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A B S T R A C T

Enhancing the resilience of infrastructure systems is critical to the sustainability of the society against multiple
disruptive events. This paper develops an approach for allocating restoration resources to enhance resilience of
interdependent infrastructure systems. According to Inoperability Input–Output Model, a resilience metric for
infrastructure systems is developed, in which the performance loss of infrastructure systems resulting from a
disruptive event is measured in economic loss and inoperability. Model for determining the optimal infra-
structure restoration resources allocation is proposed with the objective of maximizing resilience. Infrastructure
interdependence is modeled by the Dynamic Inoperability Input-Output Model (DIIM), which is an accepted
economic model for describing the interconnected relationship of industry sectors. To investigate the utility of
the restoration resource allocation model, numerical analysis is conducted with an example derived from the
data provided by the US Bureau of Economic Analysis. The results show that: (1) the optimal restoration resource
allocation varies with the resource budget; (2) for a specific disruptive event, there exists an optimal resource
budget which can minimize the sum of restoration cost and the performance loss of infrastructure system; and
(3) the significance of factors such as initial inoperability of infrastructure systems on the optimal allocation. The
proposed model can assist the decision makers in (i) better understand the effects of resource allocation, and (ii)
deciding which allocation strategies should be used following a disruptive event.

1. Introduction

Modern society relies on the continuing services of infrastructure
systems, e.g. transportation system, power grid, water supply system, as
the backbone of national economy, security, and health. Critical in-
frastructure systems are complex with interconnected structural ele-
ments and functions. Interdependency is the basic operational char-
acteristic of infrastructure systems. However, the infrastructure systems
are becoming more vulnerable due to failure propagation across sys-
tems through the interconnected elements (Buldyrev et al., 2010).
Large-scale disruptive events affecting infrastructure, though in-
frequent, are extremely costly to a society (Fang et al., 2015). Typical
examples include 2003 power outage in North America, 2005 Hurri-
cane Katrina in the USA (Leavitt and Kiefer, 2006), and the 2008 snow
disaster in South China (Hou et al., 2008). The economic loss induced
by these events can be very high (up to billions of dollars). For example,
the 2003 power outage in North America generated almost US $6 bil-
lion loss. The resilience is an important characteristic of real-world

systems affected by disruptive events, which are (i) related to systems’
abilities to perform their functions, (b) reduce the magnitude of impacts
of disruptive events through their adaptive capacity (National
Infrastructure Advisory Council, 2009), and (iii) recover to normal
functions (Ouyang and Wang, 2015). Given the increasing impact of
natural and man-made disasters on infrastructure systems, improving
resilience of interdependent infrastructure system is of growing im-
portance. This requires quantifying the resilience of interconnected
systems and developing approaches for enhancing resilience.

Some studies have developed resilience metrics for single infra-
structure systems based on two system performance curves during a
specific time period: one is the real performance curve, recording
system performance change under a disruptive event and restoration
activities, and the other is the expected performance curve, giving
system performance level without a disruptive event. The resilience is
then quantified as the area between the two curves within a restoration
period (Bruneau et al., 2003; Bruneau and Reinhorn, 2007), or the area
between the two curves during a given time period during which
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multiple disruptive events may happen (Ouyang and Dueñas-Osorio,
2012), or a normalized area under the performance curve of a system
during a disruptive event (Chang and Shinozuka, 2004). These metrics
quantify the resilience of an infrastructure system to a disruptive event
or a sequence of disruptive events based on their performance losses.
The basic idea of the aforementioned resilience metrics has been ex-
tended in a number of ways, for example, applying the ratio of recovery
at a given time to the loss in performance (Henry and Ramirez-
Marquez, 2012), or a stochastic metric by taking uncertainty into ac-
count (Pant et al., 2014a, 2014b). A dynamic resilience metric was
proposed based on the adaptive capacity of an infrastructure system
and the level of system performance, which can provide more insight
into system performance evolution from the beginning of a disruptive
event until the full performance recovery (Simonovic and Peck, 2013;
Simonovic, 2016). However, since it is difficult to quantify the perfor-
mance of different infrastructure systems into one formulation, the
literature on resilience metrics concentrates on the capacity of a single
system. Since the protection and recovery from infrastructure system
failures are complex practical problems, the resilience of infrastructure
systems becomes a focus point for policy making. There is a need for
study of resilience of interdependent infrastructure systems and en-
hancement strategies.

