
27A State-of-the-Art Review of Placement in FPGA© 2018 IUP. All Rights Reserved.

Jyoti* and Pawan Kumar Dahiya**

* M. Tech. Student, ECE Department, DCRUST, Murthal, Haryana, India; and is the corresponding author.
E-mail: geminijyoti596@gmail.com

* * Professor, ECE Department, DCRUST, Murthal, Haryana, India. E-mail: pawan.dahiya@gmail.com

A State-of-the-Art Review of Placement
in FPGA

Any digital circuit can easily be implemented using Field Programmable Gate Array
(FPGA) with accuracy and fast implementation rate. The quality of digital circuit
depends on the placement technique. The placement technique determines the physical
location of logic block on the FPGA. In this paper, a number of placement techniques
are reviewed like min-cut, simulated annealing, analytical placer, evolutionary placer
and hybrid approach. Each optimization technique is evaluated and the significant
aspect of each technique is explained. An overview of the tools used in FPGA placement
is also given.

Keywords: FPGA, Placement placer, Simulated Annealing (SA), Genetic Algorithm (GA),
Hybrid approach

Introduction
Nowadays, all the modern electronic circuits are implemented using digital technique. As
compared to Application Specific Integration Circuit (ASIC), Field Programmable Gate
Array (FPGA) provides fast realization of digital circuits. FPGA has programmable
components such as Configurable Logic Blocks (CLB), Switch Blocks (SB) and Input/
Output Blocks (IOB). These programmable blocks can easily be programmed by a
designer. Typical architecture of FPGA is shown in Figure 1.

A typical FPGA design process consists of logic synthesis, technology mapping,
placement and routing. The logic synthesis is a process of minimizing the logic of circuit
so that more and more logic can be loaded into limited area of FPGA. Technology mapping
is the process of partitioning the optimized circuit such that each partitioned block is
mapped onto the available logic elements in the FPGA. In the placement phase, these
partitioned blocks are assigned to the specific cells of the FPGA layout. In the routing
phase, horizontal and vertical channel are used to connect the placed logic blocks. The
main object of the placement problem is to minimize the total placed area such that more
and more logic can be added in the available FPGA area.

The rest of this paper is organized as follows. Section 2 defines the placement problem.
Some of the existing placement algorithms are briefly discussed in Section 3. Section 4
discusses the tools used in FPGA placement. Finally, the paper ends with conclusion.

The IUP Journal of Electrical & Electronics Engineering, Vol. XI, No. 1, 201828

Placement Problem in FPGA
The FPGA placement problem can be defined as follows: The inputs of the problem are
modules description, consisting of shapes, size and terminal locations, and netlist describing
the interconnections between terminals of modules, and output is the list of x- and y-
coordinates for all modules. According to Venugopal and Manimegalai (2015), the FPGA
placement problem can be formally defined as follows: At the input, a set of n modules
M = {m

1
, m

2
, ..., m

n
} and a set of r signals = {s

1
, s

2
, ..., s

r
} are given, each module m

i


can be associated with a set of signals s
mi
S. The modules may be either CLBs or

IOBs, and the total number of nets is typically the sum of number of CLBs and inputs.
With each signal s

i
S, a set of modules M

si
is associated, where M

si
= {m

j
| s

i
S

mi
}. In

other words, M
si

represents the signal net s
i
. A set of slots L = {l

1
, l

2
, l

p
} are given,

where p  are ranged in a two-dimensional array on the FPGA chip. Each slot l
i
L

is represented by a pair of unique integer indices (x
i
, y

j
) of the array. The peripheral

location on the two-dimensional array is reserved for IOBs, whereas the CLBs are placed
inside the region bounded by periphery. The FPGA placement problem is to assign a
unique location l

i
L to each module m

i
M such that the circuit can be routed with the

available resources and signal delay meet timing constraints.

