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Abstract

Electric vehicles charging and discharging management as well as large scale intermittent renewable
power generation management are known as the two most important challenges in the future distribution
system operation and control. Proper integration of these energy sources may introduce a solution for
overcoming to challenges. In this paper, a stochastic charging and discharging scheduling method is
proposed for large number of electric vehicles parked in an intelligent parking lot where intelligent parking
lots are potentially introduced as aggregators allowing electric vehicles interact with the utilities. A self-
scheduling model for an intelligent parking lot equipped with photovoltaic system and distributed
generators is presented in this paper in which practical constraints, solar radiation uncertainty, spinning
reserve requirements and electric vehicles owner satisfaction are considered. The results show that the
proposed parking lot energy management system satisfies both financial and technical goals. Moreover,
electric vehicle owners could earn profit by discharging their vehicles as well as having desired state of
charge in the departure time.
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Nomenclature
Acronyms

EV electric vehicle

IPL intelligent parking lot

PV photovoltaic

DG distributed generator

SOC  state of charge

RES renewable energy source

G2V grid to vehicle

V2G  vehicle to grid

IPLCC intelligent parking lot central controller
PDF  probability density function

mMT microturbine

EENS  expected energy not served
BNCE battery not charged energy

MILP  mixed-integer linear programming
DOD  depth of discharge

Sets

t index of optimization periods, t=1,2,...,T.
i index of electric vehicles, i=1,2,...,N.

J index of MT, j=1,2,..., G.

S index of scenarios, s=1,2,..., S.

Variables: (1) Binary variables

U ~ on/off status (1/0) of the MT j in period z.
CH‘E"’," binary variable of EV i related to charge state in period ¢ and scenario s.
DCHY/ binary variable of EV i related to discharge state in period ¢ and scenario s.

(2) Continuous variables

CJF’X the fixed running costs of MT j in period ¢

SCZ’;T the startup costs of MT j in period ¢
»
Ritp/dn,MT

it
Rup/dn,EV

the scheduled up/down spinning reserve of MT j in period ¢
the scheduled up/down reserve of EV i in period ¢
Py the exchanged power between the utility grid and IPL in period ¢ under scenario s
Cit the cost of scheduled power of MT j in period ¢ under scenario s
PAC’h’ gy the charge power of EV i in period ¢ under scenario s

P, gy the discharge power of EV i in period 7 under scenario s
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BN CE;’V’ the departure stored energy deviation from the customer preferences of EV i in
' period ¢ under scenario s
Py the scheduled power of MT j in period ¢ under scenario s

EjElVr the stored energy in the battery of EV i in period ¢ under scenario s

Parameters

a1, ap the shape factors of Weibull distribution
B, P, the scale factors of Weibull distribution

4 the weighted factor of Weibull distribution
PLy, the power output of PV in period ¢

I the solar irradiance in period ¢

S the solar array area

n the conversion efficiency of the solar array cell
Wirr the spinning reserve price of MT j in period ¢

Wiy the reserve price of EV i in period ¢

prob®  The probability of each scenario

Tep the EVs specified charging price in period ¢
Then the EVs specified discharging price in period ¢
Tom the open market electricity price in period ¢

A the penalty cost of uncharged batteries
d the cost coefficient of MT j
v the cost coefficient of MT j

UDC’  the start cost of MT j

nyog  the EV's battery discharging efficiency
Ny the EV's battery charging efficiency
Pi

Charger,max

SOC! . the minimum SOC of EV i

SOC! . the maximum SOC of EV i

ASOCinaX the maximum rate for charging/discharging of EV i
SOC;, ... the initial SOC of EV i

SOCQM”M the desired SOC at departure time of EV i

IjMT’mm the minimum generation of MT j

the maximum charging/discharging power of charger i

Pyi1max the maximum generation of MT j
t’gA? ' the duration for which MT j had been continuously up till period ¢
t’g;F] the duration for which MT j had been continuously down till period ¢

MUT/  the minimum up time of MT j
MDT/  the minimum down time of MT j
PUE the maximum value for transmitted power between the IPL and the utility grid
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1. Introduction

