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The evolution of energy markets is accelerating in the direction of a greater reliance upon distributed
energy resources (DERs). To manage this increasing two-way complexity, virtual power plants (VPPs)
are being deployed today all over the world. In this paper, a probabilistic model for optimal day ahead
scheduling of electrical and thermal energy resources in a VPP is proposed where participation of energy
storage systems and demand response programs (DRPs) are also taken into account. In the proposed
model, energy and reserve is simultaneously scheduled considering the uncertainties of market prices,
electrical demand and intermittent renewable power generation. The Point Estimate Method (PEM) is
applied in order to model the uncertainties of VPP’s scheduling problem. Moreover, the optimal reserve
scheduling of VPP is presented which efficiently decreases VPP’s risk facing the unexpected fluctuations
of uncertain parameters at the power delivery time. The results demonstrated that implementation of
demand response programs (DRPs) would decrease total operation costs of VPP as well as its dependency
on the upstream network.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The virtual power plant integrates and coordinates decentral-
ized power-generating sites, storage facilities and controllable
loads via a common intelligent control center. VPPs are not only
used for marketing energy quantities produced by distributed gen-
eration systems but also play a part as regards the power systems.
They enable the provision of system services in the distribution
and transmission network such as operating reserve capacity.
The VPP aggregates the electrical output from a multitude of dis-
tributed energy resources and makes this supply available to the
system operator. If requested, the VPP controls the immediate dis-
patch of the connected plants, thus contributing to grid reliability.
The aggregation of DERs aiming at providing reserve capacity is a
suitable solution for compensating the unexpected power fluctua-
tions of intermittent renewable generations.

Various literatures have already discussed VPPs and their chal-
lenges and opportunities in optimal scheduling issues or bidding
strategies in markets. The literatures having some differences with
the present work in terms of the possible embedded elements (e.g.
storage or CHP, etc.) are investigated in the following. In [1,2], VPP
is considered as a centralized entity containing some micro-CHP
units connected to a low voltage distribution network. An optimal
operation approach of a VPP composed of some CHP units is pre-
sented based on a decentralized control strategy [3]. In [1–3], how-
ever, the optimal usage of CHP systems has been defined as the
main goal and the key role of electrical storages and demand
response resources has not been taken into account. The impact
of the use of flexibility at the demand side, also referred to as
demand response, on power system operation is assessed in [4].
A two-stage modeling approach is used which combines a
day-ahead deterministic unit commitment model and an hourly
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Nomenclature

Sets
dg set of DG units, running from 1 to Ndg

k set of demand response program levels containing I
(first level), II (second level) and III (third level)

t set of time periods, running from 1 to 24.
z set of zones, running from 1 to Nz.
x set of scenarios, running from 1 to Nx

Binary variables
I, J, u binary variables pertaining to startup, shutdown and

unit commitment status of VPP’s resources, respectively

Continuous variables
Pboil;zt output power of boiler in period t and zone z
Pe
chp;zt ðPt

chp;ztÞ El. (Th.) output power of CHP in period t and zone z,
respectively

Ps
dg;zt scheduled power deployed by DG units in period t and

zone z

Pk;s
drp;zt scheduled power deployed by the kth level of demand

response program in period t and zone z
Ps
ens;zt scheduled involuntary electrical load curtailment in

period t and zone z
Ps
line;zt scheduled power flow through upstream line of zone z

in period t
Psh;zt surplus heat power in period t and zone z
PSR;t VPP’s bid to spinning reserve market in period t
Pe
st;zt , P