Techniques for Placement in FPGA
The traditional placement algorithms (Shahookar and Pinaki, 1991) are mainly divided
into two major classes:

Figure 1: Basic Architecture of FPGA

Source: Venugopal and Manimegalai (2015)

29A State-of-the-Art Review of Placement in FPGA

• Constructive placement; and

• Iterative improvement

Constructive Placement Algorithms: They are generally based on primitive
connectivity rules. In this, first seed module is selected and placed on FPGA. Then other
modules are selected, one at a time, in order of their connectivity (most densely connected
first) and placed at the vacant location close to the placed module. These algorithms are
very fast and provide initial placement for iterative improvement algorithms. Most resent
constructive placement algorithms are quadratic placement algorithms and partitioning-
based placement algorithms.
Iterative Improvement Algorithm: On the other hand, iterative and improvement
algorithms produce good placement but require a large amount of computation time. In
these types of algorithms, the pairs of modules are randomly selected and interchanged if
cost function is reduced. These algorithms will terminate when improvement in cost
function stops after a large number of trials. The current popular iterative algorithms are
Simulated Annealing (SA), etc.

Other possible classifications for placement algorithms are deterministic and probabilistic
algorithms (Shahookar and Pinaki, 1991). Deterministic algorithms are based on fixed
connectivity rules or formulas and they will always produce the same result for particular
placement problem. Probabilistic algorithms are based on randomly examining configuration
and they may produce different results each time they are run. The constrictive algorithms
are deterministic, whereas iterative improvement algorithms are probabilistic.

Semiperimeter method is used to estimate the wirelength. For finding the wirelength
of circuit, enclose all the pints (modules) in smallest rectangle and then find half of the
perimeter of rectangle which is equal to wirelength.

The popular placement optimization techniques (Venugopal and Manimegalai, 2015)
are:

Min-Cut-Based Placer: It is also called placement by partitioning algorithm. In this
algorithm, a given circuit is repeatedly divided into densely connected subcircuits such
that the number of nets cut by the partition is minimized. Also, with each partitioning of
the circuit, the available chip area is partitioned alternatively in the horizontal and vertical
directions. Simple objective function is equal to the total number of nets cut by all the cut
lines:

    cNc  ...(1)

where N
c
() is an objective function and v(c) is the sum of all the nets cut by all vertical

and horizontal cut lines. This objective function directly provides wirelength driven because
minimizing the total number of nets cut using this objective function is equivalent to
minimizing the semiperimeter wire length. In min-cut placement algorithm, partitioning is
done by two methods (Shahookar and Pinaki, 1991):

The IUP Journal of Electrical & Electronics Engineering, Vol. XI, No. 1, 201830

• Cut-oriented min-cut; and

• Block-oriented min-cut.

Block-oriented min-cut algorithm has separate cut line for each partition of the chip as
compared to cut-oriented min-cut algorithm so it produces better result. The cut lines for
partitioning the chip may be selected in any sequence. Breuer (Shahookar and Pinaki,
1991) has given three sequences for partitioning the chip, as shown in Figure 2. These are
as follows:

Quadrature Placement: By this algorithm, the first chip is partitioned in the direction of
breadth and then partitioned by alternate vertical and horizontal cuts. This process is
illustrated in Figure 2a. With each cut, a region is equally divided into two subregions. This
method is suitable for high routing density in the center.
Bisection Placement: In this procedure, the chip is repeatedly divided into two equal
subregions by horizontal cut lines until each subregion consists of one row. Then each
element is assigned to a row without fixing its position. Then vertical cuts repeatedly
bisect each row until each resulting subregion contains only one slot. This is a good
method for standard cell placement. It does not give any guarantee to minimize the
maximum net-cut per channel.
Slice Bisection: In this process, modules are divided into rows by horizontal cut lines, as
shown in Figure 2c. Then each row is bisected by vertical cut lines until each resulting

Figure 2: Cut sequences: (a) Quadrature Placement;
(b) Bisection Placement; and (c) Slice Bisection

Source: Venugopal and Manimegalai (2015)