Restoration activities are essential for enhancing resilience of in-
frastructure systems (Heath et al., 2016). Under large scale disruptive
events, through supply of physical and/or financial restoration re-
sources to infrastructure managers, central or local governments will
help restore performance of damaged infrastructure systems and miti-
gate the disastrous impacts (MacKenzie and Zobel, 2016). Optimal re-
source allocation among infrastructures at the system level is critical for
resilience enhancement due to the budget limitations. In the literature,
resource allocation models seek to answer the question of how to satisfy
specific goals with limited resources within a given constraints
(MacKenzie et al., 2016), and have been applied to analyze many
policy-related problems (Petrovic et al., 2012; Shan and Zhuang, 2013a,
2013b). The objective of restoration resources allocation is to help ex-
pedite the recovery of infrastructure systems, with consideration of
their damage magnitudes and interdependencies. This problem has not
been addressed in the available literature and will be investigated in
this research.

Interdependencies among infrastructure systems should be con-
sidered in the restoration resource allocation problems. The effects of
interdependencies include propagation of effects from one infra-
structure system to another (Rinaldi et al., 2001). Therefore, a dis-
ruptive event that directly impacts one infrastructure system can trigger
indirect impacts to other systems. Further, the performance recovery
processes of impacted infrastructure systems are also affected by in-
terdependencies (Baroud et al., 2015). A variety of models have been
proposed to analyze the interconnected relationships among infra-
structure systems (Ouyang, 2014). Network based models and eco-
nomic theory based models are most commonly used. Interdependent
infrastructure systems are described as multilayer networks in network
based models. The interdependencies between systems can be quanti-
fied and analyzed at component level (Wang et al., 2013; Ouyang and
Wang, 2015). In comparison, economic theory based models usually
use infrastructure system, or subsystem, as the smallest analysis unit,
and analyze the interdependencies at system level (Haimes et al.,
2005a, 2005b). In this study, Dynamic Inoperability Input-Output
Model (DIIM), one of the economic theory based models, proposed by
Haimes et al. (2005a, 2005b), is chosen to capture the recovery dy-
namics of interdependent infrastructure systems. Based on the inter-
dependency matrix and initial disturbances caused by a disruptive
event, the DIIM can calculate the economic losses and inoperabilities of
interdependent infrastructure systems during the recovery process (Lian
and Haimes, 2006).

The main contributions of the present research include: (i) devel-
opment of an optimization model for determining the optimal

allocation of restoration resources to interdependent infrastructure
systems. As interdependencies among infrastructure systems are of
great importance in system recovery process, the effects of inter-
dependencies are embedded into the model by the application of DIIM.
(ii) Application of the model to an example derived from the data
provided by the BEA (the US Bureau of Economic Analysis). The ex-
ample demonstrates the utility of the model in decision making. The
results show (i) how to allocate limited resources to interdependent
infrastructure systems, (ii) what is the optimal level of recovery budget
for a specific disruptive event, and (iii) the significance of various
factors on the level of resource budget for a specific infrastructure
system.

The paper is organized as follows. Section 2 develops a resilience
metric for interdependent infrastructure systems. With the objective of
maximizing resilience, Section 3 proposes a restoration resources allo-
cation model for enhancing resilience of interdependent infrastructure
systems. Section 4 provides a numerical method for solving the resource
allocation model. Section 5 investigates the utility of the model through
numerical analysis. Section 6 concludes.

2. Resilience of infrastructure systems

2.1. Resilience metric for single infrastructure system

From engineering-based point of view, infrastructure system resi-
lience is derived from the change in system performance over time
(MacKenzie and Zobel, 2016). The resilience model derived by MCEER
(Multidisciplinary Center for Earthquake Engineering Research,
Bruneau and Reinhorn, 2007) quantifies the resilience as the area under
the system performance curve (describing system performance from the
beginning of system disturbance until full system recovery shown as the
area under system performance with restoration strategy from tDO to tRE

in Fig. 1). In order for easy comparison among diverse systems, system
resilience is measured as the ratio of the area under system performance
with restoration strategy to the area under expected system perfor-
mance from tDO to tRE (Zobel, 2011; Simonovic and Peck, 2013). Then
the resilience of infrastructure ϕ under a disruptive event is expressed
as
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where tDO is the occurrence time of a disruptive event, tRE is the full
recovery time of infrastructure system ϕ, SP t( )ϕ

E is the expected system
performance level, SP t( )ϕ is the actual system performance, SL t( )ϕ is the
difference between SP t( )ϕ

E and SP t( )ϕ . Rapidity refers to the capacity to
meet priorities and achieve goals in a timely manner, which is mea-
sured by the duration of system performance recovery and expressed as

= −Rapidity t tϕ RE DO. Robustness refers to the ability of a system to
withstand a given level of stress without suffering further degradation
or loss of function. It is usually quantified as the minimum system
performance under recovery process.