t
st;zt exchanged power into/out of El. and Th. storages in

period t and zone z, respectively
RU;s
dg;zt , R

D;s
dg;zt scheduled spinning reserve up and spinning reserve

down deployed by DG units in period t and zone z,
respectively

RU;k;s
drp;zt , R

D;k;s
drp;zt scheduled reserve up and reserve down deployed by
the kth level of demand response program in period t
and zone z, respectively
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simulation in real-time. A detailed modeling approach of both the
supply and demand side is taken, allowing to obtain a realistic
quantification of DR benefits. The focus of [4] is on residential
DR, including the scheduling of white goods appliances and battery
electric vehicles (BEVs). With regard to the presented work in [4],
the use of cogeneration systems has not been embedded in the
model. A stochastic programming framework for solving the
scheduling problem faced by an industrial customer with cogener-
ation facilities, conventional power production system, and heat
only units is proposed in [5]. The power and heat demands of the
customer are supplied considering demand response (DR) pro-
grams. Power demand and pool prices are considered as stochastic
processes in the scheduling problem, however, the use of renew-
able energy sources has not been investigated in the model. Ref.
[6] presents a stochastic profit-based model for day-ahead opera-
tional planning of a combined wind farm-cascade hydro system.
The generation company (GenCo) that owns the VPP considers a
portion of its hydro plants capacity to compensate the wind power
forecast errors. The proposed optimization problem is a mixed
integer linear programming (MILP), formulated as a two-stage
stochastic programming model. In [6], however, the presence of
energy storages, demand response programs and cogeneration sys-
tems has not been investigated. An optimization methodology is
proposed in [7] based on a multi-objective approach to handle with
day-ahead optimal resource scheduling of a VPP in a distribution
network considering different reactive power management strate-
gies. The proposed methodology determines an optimal resource
scheduling considering two competing objective functions. One
objective function is expressed as the minimization of the opera-
tion cost of all distributed energy resources managed by the VPP,
and the other one as the minimization of the voltage magnitude
differences in all buses of the distribution network. The main goal
is helping the VPP’s management of a distribution network with
high penetration of several distributed energy resources, such as
distributed generation units, electric vehicles, and capacitor banks.
Despite of the comprehensive proposed model in [7], the presence
of demand response programs and cogeneration systems has not
been investigated. A weekly self-scheduling of a VPP based on
stochastic programming has been tackled in [8] where intermittent
renewable sources, storage system and a conventional power plant
have been taken into account. In [9], a two-stage stochastic mixed-
integer linear programming model for a VPP has been presented,
where, the VPP tries to maximize its expected profit via participat-
ing in both the day-ahead and the balancing markets. In [8,9],
however, the presence of cogeneration systems and demand
response programs has not been investigated. In [10–12], a special
price-based unit commitment method has been suggested as an
appropriate solution for bidding strategies of VPPs in energy mar-
ket but without considering the presence of renewable energy
sources and demand response programs. In [13], a modified parti-
cle swarm optimization approach has been presented aiming at
minimizing the day-ahead costs of VPP. Although the storages
were modeled in [13], in the case study, these resources have been
ignored and therefore, the impact of storages in VPPs has not been
assessed. In [14], a full model of demand response in which
demand flexibility is fully utilized by price responsive shiftable
demand bids in energy market as well as spinning reserve bids in
reserve market, is proposed. However, the presence of renewable
energy sources has not taken into account.

The literatures having some differences with the present work
in the modeling (e.g. modeling of resources, modeling of uncertain-
ties, optimization approach, etc.) are investigated in the following.
A new method to support VPP day-ahead resource scheduling in a
smart grid context considering the intensive use of V2G and other
distributed energy resources is proposed in [15]. The main objec-
tive is to minimize the operation costs considering all the available
resources for each operation period. With full respect to the pro-
posed method in [15] the uncertainties modeling of renewable
energy sources in operation from VPPs has not been investigated.
Authors in [16] propose a new market integration approach for
responsive loads. Regional pockets of responsive loads are aggre-
gated into models that describe population dynamics as an equiv-
alent virtual power plant. This demand-side virtual power plant is
then integrated into the market as a new source of spinning
reserves. Despite of the comprehensive proposed model in [16],
the modeling of uncertainties of renewable energy sources has
not been taken into account. The economic operation of a hybrid
system consisting of wind, solar, hydrogen and thermal power sys-
tems in the VPP structure is evaluated to participate in the electric-
ity market with high levels of reliable power production [17]. An
economic operation-based load dispatching strategy that can inter-
actively adapt to the real measured wind and solar power produc-
tion values is also proposed in [17]. The proposed forecasting
approach, for wind and solar resources, is developed taking into
account the components of the VPP concept, the required time
horizon, the specifications of the site and the available data. In
[17], however, the presence of uncertainties of market price and
electrical demand has not been tackled. Authors in [18] propose
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a new framework for the operation of distribution companies (Dis-
cos) in the liberalized electricity market environment considering
distributed generation (DG) units and carbon dioxide (CO2) emis-
sion penalty cost. The proposed short-term framework is a two-
stage model. The first stage, namely day-ahead stage, deals with
the activities of discos. The results of the first stage are imposed
as the boundary constraints in the second stage which deals with
the activities of discos in an hour-ahead period. In the hour-
ahead stage, the retailers determine the amount of purchased
active and reactive power from the grid and the production of each
DG unit in the energy and reserve market keeping in mind its day-
ahead decision to maximize the desired short-term profit. With full
respect to the proposed framework in [18], the modeling of exist-
ing uncertainties in operation from distribution networks has not
been taken into account. A new algorithm has been proposed in
[19] in order to optimize thermal and electrical scheduling of a
large scale VPP containing cogeneration systems and energy stor-
ages. Despite of the accurate mathematic model in [19], no specific
model for renewable energy sources and their corresponding
uncertainties has been investigated. A stochastic bidding strategy
of microgrid in a joint day-ahead market of energy and spinning
reserve service is proposed in [20] taking into account of uncer-
tainty of renewable DG unit’s output power and load but without
considering the price uncertainty.