EVs are an important component of an electric power network in the near future.
The widespread adoption of EVs may introduce a solution to the world fossil fuel shortage as
well as the air pollution crisis [1]. The emission reduction aim is achieved by proper and optimum
utilization of the E'Vs as energy storages and loads in the power system integrated with RESs [2—4].
Beyond these advantages, connection of EVs into the power network may bring up some technical
drawbacks that need to be addressed properly. With the widespread adoption of EVs, the power
system may face significant challenges due to the huge electricity demand of these loads [5,6]. For
example, if 30% of conventional vehicles in the US were replaced by EVs, the total charging load
would be 140 GW, which accounts for 18% of the US summer peak load of 780 GW [7].

EVs utilize battery as an energy storage system in order to provide a power supply for their
electric-drive motors. When EVs are plugged into a power outlet, can operate in two modes:
charging or G2V mode, and discharging or V2G mode. In the former, the EV is regarded as a load
to the utility, while in the latter EV could supply energy to the grid by discharging the stored
energy in its battery. Therefore, EV in the view of the utility grid is considered as a probable load
or generation unit [8]. With V2G capability, the state of charge of an EV's battery can go up or
down, depending on the revenues and grid's demands. Through V2G, EV owners can make
revenue while their cars are parked; it can provide valuable economic incentives for EV owners.
On the other hand, utilities significantly benefit from V2G due to increase in system flexibility
and reliability as well as using energy storage for intermittent RESS such as wind and solar.

An EV is designed for transportation, so the main duty of battery storage in the EV is to
provide sufficient power for the vehicle to drive. In order to maximize customer satisfaction and
minimize disturbances of the grid, EVs parking lots are a good solution for handling the EVs
energy management challenges. Parking lots will be appropriate places for implementing the
V2G strategy as EVs are parked several hours per day in them [9,10]. A vehicle may spend 23 h
each day parked [11] and also 90% of vehicles are parked even during peak traffic hours [12].

In [13], an estimation of distribution algorithm to schedule large number of EVs charging in a
parking lot has been proposed. The method optimizes the energy allocation to the EVs in the real-time
while considering various constraints associated with EV battery and utility limits. The paper has only
proposed the charging method of EVs and the V2G option was not taken into account. The authors in
[14] proposed a simulated annealing approach and heuristic technical validation of the obtained
solutions to solve the energy resources scheduling. A case study considering 1000 EVs connected to a
distribution network managed by a virtual power plant has been presented. The EVs scheduling
schemes proposed in [15,16] only dealt with the battery charging without considering V2G capability.
The V2G scheduling models proposed in [17,18] tried to optimize the charging and discharging powers
to minimize the cost. In charging and discharging scheduling, the scheduler tries to optimize the
bidirectional energy flows between the grid and EV's Battery. In [19], an optimization problem of
scheduling EV charging with energy storage for the day-ahead and real-time markets has been
proposed. Also, a communication protocol for interactions among different entities including the
aggregator, the power grid, the energy storage, and EVs was considered. Some recent literatures [20—
23] discussed about the charging points equipped with PV panels. The solar power can be considered as
a valuable energy source for charging EVs. Parking lots equipped with PV panels can provide cheap
and green energy for EVs and in this way, reduce emission from transportation sector. On the other
hand, the internal control system of EVs has also attracted increasing research efforts because of its
considerable advantages in terms of vehicle motion control, energy optimization, and vehicle structural
arrangement. More details on the control issue of EVs has been discussed in [24-26].
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In the EVs management model, different types of objective functions have been presented in the
literatures. For example, the objective could be to minimize the cost and air pollutant emission for a
sustainable integrated electricity and transportation infrastructure by maximum utilization of RESs
using EVs [27]. If the aggregated EV batteries are considered as a potential energy storage system,
another objective could be taken into account to maximize the capability of the aggregated batteries
in order to mitigate the unpredictable fluctuations of renewable energy [28]. A novel objective
function maximized the average SOC for all vehicles at the next time step [13].