According to Eq. (1), system resilience is the proportion of the
shaded area to the area under expected system performance. The level
of robustness indicates that the infrastructure system is not totally da-
maged by a disruptive event but, without self-repairing capability, it
could not recover to normal performance level. Since the robustness of
an infrastructure system under a specific disruptive event is fixed
(property of the system structure), the system resilience is determined
by the restoration activities. In Fig. 1, the result of a restoration strategy
i is illustrated as the shaded area. The different contributions of re-
storation strategy i and j to resilience could be measured by the dif-
ference in shaded area between system performance curves with the
two restoration strategies.
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2.2. Resilience metric for infrastructure systems

Infrastructure systems such as roads, electric power grid, water
distribution network, function together as a “system of systems”
(Satumtira and Dueñas-Osorio, 2010). As shown in Eq. (1), infra-
structure system resilience is quantified using the loss of system per-
formance. However, for different infrastructure systems, their perfor-
mance is expressed in different units, such as [km] of blocked streets,
[m3] of water distribution volume, [kw] of power transmission capa-
city, and [GB] of unavailable internet traffic volume. In the literature,
the loss of system performance has been measured by the number of
damaged components, efficiency of infrastructure service delivery, and
impacted population.

To quantify the resilience of ‘system of system’, we express the
performance loss of diverse infrastructure systems in the same form
according to Inoperability input–output Model (IIM, Crowther and
Haimes, 2005). The IIM is a risk-based extension of the Leontief in-
put–output framework, and with various applications to industry sec-
tors or infrastructure systems. The IIM focuses on the inoperability of
systems due to perturbations resulting from disruptive events, and the
negative consequences are measured in economic loss and inoperability
(i.e., percentage of “dysfunctionality” relative to an ideal state). In Eq.
(1), the term SL t( )ϕ can be expressed as

=SL t α q t( ) ( )ϕ ϕ ϕ (2)

where =α SP t( )ϕ ϕ
E represents the expected system performance level in

monetary units, q t( )ϕ represents the inoperability, which quantifies the
proportional extent to which infrastructure ϕ is not functioning in an as-
planned manner at t.

For simplification, it is supposed a disruptive event occur at =t 0.
Given N types of infrastructure systems, through Eqs. (1) and (2), re-
silience of “system of systems” could be obtained and expressed as
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where γ is the resilience of infrastructure systems, =∗T rapiditymax { }ϕ ϕ ,
which implies the performance of every infrastructure systems has re-
covered to expected level after time period ∗T . =α SPϕ ϕ

E is the expected
performance level of infrastructure ϕ.

3. Resource allocation model to enhance resilience

Considering the interdependencies among infrastructure systems,
this section proposes a resource allocation model for enhancing resi-
lience of systems.

3.1. Model of resource allocation

Following a disruptive event, restoration activities will be im-
plemented to infrastructure systems to recover their performance. As
shown in Fig. 1, during the recovery process, the change of system
performance or inoperability rests on the restoration strategy, which is
mainly determined by the restoration capacity applied. The restoration
capacity includes the number of repair crews, available equipment and
replacement components. Therefore, when considering the effect of
restoration activities, resilience of infrastructure systems (see Eq. (3))
can be expressed by Eq. (4).
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where βϕ represents restoration capacity applied to infrastructure ϕ.
For small-scale disruptive events, restoration activities are im-

plemented by infrastructure management departments. Let hϕ represent
the basic restoration capacity of infrastructure ϕ’s management de-
partment, then we have

⩽ ⩽ ∀ ∈β h ϕ N0 [1, ].ϕ ϕ (5)

Following a large-scale disruptive event, such as Hurricane Sandy in
2013, a large number of infrastructure systems might be severely da-
maged simultaneously. To mitigate the disastrous impacts, infra-
structure management departments can obtain resource support from
local or central government. The restoration capacity increase of an
infrastructure system depends on the available resources. Therefore,
following constraint can be drawn:

⩽ ⩽ + ∀ ∈β h f g ϕ N0 ( ) [1, ]ϕ ϕ ϕ ϕ (6)

where gϕ represents the restoration resource obtained from the gov-
ernment. Function fϕ describes the effect of restoration resources to
raise the restoration capacity. Without generality, the government’s
resources budget should be limited. Taking N types of infrastructure
systems as a whole, the total of restoration resources should satisfy the
following constraint:

∑ ⩽
=

g G
ϕ

N

ϕ
1 (7)

where G represents restoration resource budget. As the budget is lim-
ited, it is necessary to allocate the resources in an effective way.
According to Eq. (4), the decision makers can improve resilience γ by
solving following optimization problem:

Fig. 1. Typical performance of an infrastructure system
under a disruptive event.
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1 2 , which maximizes the objective function
(8), is the optimal resource allocation strategy. The first constraint in
Eq. (9) ensures the restoration capacities of infrastructure systems are
fully applied. The second constraint is drawn from Eq. (7).