This paper proposes a simultaneous energy and reserve
scheduling method for a VPP considering demand response
resources, energy storages and uncertainty parameters. Modeling
of uncertainties in operational planning problems makes the
scheduled result more realistic. The innovative contributions of
the proposed method are highlighted as follows:

� Presenting a two-stage probabilistic model for simultaneous
energy and reserve scheduling of a VPP.

� Aggregating uncertainties of electricity prices, renewable power
generation and load demand in VPP’s scheduling problem.

� Including load demand participation in both energy and reserve
scheduling in a VPP.

� Aggregating various technologies of DERs (e.g. energy storages,
cogeneration systems, DRPs, stochastic and dispatchable gener-
ation units) in VPP’s territory.

The rest of the paper is organized as follows: Sections 2–4 pro-
vide the model description and formulation that completely delin-
eates the VPP’s framework and the proposed day-ahead
probabilistic mixed-integer linear programming model of VPP;
the simulation results of a typical case study are presented and
analyzed in Section 5, and the paper is concluded in Section 6.
2. The VPP’s framework

2.1. Concept of VPP

In this paper, the VPP’s concept is developed for aggregating
some DERs to coordinately operate for participating in both energy
and spinning reserve markets. In general, two integration strate-
gies are existed, including integration in a microgrid and in a VPP
[21]. In [21], the integration of DERs, i.e. DGs, controllable loads
and energy storages, into microgrid and Virtual Power Plant
(VPP) has been investigated. As discussed in [22], VPP enables
the integration of DERs (both generation and demand) into power
system operation. So, energy storages and demand response
resources are types of DERs and can be integrated in a VPP [21–23].

To compare a VPP with a microgrid, it can be noted that there
are some conceptual differences between definitions of a VPP
and a microgrid. The microgrid concept is based on the assumption
that large numbers of micro generators are connected to a network
aiming at reducing the requirement for transmission and high volt-
age distribution assets [21]. The microgrid is generally designed
based on delivering local energy that meets the exact needs of
the constituents being served almost independently [24–26]. So,
the energy management system of a microgrid tries to operate
the microgrid more independently. Similar to microgrids, VPP is
a combination of DGs, controllable loads and energy storages;
however, it is a wider concept than microgrids. In general, VPPs
aggregate a number of DERs with various operating pattern that
are connected to various points in the distribution network for
the purpose of trading electrical energy or providing system sup-
port services [21].

According to Fenix definition [22], VPP aggregates the capacity
of many diverse DER; it creates a single operating profile, at a sin-
gle point of common coupling with the upstream network. More-
over, there are two types of VPP: the commercial VPP (CVPP) and
technical VPP (TVPP). CVPPs perform commercial aggregation
and do not take into consideration any network operation aspects
that an active distribution network have to consider for a stable
operation. TVPP consists of DER from the same geographic location
and includes the real-time influence of the local network on DER
aggregated profile as well as representing the cost and operating
characteristics of the portfolio. These concepts are discussed in
detail in [27].