In this paper, an IPL with PV system on the roof, DGs and a bidirectional utility grid
connection is presented for stochastic charging and discharging scheduling of 500 EVs. The grid
connection is considered to satisfy any charging demand greater than the PV and DGs output and
to supply energy to the grid during peak hours. An energy management system for the PV based
parking lot is proposed here in which the PV generation uncertainty and V2G capability of EVs
are considered. Moreover, the proposed model considers system constraints and customer's
preferences. The contributions of the proposed method are highlighted as follows:

® Include and aggregate intermittent PV generation with EVs charging and discharging
scheduling.

e Evaluate EVs role in providing reserve as well as energy.

@ Consider the EVs owners preferences in EVs energy management program.

The rest of the paper is organized as follows: in Section 2, the proposed system components
are introduced. Section 3 presents the problem formulation; including the resources and EVs
constraints. A case study and analysis of the results are shown in Section 4. Finally, concluding
remarks are presented in Section 5.

2. Proposed system components

This section presents the architecture of the proposed IPL which includes multiple
photovoltaic panels on its roof, DGs, and EVs as shown in Fig. 1. In addition, there is a point
of connection to the utility grid to enable the electricity trading with utility grid. The IPLCC is
the main control interface between the utility grid and EVs. The central controller is responsible
for optimizing the parking lot operation. In this paper, the IPL plays the role of an aggregator in
order to facilitate the EVs' charging and discharging scheduling. EVs parked in the /PL can
deliver power to the parking lot or absorb power from it according to the SOC of their batteries,
duration of presence, and the drivers' preselected options. IPL operator as an aggregator benefits
from selling DGs power generation as well as stored energy in EVs to the grid. On the other
hand, the EVs' owners not only use the space for parking the vehicle and charge it but also benefit
from V2G energy and ancillary service program that the vehicle could participate. As an
incentive to increase program participation, the /PL operator pays any EV which has participated
in the discharging energy or providing reserve scheduling.

2.1. Intelligent parking lot
The IPL compared to conventional ones presents new opportunities to EVs' owners and the

utility. Intelligence refers to the ability of the proposed parking lot energy management system to
automatically receive and send data to vehicles and make a smart decision regarding the
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Fig. 1. The proposed IPL architecture.

scheduling of charging and discharging of the EVs. These parking lots could be equipped with
online reservation via an internet portal or a smart phone application [29]. The EVs' owners can
submit their desired parameters of charging as well as the duration of using the parking space on
the previous day.

The IPL receives several parameters from each EV owner, such as the arrival time,
approximate duration of presence in the parking lot, and the minimum required SOC at the
departure time. These parameters are considered as the input data. The data flow of proposed /PL
is indicated in Fig. 2. As shown, the IPL firstly receives the day-ahead electricity prices, EVs'
owners preferences and the forecasting data of solar radiation as the input data. Then, MTs power
and reserve scheduling as well as EVs charge/discharge program will be determined by IPLCC.
Finally, the result of optimum charge/discharge scheduling is sent to each EV charger.

2.2. Photovoltaic panels

Solar power varies in the day-time as a result of the changing position of the sun and the
motion of clouds. Such variability and uncertainty should be carefully considered in the proposed
energy management system design. The distribution of the hourly irradiance at a certain location
commonly follows a bimodal distribution [30,31], which can be seen as a linear combination of
two unimodal distribution functions [32]. The unimodal distribution functions could be modeled
by Beta, Weibull and Log-normal PDFs [31]. In this paper the Weibull distribution is used.

FAY=y(ar/p) (/) Vexp(— (1'/5,))
=7 (a2/Bo) (I'/52) " Vexp(— (I'/5,)™): 0<I'<o0 (1)

where I' is irradiance; a is a weighted factor; a; and a, are shape factors; and f; and f3, are scale
factors.
A 5-interval irradiance distribution is shown in Fig. 3 [33].
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Fig. 3. Irradiance distribution model.