31A State-of-the-Art Review of Placement in FPGA

subregion contains only one slot. This process is most suitable when periphery has high
interconnect density.
Simulated Annealing-Based Placer: In SA-based annealing process (Lee and Kaamran,
2008), material is placed at very high temperature so molecules of material have more
space to move, so the probability of displacement is greater. Then the material is cooled
slowly in a controlled manner such that molecules are arranged themselves in such a way
that the material experiences less strain. As the temperature decreases, the probability of
movement of molecules decreases. At a low temperature, the material becomes solid and
movement of molecules becomes zero. SA mimics the annealing process. In SA, a range
limiting function is implemented which specifies the range first, selects the module to be
moved and then selects the destination within a specified range from the target location
(Shahookar and Pinaki, 1991). The next step is to evaluate the change in cost function using
semiperimeter method. If the cost function decreases, the move is accepted, and if the cost
function increases, the move is also accepted with the probability ec/T.

(ec/T, where c  change in cost function and T  temperature)

This allows the algorithm to avoid premature convergence to local minima and allows
for hill-climbing movement that enables the SA process to reach global minimum. Then
schedule the temperature as a function of number of iteration or previous temperature
(e.g.,

i1


i
 Inner_loop_criterion is the criterion that decides the number of trials

at each temperature which is usually fixed. Stopping_criterion terminates the algorithm
when temperature or the number of iterations has reached a threshold value. There are
no fixed rules for initial temperature, the cooling schedule, the probabilistic acceptance
function and stopping criterion. Quality of placement and execution time depends on
these parameters. There is no restriction on the type of moves to be used – displacement,
interchange, rotation, and so on.

Analytical Placer: The analytical method (Sigl et al., 1991; Lee and Kaamran, 2008;
and Ray and Shankar, 2011) includes the force directed and quadratic programming method.
Force directed placement technique introduces attracting, repelling and other
supplementary forces. In this, force equation is formed by treating the coordinates of
each module as variables, and net force exerted on each module by all other modules is
equated to zero. We get the coordinates of all modules by simultaneously solving these
equations. Quadratic programming solves the placement problem using quadratic equation.
These techniques use linear approach to solve the placement problem. But placement
problem is nonlinear, so linear approach does not give satisfactory result. These techniques
use linear approach to solve placement problem. The general cost function for quadratic
placement (Lee and Kaamran, 2008) is as follows:

   22

,

)()(
2

1
, jiji

ji
ij yyxxyx  

The IUP Journal of Electrical & Electronics Engineering, Vol. XI, No. 1, 201832

where x and y are the coordinates of a logic of the net-list. W
ij
 is the weight of the edge

that connects nodes (x
i
, y

i
) and node (x

j
, y

j
).

Evolutionary Placer: Evolutionary placer includes population-based optimization
techniques such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), etc.

The GA (Eisenmann and Frank, 1998) is a very powerful optimization algorithm, which
works by emulating the natural process of evolution as a means of progressing toward
the optimum. The algorithm starts with an initial set of all alternatives, called the population.
Each alternative or individual in the population is represented by a string of symbols.
During each generation, fitness value of each individual is evaluated. Based on this fitness
value, two individuals that selected from the population at a time and they are treated as
parents. The individual that has higher fitness value, has a higher probability to being
selected. A number of genetic operators (crossover, mutation and inversion) are applied
to the parents to generate new individuals, called offsprings, which have combined features
of both parents. The offsprings are next evaluated, and a new generation is formed by
selecting some of the parents and offsprings, once again on the basis of their fitness, so as
to keep the population size constant. At the same time, some bad genes are inherited from
the previous generation, even though the probability of doing so is quite low. Thus, it is
assured that the algorithm does not get stuck at some local optimum. The symbols used in
the solution strings are called genes. A solution string of genes is called a chromosome. A
schema is a set of genes that make up a partial solution.