Similar to [10], this paper considers VPP the same as TVPP
defined in [22] as a comprehensive definition which takes into
account the influence of local network on DER aggregated profile.
2.2. Control scheme of VPP

VPPs may be controlled in decentralized or centralized manner
[28]. In decentralized control strategy, each DER is locally con-
trolled by local controller (LC). Basically, the active power output
of DER is controlled by distributed generation controller (DGC)
and the DGC is controlled by LC. In order to achieve an integrated
system, the LCs are linked to each other forming a ring network
architecture through communication to allow signals exchange.
On the other hand, in the centralized one, the DERs are centrally
controlled by control coordination center (CCC). The requirement
signals, e.g. loads signals, are transmitted to the CCC, and processed
by means of logic algorithm. Thereafter the signals are dispatched
to each DGC and then the active power output is produced accord-
ing to the CCC signals. With the CCC it is able to execute both tech-
nical and economical functions, in order to gain benefits of
aggregated DERs. Additional information about the control strate-
gies of VPP has been addressed in detail in [28].

It this paper, VPP is controlled in the centralized form and the
aim of CCC is to maximize the net profit of VPP by providing opti-
mal bids to the electricity market.
2.3. Interaction strategy of VPP

The complete aggregation of DERs in a VPP can just be achieved
within the smart grid scheme. By complete implementation of
smart grid technologies, the passive participants in distribution
systems are expected to convert to the active one and, as a result,
they can mutually communicate with system operators and other
players in order to incorporate in power balancing and energy
trading activities. In this case, the VPP’s operator is able to call
on its own DERs (in its territory) and external entities to share
some information based on its operational objective as shown in
Fig. 1. According to this figure, the VPP’s operator can mutually
contact with energy/spinning reserve market for determining its
optimal bidding strategies in these two markets. The market
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framework considered in this paper is the same as suggested in
[10].
2.4. Local network of VPP

The VPP under investigation is a set of zones, individually con-
nected to a typical radial network, which is fed by a substation
transformer, as shown in Fig. 2. As thermal loads are locally fed
by thermal suppliers, the overall network is split into a number
of zones. Each zone is composed of two main parts: electrical
and thermal. The resources available in electrical part consist of
Photo Voltaic (PV), wind turbine, electrical link of CHP, DG units
(fuel cells and micro turbines), electrical storage (electro-
chemical battery) as well as demand response resources for feed-
ing electrical load demand or energy injecting to the upstream line.
On the other hand, resources available in thermal part consist of
boiler, thermal link of CHP and thermal storage for feeding thermal
load demand. As the actual locations of DERs in the network are
taken into account, thus the present work focuses on a large scale
VPP.

In case of presence of some DERs inside the local network that
are not included in the VPP’s cluster, these resources can be consid-
ered as independent resources with known values (e.g. known
active power). So, these resources can be embedded in the pro-
posed model by their known values. Therefore, the values pertain-
ing to the output power of these resources can be forecasted by
VPP and have not been determined by optimization algorithm of
VPP. However, these resources have not been considered in the
local network of VPP and it is assumed that all resources (both gen-
eration and demand) in the local network are managed by VPP.
With this assumption, the power flow through each line can
completely be controlled by VPP.
3. Point estimate method

Optimal operation of power systems have always been faced
with some uncertainties. That is due to some uncertain input
parameters that extremely affect on performance of power
systems. So far, many efforts have been made to identify and
model these uncertainties (e.g. probabilistic models, robust opti-
mization, interval arithmetic, etc.). There are two types of methods
used for energy reserve scheduling in the literature: deterministic
and stochastic methods. In the deterministic approach, the amount
of reserve requirement in each period is determined before the
energy and reserve scheduling [29] where in stochastic methods
the probabilistic nature of parameters such as renewable genera-
tion or units failures are modeled within the scheduling optimiza-
tion [30,31]. Studies evidenced that the stochastic scheduling
methods properly model system situations if compared to deter-
ministic method [32].