The PV power distribution could be obtained by considering the irradiance distribution and
irradiance to power conversion function. The irradiance to power conversion function is
presented by Eq. (2) [34]

Py =nSI'(1—0.005(T", —25)) 2)
where 7 is the conversion efficiency of the solar cell array (%); S is the array area (m?); I is the
solar radiation in period ¢ (kW/mz); and 77, is the ambient temperature in period ¢ (°C).

2.3. Distributed generators
In this paper, the proposed IPL owned two MTs. The IPL is responsible for MTs' scheduling

and the IPLCC can use MTs for charging EVs or even sell the excess energy to the utility during
the peak hours.
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The total cost function of MTs can be obtained in Eq. (3) [35]:
C(P,s,1)=d + VP 3)

where a and b are the cost coefficients; P’){}T represents the generation of the jth MT in period .
3. Problem formulation

The main goal of the proposed stochastic scheduling model is to maximize the IPL total benefits
in the grid-connected mode. In order to reduce the risk and the expected penalty cost of not
reaching to the desired SOC at the departure time caused by the intermittent solar power, reserve
capacity should be taken into account [36,37]. The IPL receives arrival time, approximate duration
of the presence in the parking lot, and the minimum required SOC at the departure time as the input
data. These data is sent to /PLCC in order to optimally determine the charging or discharging mode
of each EV at each time period. The assumptions used in the proposed model are as follows:

® The IPLCC is allowed to access the day-ahead open market electricity price for following
24 h scheduling [38].

® The solar radiation forecasts are received from nearest weather broadcast service.

® The DGs and PV system are owned and operated by the /PL owner.

® EVs' owners submit their desired parked time period and charging option for next 24 h to
IPLCC by the cell phone or the internet portal [29].

3.1. Objective function

The proposed EVs charging and discharging management model in the /PL aims at maximizing
the total benefits. Maximizing the objective function makes the most profit for the /PL. In this
study, the IPL plays a role as an energy aggregator in the electricity market. The EV owners also
benefit from the proposed method. They earn money from discharging of their EVs as well as
providing reserve capacity. By maximizing the objective function, the proposed method tries to
charge the EV during periods with low electricity prices. So, the EV owners pay minimum cost for
charging their vehicles. The stochastic objective function has two components [39]:

e Those which materialize with probability one and can only be acted upon at the time of day-
ahead resource scheduling such as the fixed running and startup costs of MTs, and the
scheduling costs of reserve services.

® Those second-stage components that materialize with a probability during each period and
under each scenario such as costs and benefits of exchanged power with the utility grid and
EVs, the generation running costs of MTs, and the penalty costs of not reaching to the desired
SOC at the departure time.

In the stochastic energy and the reserve scheduling method, there is a term in objective
function that is defined as expected energy not served. EENS is known as the power system
reliability criterion and shows the amount of load demand that may not be served by available
power generation [39—41]. Regarding this concept, in the proposed method, we define battery not
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charged energy (BNCE) term as an energy reliability criterion in the IPL. BNCE is considered in
the objective function with a penalty cost. In the stochastic optimization, there is a trade-off
between BNCE cost and providing reserve cost. Where the amount of scheduled reserve is high,
the value of BNCE reduces and vice versa. In general, BNCE should only be used when the
likelihood of a solar energy curtailment is very small, and the costs to IPL, in terms of the cost of
not charging EV's battery at the customers' desired value, are also small.

The objective function is formulated as follows:

T G .
OBJ = — Z Z (CJ[,’-ZX + SC ur + th/anTV/MT) Z Z (Rizp/dn EVW

r=1j=1 t=1i

+ il’mbs i ( 2z (PYChEV”Ch)"i_ Z( schEV(”OM Tpen))

s=1 =1 i=
PYgmon — E (Cyn— 2 A BNCE“’)) At (4)

In the first- stage C x and S CMT are the fixed running and startup costs of the jth MT in period ¢,
respectively; R} / anmr @nd Rup JanEy A€ the scheduled up/down spinning reserves of the jth MT
and the ith EV in perlod t, respectlvely yf’MT and ), are the reserve prices of the jth MT and the
ith EV in period t, respectively.