 ACO algorithm proposed by Wang and Ning (2009) is based on trails and attractiveness.
A congestion factor is introduced in ACO-based algorithm which improves the
performance. It reduces the channel width without degrading the critical path delay.

The PSO algorithm (Rout et al., 2010) is a population-based optimization algorithm.
Each particle guides itself to the best possible solution in its neighboring space, also known
as personal best (pbest). The pbest can be related to the particles cognition of its own
history in finding different results when it moves through the space. Before taking the
next move, each particle considers the location of the particle with best fitness value,
which is called global best (gbest). It improves the wirelength of circuit.

Hybrid Placement: In hybrid approach, a combination of two different techniques is
used to find better result. The paper explains GA with SA (Lee and Kaamran, 2008; and
Pawan, 2010)—a combination of Genetic Algorithm and Simulated Annealing (GASA) is
used for the placement of symmetrical FPGA. This algorithm consists of two stages. In
the first stage, GA is used for global placement, and in the second stage, SA algorithm is
used for local placement. By this approach, the advantage of GA is used to find global
solution, and to overcome the slow conversion of GA in late phase, SA has been used. GA
provides very small improvement in late phase process by expense long time. SA is able
to provide fast improvement in late phase process as compared to GA. Therefore, after
a certain number of generations, SA is used to provide optimization at low temperature.

33A State-of-the-Art Review of Placement in FPGA

FPGA Placement Tools
Many tools have been used in literature for FPGA placement such as TimberWolf, Versatile
Place and Route (VPR) and MATLAB. The most commonly used tool for placement is
VPR. Typical CAD Flow is given by Betz (2000).

Figure 3 illustrates the CAD flow. The first stage is SIS, which provides technology
independent logic optimization of each circuit. Then using flow map algorithm, circuit
technology is mapped into 4-LUTS and flip flops. The output of flow map algorithm is in
.blif format and .blif format netlist is given as input to T-Vpack software which converts
4-LUT and FFs into more crossgrain logic blocks. The output of T-Vpack software is in
.net format and this output is given as input to VPR tool which generates two output files,
one describing circuit placement and another describing circuit routing.

Figure 3: CAD Flow

Source: Betz (2000)

Circuit

Logic Optimization (SIS)
Technology Map to LUTs (FlowMap)

.blif Format Netlist of LUTs and
Flip Flops

T-VPack: Pack FFs and LUTs into Logic Blocks
Logic
Block

Parameters

FPGA
Architecture

Description File

.net Format Netlist of Logic
Blocks

VPR:

Place Circuit or Read in an Existing Placement

Perform Either Global or Combined Global/
Detailed Routing

Placement and Routing Output Files,
Placement and Routing Statistics

Existing Placement
or Placement form

Another CAD Tool

The IUP Journal of Electrical & Electronics Engineering, Vol. XI, No. 1, 201834

T-V pack is a packing program software which can be used with or without VPR. It
takes a technology-mapped netlist consisting of Lookup Tables (LUTs) and Flip Flops
(FFs) as input and then packs the LUTs and FFs together to form more coarse-grained
logic blocks. The netlist as input is in .blif format and output is in the .net format. This
output can be fed directly into VPR. T-V pack is invoked by typing:

t-vpack input.blif output.net [-options]

Versatile Place and Route (VPR) is used for FPGA placement and routing. It is invoked
by typing:

vpr netlist.net architecture.arch placement.p routing.r [-options]

VPR requires four necessary parameters and many optional parameters. Netlist.net
and architecture.arch are the inputs netlist of VPR and placement.p and routing.r are
outputs files of VPR. Netlist.net describes the circuit to be placed and/or routed, while
architecture.arch describes the architecture of target the FPGA, in which the circuit is to
be realized. If VPR is placing a circuit, the final placement will be written to placement.p;
if VPR is routing a previously placed circuit, the placement is read from placement.p.
The final routing of a circuit is written to file routing.r.