A new standard classification of uncertainty modeling tech-
niques for renewable energy resource impact assessment under
uncertainty has been proposed in [33]. These methods have been
introduced and implemented and their strengths and weaknesses
have been demonstrated. As discussed in [33], the probabilistic
techniques are more appropriate for impact assessment of renew-
able energies. The main reason for this fact is that the output of
renewable energy resources basically depends on the characteris-
tics of their primary energy resources such as solar radiation, wind
speed, and environmental temperature. The historic data of these
parameters is usually available and they can be modeled using a
probability density function (PDF). The main probabilistic models
include Monte Carlo simulations, PEM, scenario-based decision
making and Markov models, e.g. Discrete-time Markov chain
model [34], Semi-Markov model [35], Markov-Chain Regime-
Switching Autoregression (MS-AR) [36] and Markov-Chain Monte
Carlo (MCMC) [37]. In [38], Different scenarios for modeling the
output power of PVs and wind units as well as day-ahead energy
prices are generated based on the Monte Carlo simulations for
optimal daily operation of a VPP. Two probabilistic optimal opera-
tion management schemes of microgrid and Decision making of a
VPP under uncertainties are proposed using PEM in [39–41],
respectively.

The PEM, as a subcategory of probabilistic models, is a suitable
tool for modeling of power system uncertainties [33]. Suppose that
X and D are the vectors of input uncertain and deterministic
parameters, respectively, and y is the output function of these
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input parameters (e.g. objective function of VPP’s scheduling prob-
lem) as given in (1). The vector X can adopt each ones of the con-
sidered uncertain parameters such as solar radiation, wind speed,
energy market price and electric load demand.

y ¼ f ðD;XÞ ð1Þ
The PEM is a strong technique which approximately calculates

the expected value and standard deviation of y based on the mean
and standard deviation of X. If there are n uncertain parameters in
vector X ðxs; s ¼ 1 : nÞ then this method performs 2n calculations to
obtain the expected values of y ðEðyÞÞ and y2ðEðy2ÞÞ. The PEM is
implemented through the following steps:

Step 1. Determine the locations and probabilities of concentra-
tions us;i and ps;i, respectively, as expressed in (2) and (3).
us;i ¼
M3ðxsÞ
2r3

xs

þ ð�1Þiþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 1

2
M3ðxsÞ
r3

xs

 !2
vuut ;

s ¼ 1 : n; i ¼ 1;2 ð2Þ
ps;i ¼ ð�1Þi us;3�i

2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 1

2
M3ðxsÞ
r3
xs

� �2r ; s ¼ 1 : n; i ¼ 1;2 ð3Þ

where s is the counter of uncertain parameters, rxs is stan-
dard deviation of xs and M3ðxsÞ is third moment of parameter
xs that is illustrated by (4).

M3 xsð Þ ¼ E½ðxs � lxs Þ
3�; s ¼ 1 : n ð4Þ

where lxs is the mean value of uncertain parameter xs.

Step 2. Determine the concentration points xs;i, as given below:
xs;i ¼ lxs þus;i � rxs ; s ¼ 1 : n; i ¼ 1;2 ð5Þ

Step 3. Calculate EðyÞ and Eðy2Þ according to (6) and (7). If s ¼ p

then the pth uncertain parameter in vector X must be
replaced by xs;i (as obtained by (5)) and the other ones in
X can be set by their mean values.
EðyÞ ¼
Xn
s¼1

X2
i¼1

ps;i � f ðD;lx1
;lx2

; . . . ; xs;i; . . . ;lxs Þ ð6Þ
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E y2
� � ¼Xn

s¼1

X2
i¼1

ps;i � f 2ðD;lx1
;lx2

; . . . ; xs;i; . . . ;lxs Þ ð7Þ
Step 4. Calculate the mean and the standard deviation of y as
follows:
ly ¼ EðyÞ ð8Þ

ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E y2ð Þ � E2ðyÞ

q
ð9Þ
In this paper, the PEM is applied in order to generate 2n scenarios
with specific probabilities that would be called on the second stage
of the objective function of VPP’s scheduling problem.

4. Mathematical model

The mathematical model of the proposed method is investi-
gated in this section. At first, the proposed objective function of
VPP’s scheduling problem, as the main part of this section, is intro-
duced. Then, the constraints of mathematical model such as the
relations pertaining to the VPP’s resources, power balancing and
exchanged power with electricity market are described.