3.2. Model of infrastructure interdependencies

To analyze the recovery process of infrastructure systems, the DIIM
introduced by Haimes et al. (2005a, 2005b) is chosen to capture the
recovery dynamics of interdependent infrastructure systems. For N
types of systems, the inoperability form of the DIIM is given in

= × × + −∗ ∗q t K A q t c t q ṫ ( ) [( ( ) ( )) ( )] (10)

where vector = …q t q t q t q t( ) ( ( ), ( ), , ( ))N
T

1 2 denotes the inoperability of
infrastructure systems at t. Vector = …∗ ∗ ∗ ∗c t c t c t c t( ) ( ( ), ( ), , ( ))1 2 3 re-
presents the normalized degraded production or performance output to
users (other than infrastructure systems) at t . ×N N matrix ∗A re-
presents the normalized interdependency matrix, in which every entry
represents how much inoperability is contributed by the column system
to the corresponding row system due to the interdependent nature of
system interactions. Matrix = …K diag k k( , , )N1 , kϕ denotes the recovery
rate of infrastructure ϕ, measures the capability of the system to recover
from the disruptive event and reach a desired performance state. (Pant
et al., 2014a, 2014b).

Eq. (10) is a linear first-order differential equation (Hindmarsh and
Rose, 1984), given that condition q (0) represents vector of initial in-
operability q t( ) of infrastructure systems. The solution to Eq. (10) is
given by Eq. (11) (Haimes et al., 2005a, 2005b)

∫= +− − ∗ − − ∗ − ∗q t e q Ke c z dz( ) (0) ( )K I A t t K I A t z( )
0

( )( )
(11)

If ∗c t( ) is stationary, does not change with time, Eq. (11) can be
written as

= − + − −∗ − ∗ − − ∗ ∗ − ∗q t I A c e q I A c( ) ( ) [ (0) ( ) ]K I A t1 ( ) 1 (12)

If the performance output of infrastructure systems gives priority to
the user demands, and the performance output to users does not
change, that is =∗c t( ) 0, Eq. (12) can be written as

= − − ∗q t e q( ) (0)K I A t( ) (13)

Eq. (13) shows that the temporal evolution of inoperability q t( )
depends on the initial value q (0), normalized interdependent matrix ∗A ,
and the recovery rate matrix K . The bounds from 0 to 1 are established
for the elements of matrix K , which are determined by the considera-
tion that the matrix − ∗K I A( ) has positive eigenvalues. This guarantees
that the solutions of inoperability q t( ) do not diverge, an important
consideration for modeling a trajectory that converges towards a stable
state. With this constraint on elements of K , during the recovery process
following a disruptive event, the inoperability q t( ) for infrastructure
systems will gradually recover to 0 as the exponential term

− − ∗e q (0)K I A t( ) decays with time.
According to the meaning of parameters, we set the diagonal ele-

ments of matrix K as the restoration capacity of infrastructure systems,
that is =k βϕ ϕ. Suppose functions fϕ in Eq. (9) are known and describe
the effect of allocating resources to increase the recovery rate kϕ. In
general, the functional form for f g( )φ ϕ should have certain properties.
First, the first order derivatives df g dg( )/ϕ ϕ ϕ should be greater than or
equal to 0, which means the recovery rate kϕ will increase if more re-
sources are allocated to infrastructure ϕ. Second, the second order

derivative d f g dg( )/ϕ ϕ ϕ
2 2 should be less than or equal to 0, which signifies

constant returns or marginal decrease in improvements as more re-
sources are allocated. The first unit of resource allocated to the system
should at least be as effective as the second allocated unit.

Given above constraints, we assume the allocated resources will
increase the recovery rate according to the logarithmic function shown
in Eq. (14), which is a frequent assumption in engineering risk problems
(MacKenzie and Zobel, 2016; Dillon et al., 2005).

= = + +k β h u gln(1 )ϕ ϕ ϕ ϕ ϕ (14)

where hϕ represents the basic restoration capacity of infrastructure ϕ’s
management department as defined in Eq. (5); >u 0ϕ is cost-effec-
tiveness parameter, describing the effectiveness of allocating resources
to infrastructure ϕ’s recovery rate; gϕ represents the restoration re-
source obtained from the government. uϕ can be assessed if gϕ, hϕ and
kϕ are known or can be estimated, since = −−u e g( 1)/ϕ

k h
ϕ

ϕ ϕ . The value
of uϕ is always greater than or equal to 0 but has no upper bound. We
expect uϕ to be very small as large amount of resources are required to
decrease the impacts of a large-scale disruptive event. The function
shown in Eq. (14) is strictly increasing and marginally decreasing with
respect to gϕ.

This study considers the condition that the performance output of
infrastructure systems gives priority to the user demands, and the
performance output to users do not degrade after a disruptive event,
that is =∗c t( ) 0. Substituting the expression of q t( ) in Eq. (13), and the
expression of βϕ in Eq. (14) into Eq. (8), an explicit form of the resource
allocation model is written as:
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where vector = …α α α( , , )N1 . The solution = …g g g g( , , , )N
T

1 2 to above op-
timization problem is the optimal allocation of resources that max-
imizes resilience of infrastructure systems.

