 3 the
emissions related to the energy consumption are reduced if com-
pared to those obtained in case 2.

To evaluate the effect of demand side participation in the
proposed multiobjective method, the case 3 has also been carried
out without considering a DR program. The results related to
energy and demand response costs, as well as emissions in the best
compromise solutions are shown in Table 8. DR participation has
reduced the operational costs due to energy reduction during
hours with high electricity prices. Moreover, the DR participation
allows reducing the scheduled power from diesel generators, as
well as the power imported from the main grid, especially in peri-
ods with high emission rates. Consequently, emissions have been
reduced due to the DR program.

In order to evaluate the robustness of Benders decomposition
method, the proposed model is also solved using a MINLP optimi-
zation solver. The case 3 has been solved on a PC, 2.6 MHz with
4 GB of RAM under GAMS software [47]. For MINLP optimization,
DICOPT solver [59] has been used. The cost objective values and
execution times obtained with the two methodologies for



Table 9
Comparison between the execution time required to obtain the optimal solution.

Method Cost objective ($) Execution time (s)

Benders decomposition 75,993 12
MINLP 75,993 1856
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executing only the best compromised case is shown in Table 9. In
this test case the Benders decomposition method achieved a lower
execution time.

6. Conclusion

In this paper, an energy and reserve scheduling method for dis-
tribution systems with demand side participation has been pro-
posed. A two stage stochastic approach was used to integrate the
probabilistic nature of wind generation and demand into a multi-
objective energy and reserve scheduling program. The generalized
Benders decomposition method was used in order to solve the pro-
posed large-scale multi-period problem. The method evidences
good convergence properties and the simulation results demon-
strate that the demand participation in energy and reserve sched-
uling allows reducing the total operation costs. In order to show
the capability of the multi-objective optimization, the scheduling
has been compared for the single objective and the multi-objective
problems. Simulation results evidenced that the inclusion of the
emission objective function determines a variation of the schedul-
ing results in order to reduce the total air pollutant emission.
Moreover, the Benders decomposition method permits a signifi-
cant reduction in the required execution time and allows, there-
fore, applying the proposed model to real size distribution
systems, or to the future smart grid consisting of huge amount of
distributed resources.
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