4.1. Objective function

The objective function of the proposed energy and reserve
scheduling method is the day-ahead expected net profit of VPP.
The presented objective function is composed of two main stages;
the upper and lower stages are, respectively, scenario-independent
(first stage) and scenario-dependent (second stage) expressions. In
fact, the first stage includes the values that do not depend on any
particular scenario realization in each time period, that are named
as scheduled variables; on the other hand, the second stage con-
tains the values pertaining to each particular scenario in each time
period. The distributed generation units and DRPs among all other
VPP’s resources have been considered to participate in each sce-
nario and compensate the fluctuations of uncertain parameters.
The superscripts s and x are used to indicate the first stage and
second stage variables, respectively. The different parts of the pro-
posed objective function are described as follows:

The exchanged cash flow into/out of VPP pertaining to the first
stage of the objective function:

� The scheduled exchanged cash flow between VPP and the
electricity market (energy market and spinning reserve mar-
ket); as line Nz is connected to point of common coupling
(PCC) of VPP, the power flowing through this line ðPNz

line;tsÞ is
the same as offered to the energy market; positive and negative
values of PNz

line;ts indicate selling power to and purchasing power
from energy market, respectively.

� The scheduled energy, spinning reserve up/down costs corre-
sponding to the three-level DRP.

� The cost of fuel that is injected to boilers and CHP units as well
as the startup and shutdown costs of CHP units.

� The operational cost of electrical and thermal storages; the
related cost is generally concerned with maintenance costs, it
is assumed to be a linear function of the absolute of its charged
or discharged capacity at each hour [11].

� The scheduled energy, spinning reserve up/down costs of DG
units.

� The scheduled penalty for not served electrical loads.
� The scheduled obtained revenue from end-consumers
according to the hourly retail energy rates of VPP.
The exchanged cash flow into/out of VPP pertaining to the sec-
ond stage of the objective function:

� The expected supplementary revenue in the exchanged cash
flow between VPP and the electricity market.

� The expected supplementary energy costs of DG units and DRPs.
� The expected supplementary penalty for not served electrical
loads.

� The expected supplementary revenue in the exchanged cash
flow between VPP and end-consumers.

profit¼max
X24
t¼1

q f
EM;t �PNz ;s

line;t þqSR;t �PSR;t

þ
XNz

z¼1

ECs
drp;zt þRCU;s

drp;zt þRCD;s
drp;zt

þECchp;zt þECboiler;zt

þECe
st;zt þECt

st;zt

þ
XNdg

dg¼1

ðECs
dg;zt þRCU;s

dg;zt þRCD;s
dg;ztÞ

þqens;t �Ps
ens;zt þPs

sel;zt �qretvpp ;t

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

þ
XNx

x¼1

X24
t¼1

px;t �

qx
EM;t �PNz ;x

line;t �q f
EM;t �PNz ;s

line;t

þ
XNz

z¼1

ECx
drp;zt þ

XNdg

dg¼1

ECx
dg;zt

þqens;t � ðPxens;zt �Ps
ens;ztÞþðPxsel;zt �Ps

sel;ztÞ �qretvpp ;t

8>><
>>:

9>>=
>>;

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð10Þ

where px;t is the occurrence probability of scenario x in period t.

q f
EM;t and qx

EM;t are the forecasted and scenario-dependent prices of
energy market in period t. qSR;t ;qretvpp ;t and qens;t indicate the spin-
ning reserve market price, VPP’s retail energy rate and the consid-
ered penalty for energy not-served in period t, respectively. Pxsel;zt
and Ps

sel;zt are, respectively, the scenario-dependent and scheduled
served electrical demand in period t and zone z.

In stochastic methods the reserve requirement for each scenario
are determined based on a trade-off between the costs due to the
reserve and to the expected energy not served. The load shedding
option is considered only for some scenarios with very low proba-
bility of occurrence [42]. In fact, in the operation of the real VPP, it
is expected that no involuntary load shedding occurs due to renew-
able generation variations. When a low probability renewable
power scenario happens, if the scheduled reserve is not enough
for compensating the power deviation, the VPP operator can pur-
chase the required power from hour-ahead or real-time market
[43]. The energy not served term is embedded in the model to
ensure that the power balance equation is always respected in each
operational case of VPP. So, in normal operational cases of VPP, this
energy not served variable would be set to zero by solving the
model and because of parallel operation of VPP with the upstream
network. On the other hand, in special operational cases where
network limitations or generation unit outages, are emerged, the
energy not served variable can be set to a non-zero value by solv-
ing the model. As in the model, VPP takes into account network
operation aspects as well as all electrical loads in the local network
in terms of providing their demand, so VPP is responsible for any
blackout of these loads and must pay the penalty for such event.
However, VPP can prevent from this event, by making some appro-
priate policies in its territory, e.g. implementing the demand
response programs. The energy not served variable (Pxens;zt and