In the second-stage, prob’ represents the probability of each scenario; Py is the exchanged power
between the utility grid and /PL in period ¢ under scenario s. Its negative values determine sold power
to the utility while positive values determine purchased power from the utility; C3Jy is the cost of
scheduled power of the jth MT in period ¢ under scenario s; P}y, and P}y . are the charge or
discharge powers of the ith EV in period ¢ under scenario s, respectively; %, 7, and 7}, , are the
open market electricity price, and the EVs specified charging and discharging price in period f,
respectively; BNCE®" is the departure stored energy deviation from the customer preferences of the ith
EV in period ¢ under scenario s; /A is the penalty cost of uncharged batteries; N is the number of EVs
which are parked in the /PL in penod t; G is the number of MTs; and T is the scheduling time horizon.

The generated power cost (CyJ7) and start-up cost (SCjW’T) of the MTs are presented by Eqs.
(5), (6) and (7), respectively:

Cir =VPy:  Vs.jt (5)

SCi > (UM —Uui=YYuDd
[.‘{T 5 VJ, t (65 7)
SChyr =0

where P, Y"T[ is the scheduled power of the jth MT in period ¢ under scenario s; and UDC' is the

start cost of the jth MT.
3.2. Constraints
The maximization of the objective function is subjected to the following constraints.

(1) IPL power balance constraint:

Py + Ppy + Zl Py + Z P ey + ZIBNC”’ Zl PEly: Vst ®)
J— l— l—
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(2) IPL reserve constraint:

The EVs in the IPL can participate in both energy and reserve scheduling. During a sudden
curtailment or increase of the solar power, the MTs and the EVs are able to maintain the
generation and consumption balance. In the proposed stochastic model, the variable
pertaining to the predicted scenario are considered as a final scheduled values for DGs
power generation and EV charging and discharging. However, the amounts of reserves are
determined based on the deviation of power generation and consumption between the
predicted scenario and the other scenarios. Variables of predicted scenario are indicated
with index 0 (s=0).

Jt ./, 04,
RLp,MT = PSMT_PMT

) : Vs, it 9,10
R = PPt 10
R;’;,EV > By — Epy )

Vs, it (11,12)

it 0, ps,if >
Ry, pv = Egy —Egy

where Pl(f,}j’T’ and E%{}’ are the scheduled power of the jth MT and the stored energy in the
battery of the ith EV in period ¢ if the forecasted PV output occurs, respectively.
(3) EVs charge and discharge are not simultaneous:

CHyY +DCHYY < 1;  Vs,i,tr; CHy,DCHy € (0,1} (13)

where CHY:' and DCH?Y' are binary variables that represent the status of charging and
discharging of the ith EV in period ¢ under scenario s, respectively.

(4) Battery balance for each EV:
The stored energy in the battery is considered jointly with the energy remaining from the
previous period and the charge or discharge in the period ¢.

. o iy 1 . .
ER=Egf '+ N6av Pepy Al — P PR evAL Vs, it (14)
V26

where 75,y and 75y,; are the EV's battery charging and discharging efficiencies,
respectively.
(5) EV's charger constraint:

S, 1,1 it i S, 1,1
PCh,EV + Rdn,EV < PCharger, max CHEV

; : ) Vst PR R >0
PSDJ;‘;!,EV + R;;,EV = PlCharger, max DCH%l\}t Ch/Deh,EV>“up/dnEV
(15,16)
where PiCharger, max, max 18 the maximum charging/discharging power of the ith charger.
(6) SOC limits:
SOC:,, <SOC™" <SOC! . Vs,it 17)

where SOC! = and SOC!

tin are the maximum and minimum SOC of the ith EV,
respectively.
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(7) Charging/discharging rate limits:

—ASOC! < ASOC™' < ASOC! . Vs,i,t (18)
where ASOC! s the maximum allowable rate for charging/discharging of the ith EV.