4. Solution method

The resource allocation model shown by Eqs. (15) and (16) can be
solved with methods such as Lagrange multiplier (Everett, 1963).
However, due to the computational complexity of exponential term

− − ∗e K I A t[ ] in Eq. (15), we are proposing a numerical method for solving
the model by applying genetic algorithm (GA), which is powerful sto-
chastic search algorithm that has been successfully used in literature to
solve optimization problems in infrastructure restoration (Xu et al.,
2007; Ouyang and Wang, 2015). The procedures to search for an op-
timal solution to the optimization problem can be described by the
following steps.

Step 1. Codes design. Express each solution to resource allocation by
a genotype, vector = …e e e e( , , , )N1 2

T, subject to the following con-
straints:

∑⎧
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Considering the variety of individuals, the genotypes of initial in-
dividuals are randomly generated according to constraint conditions.

Step 2. Compute the fitness value of each genotype. Transform ob-
jective function (15) into discrete-time version of fitness function:
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The elements of vector ×q t e G( , ) are calculated using the recursive
formula Eq. (19), with initial inoperability vector q (0).
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The fitness value of each genotype represents the resilience of in-
frastructure system under a restoration resource allocation strategy. For
genotypes that do not meet constraint (17), we use a sufficiently large
number H as the penalty of the unavailable solutions.

′ < ∀ = …q T i N( ) 0.001 , 1,2, ,ϕ (20)

∗T is the largest rapidity of infrastructure systems. The value of q t( )
is decaying with time, if all elements in vector q t( ) are less than 0.001,
the performance of infrastructure systems is considered to be back to its
expected level. To simplify the computation, if condition (20) is sa-
tisfied at ′ < ∗T T , we assume
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Step 3. Selection, crossover, mutation and stopping. The method of
roulette, two-point crossover and random mutation are chosen as
rules for the selection, crossover and mutation (Davis, 1991). After
above procedure, we choose the superior genotypes according to
their fitness values in each generation. The rule for stopping is the
convergence of the optimal fitness value between the two genera-
tions. When algorithm stops, the genotype corresponding to the
minimal fitness value is the optimal solution for the resource allo-
cation model.

When applying the solution method, we set the number of in-
dividuals in each generation as × N100 , where N is the number of
infrastructure systems, the maximum generation as a number which
makes maximal fitness function value in each generation converge and
not fluctuate for more than 5 steps.

5. Numerical example

To validate the model, this section uses a seven infrastructure sys-
tems example as a case study. The example is derived from the data
provided by the BEA (the US Bureau of Economic Analysis).

5.1. Data and parameter assumptions

The BEA provides the data of national input and output accounts (I-
O accounts), which can be applied to generate the interdependency
matrix for nearly 500 industry sectors of the U.S. economy (Lian and
Haimes, 2006). This study considers the interdependencies among en-
ergy and transportation infrastructure systems. Seven systems are se-
lected in this case study (list of names and symbols is provided in

Table 1). The data is from U.S. national I-O accounts for year 2011. The
average daily performance (in monetary units) of infrastructure systems
is shown in Table 2.

In Table 1, some infrastructure systems are composed of several
industry sectors in the I-O account, e.g., the ART includes the air
transportation, rail transportation, water transportation and truck
transportation. In Table 2, the numbers represent the values of system
performance (measured in millions of dollars) flowing from system to
system and users. In the I-O account, the total performance output of an
infrastructure system is divided into outputs to different industry sec-
tors and output to the final users. In Table 2, entries in each row show
the distribution of performance output to an infrastructure system. The
values for different systems are set according to the real data. The value
of ‘performance output’ in each row is proportional to the total per-
formance output of an infrastructure system in the I-O account. It is
calculated by applying Eq. (22).

⎜ ⎟= ⎛
⎝

⎞
⎠

×

performance output
output to chosen infrastructure systems

output to all industry sectors

total performance output (22)

The ‘Exogenous Demand’ in each row represents the performance
output of an infrastructure system to final user. Similar as the ‘perfor-
mance output’, the value of ‘Exogenous Demand’ in each row is pro-
portional to the output of an infrastructure system to final users in the I-
O account. It can be calculated as the difference between the ‘perfor-
mance output’ of an infrastructure system and the sum of its outputs to
chosen systems.