Conclusion
In FPGA, placement problem technology mapped netlist is given as input, in which circuit
is partitioned into small logic which is directly mappped to the CLB of target FPGA such
that wirelength of interconnection is reduced.

The min-cut/partition-based technique is fast. It has open cost function, i.e., it can
provide wirelength driving or timing driving placement. Its quality is not good as compared
to SA algorithm and it does not provide global optimal solution.

SA placement technique also has an open cost function. Also, it is able to reach global
optimal solution. Placement quality of SA is best. However, the SA algorithm is very
slow. To improve the speed of SA, a new adaptive placement algorithm, called Greedy
Simulated Annealing (GSA), is developed, which employs a short-term memory to record
recent search history (Du et al., 2004).

Analytical placer produces good results in short run-time but cannot handle complex
constraints. It can handle large designs without affecting the cost of computation time.
However, this technique reduced squared wired length but cannot minimize the total
wirelength. Also, this is a single optimization technique which provides only wirelength
driven optimization, and does not provide any timing driven optimization. It uses linear
technique to solve nonlinear placement problem.

The GA has an open cost function since it can provide time driven or wirelength
driven placement. It can handle two or more variables at a time. Also, it is able to reach
the global optimum solution. A significant time is spent in the late phase of the process of

35A State-of-the-Art Review of Placement in FPGA

GA, in which small improvement is obtained extremely slowly. So hybrid technique is
proposed which is the combination of SA and GA, in which advantages of GA and SA are
combined to form a algorithm called memetic algorithm. It provides faster computation
than GA. However, this optimization technique is complex and is difficult to implement.

References
1. Betz Vaughn (2000), VPR and T-VPack User’s Manual (Version 4.30), March 27, p. 10.

2. Du P, Grewal G, Areibi S and Banerji D (2004), “A Fast Adaptive Heuristic for
FPGA Placement”, Circuits and Systems, NEWCAS, The 2nd Annual IEEE
Northeast Workshop on IEEE, pp. 373-376.

3. Eisenmann Hans and Frank M Johannes (1998), “Generic Global Placement and
Floorplanning”, Proceedings of the 35th Annual Design Automation Conference,
ACM, pp. 269-274.

4. Lee Sang-Joon and Kaamran Raahemifar (2008), “FPGA Placement Optimization
Methodology Survey”, Canadian Conference on Electrical and Computer Engineering,
CCECE, IEEE, pp. 001981-001986.

5. Pawan Kumar Dahiya (2010), “Recent Trends in Evolutionary Computation”,
Doctoral Dissertation, University of Science & Technology.

6. Ray B N B and Shankar Balachandran (2011), “A New Wirelength Model for Analytical
Placement”, IEEE Computer Society Annual Symposium on VLSI, IEEE, pp. 90-95.

7. Rout Prakash Kumar, Acharya D P and Panda G (2010), “Novel PSO Based FPGA
Placement Techniques”, International Conference on Computer and Communication
Technology (ICCCT), IEEE, pp. 630-634.

8. Shahookar Khushro and Pinaki Mazumder (1991), “VLSI Cell Placement
Techniques”, ACM Computing Surveys (CSUR), Vol. 23, No. 2, pp. 143-220.

9. Sigl Georg, Konrad Doll and Frank M Johannes (1991), “Analytical Placement: A
Linear or a Quadratic Objective Function?”, Proceedings of the 28th ACM/IEEE
Design Automation Conference, ACM, pp. 427-432.

10. Venuopal Nagalakshmi and Manimegalai R (2015), “Wirelength Driven Placement
for FPGA Using Soft Computing Technique”, International Conference on Soft-
Computing and Networks Security (ICSNS), IEEE, pp. 1-5.

11. Wang Kai and Ning Xu (2009), “Ant Colony Optimization for Symmetrical FPGA
Placement”, 11th IEEE International Conference on Computer-Aided Design and
Computer Graphics, CAD/Graphics’, IEEE, pp. 561-563.

Reference # 59J-2018-01-03-01

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