(8) Battery charging constraint:

(Psc’iiEv + RZ’;,EV)”GZVAt <Cap'—Ep/; Vst (19)
(9) Battery discharging constraint:

(Phaev + Ripev) s ER; Vst (20)

NvaG
(10) Departure SOC constraint:
ExT > (SOCH, ... Cap')—BNC*™; Vs, i,t (1)

where SOCh;oqis the desired SOC at departure time of the ith EV. The desired SOC is
determined as follows:

SOC;)esired = SOC;nizial + ASOCI (22)

where SOCﬁm.n.al is the initial SOC of the ith EV, and ASOC' is a random number between
[0’ 1- Socllnifial] .
(11) Generation limits:

st | it it pi
PMT + Rup,MT <U PMT, max

. ) o i Vst PY’/”,Rj" >0 23,24
P ;}ITI _R/c{xtl,MT > U*'P) M / mr ( L

up/dn,MT =
T, min

where P/MT, max and PII'l/IT,min are the maximum and minimum generation of the jth M7 in
period t, respectively.
(12) Minimum up/down time constraints:
S - MUT YU~ — Uy > 0
o ST (25,26)
(thpr —MDT (UM —U"~1) >0
where t’g,; "and t’gp}l are the duration for which the jth M7 had been continuously up and
down till time step t, respectively; MUT/ and MDT’ are the minimum up and down time of
the jth MT, respectively.
(13) Transmitted power limits:

5,
PUG

< PP Vst 27)

where P& is the maximum possible value for transmitted power between the /PL and the
utility grid.

Regarding the binary variables that determine the status of charge and discharge of each EV in
each period, the mixed-integer programming has been used in the proposed method. Moreover,
in order to find the global optimum solution, the objective function and constraints of the EVs
charge/discharge scheduling are modeled by linear equations. So, the mixed-integer linear
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programming optimization guarantees that the proposed energy and reserve scheduling method
can find the global optimum solution with acceptable computation time [42,43].

The proposed model is solved using mixed integer linear programming solver Cplex [42]
under GAMS [44] on a Pentium IV, 2.6 GHz processor with 4 GB of RAM. The computation
time for the proposed method is 10.8 s.

The MILP has two valuable advantages compared to other optimization methods. In the proposed
model, the MILP optimization guarantees to find the globally optimum solution [43]. Also, The
MILP optimization finds the optimum solution in lower run time [45,46]. Moreover, the proposed
model is a day-ahead energy and reserve scheduling and the computation time is also an important
aspect of the applicability of the proposed method. For a real size parking lot with large number of
EVs the MILP shows its benefits in a light execution time. Cplex optimizers are designed to solve
large, difficult problems quickly and with minimal user intervention. For problems with integer
variables, Cplex uses a branch and cut algorithm which solves a series of linear programming sub-
problems. More details on Cplex solver and its features are available in [42].

4. Simulation and discussion

An intelligent parking lot with capacity of 500 EVs is considered in this study. The number of
vehicles was chosen based on a typical parking lot located in a real commercial area. However,
the proposed method can consider any number of EVs for a parking lot. The arrival and desired
departure SOC of EVs are assumed as random variables. The IPL is supposed to be located in a
commercial area. Based on a statistical study on some parking lots on weekdays in Tehran city
carried out by the authors, the hourly parking utilization duration illustrated in Fig. 4 has been
obtained.

In this study, EVs charging price is equal to hourly electricity price of the open market, while
discharging price is considered in such a way to provide sufficient economic incentive for EVs'
owners and IPL operator as well. Moreover, the incentive payments for providing reserve
requirements in order to reduce the effect of solar energy forecast error is calculated and shown
on the bill. So, the cost and revenue of each EV are shown on the bill.

The electrical power interface of a parking lot has a higher power level in comparison to home
chargers [47], therefore, fast chargers could be used in the proposed /PL. The maximum charging
rates are equal to 10 kW and the charging rates vary between 0 and the maximum [48]. A value

350

300 A

250

200 A

150

Number of EVs

100

50 A

0
123 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24

Time (hours)

Fig. 4. The statistical parking utilization information.
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Table 1
The main parameter values of the PV system.