Entries in a column show the distribution of performance inputs of
an infrastructure system. That is, each column shows the performance
input of an infrastructure system from chosen infrastructure systems for
its performance output. From perspective of economy, the performance
input and output of each infrastructure system should be equivalent
(Miller and Blair, 1985), so here the performance input of an infra-
structure system is derived alternatively from its performance output.
The ‘Value Added’ in each column represents the amount of economic
value added to infrastructure systems, including the cost of employees
and taxes. In the example, the value of ‘Value Added’ in each column is
calculated as the difference between the ‘performance input’ of an in-
frastructure system and the sum of its input from chosen systems.

The performance flows among infrastructure systems in Table 2 are
denoted by a 7× 7 matrix. Dividing each element of the performance
flow matrix by the respective column sum yields a matrix A. In Eq. (10),

∗A is a normalized interdependency matrix, the elements in ∗A represent
how much inoperability q is contributed by the column system to the
corresponding row system due to interdependent nature of systems.
According to literature (Lian and Haimes, 2006), matrix ∗A can be de-
rived by Eq. (23).

⎜ ⎟= ⎧
⎨⎩

= ⎛
⎝

⎞
⎠

⎫
⎬⎭

∗ ∗A a a
output of column j
output of colum iij ij

(23)

where aij is the elements in matrix A, output of column i and j represent
the performance output of infrastructure system i and j.

Suppose infrastructure system OGE, EPG, and NGD are directly
impacted by a disruptive event at =t 0. The government decision
maker is a hypothetical one and responsible for maximizing the resi-
lience of infrastructure systems. In this case, the resources are assumed
to be allocated to the directly impacted infrastructure systems. Table 3
displays the parameters in the model.

The basic restoration capacity is taken from the literature (Lian and
Haimes, 2006; MacKenzie et al., 2016), in which the parameters of most
industry sectors are estimated to belong to [0.01, 0.3]. Since big re-
storation resource budget is needed for a large-scale disruptive event,
the cost-effectiveness parameters should be relatively small. The ef-
fectiveness of allocating resources to different industry sectors is esti-
mated by MacKenzie et al. (2016) according to the return on investment

Table 1
Infrastructure systems.

Symbol Name

OGE Oil and gas extraction
EPG Electric power generation, transmission, and distribution
NGD Natural gas distribution
WSS Water, sewage and other systems
ART Air, rail, water and truck transportation
TGT Transit and ground passenger transportation
STS Scenic transportation and support activities for transportation
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for each industry sector, such as fishing industry, accommodations in-
dustry, and oil and gas industry. The effectiveness parameters for these
industries are very small, not more than 0.08 per $1 million. This study
assumes the restoration resources are only allocated to infrastructure
systems which are directly impacted. The cost-effectiveness parameters
for these infrastructure systems are assumed, and for other systems they
are set as 0. The expected performance of a specific infrastructure
system is equivalent to its performance output in monetary units (see
Table 2).

5.2. Results

As the performance output of infrastructure systems give priority to
the demands of users, =∗c t( ) 0 in Eq. (10). Transforming Eq. (10) into
discrete-time dynamic version, substituting the expression of

= …K diag k k( , , )N1 and ∗A into the equation, the recursive formula of
inoperability q t( ) becomes

+ = − × + × × =∗q t I K q t K A q t q( ( 1) ( ) ( ) ( ), (0) (0.3,0.1,0.2,0,0,0,0)T

(24)

where the time step is assumed to be 1 day. According to Eq. (24),
without restoration resources from government, the change of inoper-
ability q t( ) for infrastructure systems following the disruptive event is
shown in Fig. 2.

In Fig. 2, for directly impacted infrastructure systems, the inoper-
ability of OGE and NGD decreases with time because of their basic
restoration capacity. However, the inoperability of infrastructure EPG
first increases and then decreases. The cause of this behavior is due to
the higher direct impacts on infrastructure OGE and NGD. The in-
operability of infrastructure EPG increases because of the indirect im-
pacts from infrastructure OGE and NGD. Also, Fig. 2 shows that, due to
interdependencies, the other four infrastructure systems are similarly
indirectly impacted. Their inoperability first increases and then de-
creases, while the disturbances of these systems are relatively small.
The biggest inoperability during the process is less than 0.04. After
about 80 days, the inoperability for every infrastructure system is less
than 0.01, so we set 80 days as the largest rapidity ∗T . According to Eq.
(4), without restoration resources, the resilience of systems is 0.9663.

Considering the available restoration resources, Fig. 3 depicts the
resilience of infrastructure systems by solving the resource allocation
model for budgets ranging from 0 to 100 million dollars. It can be seen
that, the resilience increases with increase of budget, from 0.9663 at
budget 0, to more than 0.99 at budget $100 million. However, the

Table 2
Average daily performance of infrastructure systems (in millions of dollars).

OGE EPG NGD WSS ART TGT STS Exogenous demand Performance output

OGE 1.285 2.489 3.237 0 0 0.16 0 2.957 10.128
EPG 0.759 1.725 3.200 0.156 0.798 0.264 0.287 4.115 11.304
NGD 2.078 1.790 0.380 2.266 0.784 0.138 0.914 5.110 13.460
WSS 0.444 1.079 0.801 0.182 0.330 0.295 0.101 3.791 7.023
ART 0.502 0.807 0.407 0.261 2.501 0.44 1.492 1.639 8.049
TGT 0 0.145 0.067 0.128 0.192 0 2.224 2.277 5.033
STS 0.481 2.203 0.478 0.06 2.260 0.146 2.025 6.557 14.210
Value Added 4.579 1.066 4.890 3.970 1.184 3.590 7.167
Performance Input 10.128 11.304 13.460 7.023 8.049 5.033 14.210

Table 3
Parameters in the model.

Infrastructure OGE EPG NGD WSS ART TGT STS

Initial inoperability q (0)ϕ 0.3 0.1 0.2 0 0 0 0

Basic restoration capacity hϕ 0.1 0.1 0.15 0.1 0.1 0.1 0.1
Cost-effectiveness parameter uϕ (per $1 million) 1× 10−2 1.5×10−2 2× 10−2 0 0 0 0
Expected performance αϕ (in million dollars) 10.128 11.304 13.46 7.023 8.049 5.033 14.21

Fig. 2. The Change of inoperability of infrastructure systems.

Fig. 3. Resilience of systems at different budget.
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change of resilience is showing marginal decrease. The total perfor-
mance loss of infrastructure systems (measured in millions of dollars) at
different resource budget levels is shown in Fig. 4, the loss decreases
with increase of the budget. Further, we examine the sum of perfor-
mance loss and restoration resource budget. The sum first decreases and
then increases when restoration resource budget increases. It means if
we consider the cost of restoration resources and the performance loss
resulted by the event as a whole, there is an optimal value for the
budget, which minimizes the sum of the two items. In this example, the
optimal budget is $40.46 million, the corresponding resilience of in-
frastructure systems is 0.9861, the sum of performance loss and re-
source budget is $121.193 million.

Next, we investigate the resource allocation strategy at different
resource budget levels. Table 4 shows the optimal allocation to infra-
structure systems at five budget levels: 1, 5, 10, 50 and 100 million
dollars.

In Table 4, if the resource budget is small, e.g. 1 or 5 million dollars,
no resource will be allocated to infrastructure EPG, and the biggest
proportion of the resource should be spent on infrastructure NGD. In
the simulation, the resource allocation to infrastructure EPG is always 0
if the resource budget is below $6.5 million; infrastructure NGD re-
ceives the biggest budget share when the budget is less than $5.5 mil-
lion. If the resource budget is large, e.g. $10, $50 and $100 million, the
decision maker should allocate the biggest budget share to infra-
structure OGE, and the budget share for infrastructure EPG remain the
smallest. The optimal resource allocation strategies at different budget
levels are determined by the value of parameters in Table 3 and matrix

∗A . The results in Table 4 are probably caused by the fact when the
budget is small, the cost-effectiveness parameter uϕ plays the main role
in resource allocation. Bigger cost-effectiveness parameter makes re-
sources more effective for the restoration of a system. Therefore, in-
frastructure OGD requires the biggest share of the resources. The ef-
fectiveness parameter for infrastructure EPG is in the middle, while the
initial inoperability of EPG is the smallest, so resource allocation to EPG

is smaller than to others. If the resource budget is larger, the value of
initial inoperability plays the main role in resources allocation, so the
rank of budget share from big to small is always OGE, NGD and EPG. It
can also be seen that, when the budget increases from $50 to $100
million, the change in resilience of infrastructure systems is relatively
small due to the marginal decreasing rate of resilience with increase of
resources.

5.3. Sensitivity analysis

Sensitivity analysis on parameters provides insight into how these
parameters affect the optimal allocation of resources.

First, we explore the sensitivity of the optimal allocation to the in-
itial inoperability of infrastructure EPG. One result for resource allo-
cation model recommends allocating smallest share of budget to in-
frastructure EPG at any resource budget level due to its small initial
inoperability. Sensitivity analysis can reveal if this recommendation
remains valid if the initial inoperability of infrastructure EPG changes.
We tested $4 million and $40 million as the resource budget. Fig. 5
shows the budget share of infrastructure EPG with initial inoperability
ranging from 0 to 0.5. The initial inoperability for infrastructure OGE
and NGD are still 0.3 and 0.2.