Gen. Type Conversion efficiency (%) Array area (mz) Ambient temperature (°C)
PV 15.7 2500 25
Table 2

Generators data.

Gen. Gen.type a($) b ($KW) P™ kW) P™™ kW) MUT MDT (h)  topltorr (h)  UDC ($)

(Hours)
1 MT 20 0.25 100 300 2 2 4 100
2 MT 40 0.45 50 150 1 1 -6 20

500

400

300

Power (kW)

200

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hour)

Fig. 5. Forecasted PV generation.

of 90% is applied as power conversion efficiency of theses chargers in the /PL [49]. Each EV in
the /PL could transact power with the /PL based on its need and considering maximum DOD
limit. 20% of SOC has been considered as the maximum DOD for each EV [12,50].

There are several types of electric vehicles in the market with various battery capacities from
8 kWh to 48 kWh [51]. In this paper, an average electric vehicle with 16.5 kWh battery capacity
has been supposed. However, different types and sizes of batteries can be taken into account in
the proposed method. The arrival time is assumed between 6:00 AM and 6:00 PM. Also, the
approximate duration of presence in the parking lot is considered between 2 and 8 hours. The
main parameters of the PV system are taken from [52] and are illustrated in Table 1. The IPL
owned two MTs and the details are shown in Table 2. The forecasted output of the PV panels is
shown in Fig. 5. Table 3 provides the hourly electricity price of the open market [53].

To evaluate the proposed model, the problem is addressed in three case studies:

Case 1: The EVs does not contribute in both energy and reserve scheduling and only plays a role
as a variable load; the required spinning reserve is only provided by MTs.

Please cite this article as: M. Honarmand, et al., Self-scheduling of electric vehicles in an intelligent parking lot using
stochastic ~ optimization, Journal of the Franklin Institute. (2014), http://dx.doi.org/10.1016/].
jfranklin.2014.01.019



dx.doi.org/10.1016/j.jfranklin.2014.01.019
dx.doi.org/10.1016/j.jfranklin.2014.01.019
dx.doi.org/10.1016/j.jfranklin.2014.01.019
dx.doi.org/10.1016/j.jfranklin.2014.01.019

14 M. Honarmand et al. / Journal of the Franklin Institute 1 (11I1) IIR—1NR

Table 3
The hourly electricity price in the open market.

Hour Price ($/kWh) Hour Price ($/kWh)
1 0.033 13 0.215
2 0.027 14 0.572
3 0.020 15 0.286
4 0.017 16 0.279
5 0.017 17 0.086
6 0.029 18 0.059
7 0.033 19 0.050
8 0.054 20 0.061
9 0.215 21 0.181

10 0.572 22 0.077

11 0.572 23 0.043

12 0.572 24 0.037

OCasel HCase2 BCase3
1000

800 A1
600 -
400 -
200 -

-200 -
-400 -
-600 -
-800 -
-1000

Power (kW)

EEESRSESY

6 7 8 9 10 I1 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hour)

Fig. 6. The hourly scheduled electricity demand of the IPL.

Case 2: The EVs contribute in the energy scheduling via V2G option but still does not participate
in the reserve scheduling and the required spinning reserve is only provided by MTs.

Case 3: The EVs contribute in both energy and reserve scheduling and the required spinning
reserve is provided by both the EVs and MTs.

The scheduled power by IPL for existing EVs in three case studies is shown in Fig. 6. As
shown, in case 1 the EVs have been charged during off-peak hours with low electricity prices. In
cases 2 and 3, the IPL sells the EV's stored energy and its local generations to the grid during
peak hours while during off-peak hours it purchases electricity from the grid for charging the
EVs. In cases 2 and 3, when the electricity price is high, it is preferred to sell the electricity stored
in EVs batteries to the grid. The parking load increases dramatically at 13:00, 15:00 and 17:00,
due to lower electricity prices during these hours. On the other hand, all of the EVs tend to sell
energy to the grid during hours 10:00-12:00 and 14:00 that the electricity prices are high. By
approaching the final hours of EV's presence in the parking lot and low electricity prices, the
mode of the most EVs are changed to the charging mode; therefore, a peak load is appeared at
13:00, 15:00 and 17:00. In case 3 comparing with case 2, the sold energy of the EVs decreased
briefly because a specific amount of energy should be stored in the EVs' batteries due to provide
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Fig. 8. Down spinning reserve provided by MTs and EVs.