Fig. 5 shows that, at two different resource budgets, to maximize
resilience of infrastructure systems, the budget shares of infrastructure
EPG are both 0 if its initial inoperability is small, and monotonically
increases with the increase of initial inoperability above a specific
threshold. The threshold for budget $4 million is larger than that for
budget $40 million. It means that, if the initial inoperability is small,
the initial inoperability plays less significant role in resources allocation
under a small resource budget, same as results derived from Table 4.
However, if the initial inoperability is large enough, the increasing of
the budget share of infrastructure EPG at small budget is more rapid. In
Fig. 5, the budget share reaches to 1 when the initial inoperability is
near 0.5 for budget of $4 million (this extreme level of initial inoper-
ability is very unlikely in reality). In comparison, the budget share is
only 0.66 for budget of $40 million with the same initial inoperability.
This is complementing the simulation results. That is, to maximize in-
frastructure systems resilience, if the initial inoperability of a system is
small, it will require a smaller budget share with a small resources
budget; while, if the initial inoperability is large enough, the system
will require a larger budget share with a small budget.

One key result from the simulation is that if the resource budget is
small, the cost-effectiveness parameter plays the main role in resource
allocation. However, the sensitivity analysis on initial inoperability
shows that the initial inoperability is also important for resource

Fig. 4. The sum of loss and budget at different budget.

Table 4
Optimal allocation at different resource budget levels.

Infrastructure Amount of resources allocated to infrastructure system

OGE 0.262 2.267 4.652 20.838 41.805
EPG 0 0 1.38 12.215 24.03
NGD 0.738 2.833 3.968 16.947 34.165
Total budget

(million
dollars)

1 5 10 50 100

Resilience 0.9676 0.9717 0.9753 0.9875 0.9916

Fig. 5. The budget share of infrastructure EPG with different initial inoperability.
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allocation. Sensitivity analysis can reveal the effect of the two para-
meters on the allocation of resources. Assuming the budget is $4 mil-
lion, Fig. 6 is a contour plots of resource allocation to infrastructure
EPG with its cost-effectiveness parameter u2 ranging from 0 to 5× 10−2

and initial inoperability from 0 to 0.5.
In Fig. 6, with the objective of maximizing resilience, the optimal

allocation to infrastructure EPG will increase if its initial inoperability
or effectiveness parameter u2 increases. However, when the initial in-
operability is smaller than 0.05, even when we choose 5×10−2 as the
cost-effectiveness parameter, the allocation to infrastructure EPG is still
0. This result is similar to that shown in Table 4, that infrastructure EPG
always obtains the smallest budget share because of its small initial
level of inoperability. Similarly, if the cost-effectiveness parameter is
smaller than 5× 10−3, the allocation to infrastructure EPG will always
be 0, no matter which initial inoperability level is selected. Comparing
the effect of the two parameters on allocation, in Fig. 6, if the initial
inoperability is chosen as 0.2 or larger, the optimal allocation to in-
frastructure EPG will be very sensitive to its cost-effectiveness para-
meter. As the cost-effectiveness parameter increases from 1×10−2 to
1.5×10−2, the allocation to infrastructure EPG will increase from 0 to
4. This means that, for an infrastructure system with large initial in-
operability, the allocation is more sensitive to the value of cost-effec-
tiveness parameter. With similar analysis, it can be found that, the
optimal allocation will become less sensitive to the initial inoperability
with larger cost-effectiveness parameter. In summary, the sensitivity of
the optimal resource allocation to cost-effectiveness parameter is clo-
sely related to the initial inoperability.

6. Conclusions

Enhancing resilience can reduce the impacts of disruptive events on
interdependent infrastructure systems. This paper presented an opti-
mization model to assist decision makers in determining the effective
resource allocation and maximize resilience of interdependent infra-
structure systems. The model and the application in this study can guide
the decision making process that will result in enhancing inter-
dependent infrastructure resilience to disruptive events. First, though
larger resource budget can result in higher resilience, the change in
resilience is marginally decreasing with the increase of the recovery
budget. There is an optimal value for the budget, which can minimize
the sum of restoration costs and the performance loss (measured in
monetary units) induced by a disruptive event. Second, under a dis-
ruptive event, the budget share of interdependent infrastructure sys-
tems will be different if the amount of resource budget changes. Finally,
with the same resource budget, the budget share of an infrastructure

system is sensitive to its initial inoperability and cost-effective para-
meter. The sensitivity to one parameter is closely related to the value of
the other.

There are also some limitations of the study. First, above re-
commendations are dependent on the modeling assumptions, such as:
(i) the logarithmic relationship between the allocated resources and the
recovery rate of an infrastructure system; (ii) linear DIIM model used to
describe the interaction process among infrastructure systems; etc.
Although we believe these assumptions, to some extent, illustrate the
characteristics of infrastructure systems, their validity still needs to be
explored due to the complexity of real infrastructure systems. Second,
the impacts of factors such as basic restoration capacity, restoration-
starting time, and resource classification and so on are not taken into
consideration in this study. In the future work, empirical studies will be
conducted to validate some of assumptions in this study, or the inter-
action effects of multiple factors on restoration resource allocation will
be investigated.
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