reserve. During hours with lower electricity prices, the charging amount has been increased in
cases 2 and 3 rather than the one in case 1 due to the capability of EVs to sell the stored energy to
the utility grid.

Fig. 7 shows the exchanged power between the utility and /PL as well as scheduled power of
MTs in these three case studies. As shown, the /PLCC used the MTs during the hours with high
electricity prices in order to charge the EVs or sell the excess energy to the utility. A comparison
between cases 3 and 2 shows that, in case 3, the sold energy of the IPL decreased briefly because
a specific amount of energy should be stored in the EVs' batteries due to provide reserve.

Figs. 8 and 9 show, respectively, the down and up spinning reserve provided by the MTs and
EVs parked in the IPL. In cases 1 and 2, only the MTs have provided spinning reserve. So, a part
of the MTs generation capacity is allocated to reserve and the required energy should be
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Fig. 10. Daily IPL profit and total EVs payment.

purchased from the utility grid with high prices; it increases the IPL operation costs. In the third
case study, in most of the time, the EVs provide the required reserve for the IPL with fewer
prices. EVs by providing the required reserve, decrease the IPL costs and the payment of EVs'
owners.

Fig. 10 shows the IPL total profit and EVs net payment in the three case studies. As shown, in
cases 2 and 3, the total EVs' owners net payment is lower than case 1 because of the EVs
participation in V2G program. Also, as the EVs could participate in reserve program in case 3, the
EVs' owners revenue is increased comparing case 2.

Regarding IPL point of view, the opportunity of using EVs discharging capability, the /PL
revenue increased in cases 2 and 3. Moreover, in case 3, providing reserve by EVs allows the
MTs to use their capacity to deliver energy instead of being stand by for reserve. So, the profit of
IPL increased in case 3 comparing case 2 due to sell more energy of MTs during peak hours.
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Table 4
Comparison of costs (—) and revenues (+) in the three cases.

Utility grid Microturbines Electric vehicles BNCE Total profit

Import  Export Gen. Fix & start up Res. IPL2V  V2IPL  Res.

Case 1 —622 21673 —795 —430 -25 4615 ... —1010.2  306.4
Case 2 —2323 29926 —734 —430 =726 711.1 —568.4 ... —12.9 1653.5
Case 3 —283.6 3089.8 —745 —430 —5.6  850.1 —6533 —64.8 —5.2 18148

As shown, by increasing participation of EVs in energy and reserve scheduling, both of /PL
operator and EVs' owners make benefits.

The costs and revenues of the IPL for the three cases are shown in Table 4. As shown, the total
profit of the IPL in case 3 is higher than the two other cases due to EVs participation in both
energy and reserve scheduling program. Also, the BNCE has become a lowest value in case 3.

5. Conclusion

In this paper, a new stochastic energy resources scheduling for an EVs' intelligent parking lot
consisting of renewable generation and DGs has been proposed. The economical and technical
aspects of EVs charging and discharging were simultaneously taken into account. As the
renewable power is intermittent, the proposed model scheduled reserve in order to eliminate
generation and consumption mismatch in different scenarios. In this paper, spinning reserve is
provided by the MTs and EVs parked in the IPL. The proposed model helps the /PL to play a role
as an aggregator in order to collect the dispersed EVs in an accumulated area and manage their
energy demand and provide a proper V2G infrastructure for them. The results showed that the
charging was carried out during the hours with lower electricity prices while during the hours
with higher electricity prices the proposed model preferred to discharge the EVs in order to sell
the stored energy or provide the required reserve capacity.
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