Ps
ens;zt) is penalized by a high value that is known as VOLL (Value

Of Lost Load). The VOLL is an important measure in electricity mar-
kets. It represents customer’s willingness to pay for electricity ser-
vice (or avoid curtailment). In electricity markets, VOLL is usually
measured in dollars per MWh. VOLL depends on multiple factors
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such as the type of customer affected, regional economic condi-
tions and demographics, time and duration of outage, and other
specific traits of an outage [44].

There are some mechanisms for estimating the fuel cost of CHP
units. For instance, based on an Italian pricing framework, a gas
volume (m3) numerically correspondent to one fourth of produced
electricity (kWh) is out of fiscal ruling, i.e., conventionally associ-
ated to electricity production; the remaining part is considered
for heat generation purposes by assigning two rates to fuel depen-
dent on the type of application (e.g. heat or electricity generation
purposes) [19]. In this paper, the consumption fuel cost of CHP
units ignoring the application type has been considered. Other-
wise, some other mechanisms could be embedded in the presented
model. Both CHPs and boilers are gas-fired. According to (10), 860
is kWh-to-kcal ratio and by using this coefficient and heating value
of natural gas ðHVNGÞ, the unit of qNG;t converts from dollars per
cubic meter to dollars per kWh.

Each term of the objective function is described as follows:

ECs
drp;zt ¼ �

XIII
k¼I

qE;k
drp;t � Pk;s

drp;zt

� �
; 8z; 8t ð11Þ

RCU;s
drp;zt ¼ �

XIII
k¼I

qRU ;k
drp;t � RU;k;s

drp;zt

� �
; 8z; 8t ð12Þ

RCD;s
drp;zt ¼ �

XIII
k¼I

qRD ;k
drp;t � RD;k;s

drp;zt

� �
; 8z; 8t ð13Þ

where ECs
drp;zt , RC

U;s
drp;zt and RCD;s

drp;zt are the scheduled energy, reserve
up and reserve down costs of the three-level DRP in period t and

zone z, respectively. qE;k
drp;t , q

RU ;k
drp;t and qRD ;k

drp;t are the price bids of
energy, reserve up and reserve down pertaining to the kth level of
DRP in period t, respectively.

ECs
dg;zt ¼ � ECdg Ps

dg;zt

� �
þ SCdg;z � Isdg;zt þ SHCdg;z � Jsdg;zt

� �
; 8z; 8t; 8d

ECdgðxÞ ¼ adg � xþ bdg

ð14Þ

RCU;s
dg;zt ¼ �RCU

dg RU;s
dg;zt

� �
; 8z; 8t; 8dg

���RCU
dgðxÞ ¼ aU

dg � xþ bU
dg ð15Þ

RCD;s
dg;zt ¼ �RCD

dg RD;s
dg;zt

� �
; 8z; 8t; 8dg

���RCD
dgðxÞ ¼ aD

dg � xþ bD
dg ð16Þ

where ECs
dg;zt , RC

U;s
dg;zt and RCD;s

dg;zt are the scheduled energy, spinning
reserve up and spinning reserve down costs of DG units in period
t and zone z, respectively. ðadg ; bdgÞ, ðaU

dg ;b
U
dgÞ and ðaD

dg ;b
D
dgÞ are pos-

itive coefficients of energy cost function, spinning reserve up cost
function and spinning reserve down cost function of DG units,
respectively. SCdg;z and SHCdg;z are, respectively, the startup and
shutdown cost of DG units in zone z.

ECchp;zt ¼
�860 � qNG;t

HVNG
� Pe

chp;zt

gchp;z

 !

� ðSCchp;z � Ichp;zt þ SHCchp;z � Jchp;ztÞ; 8z; 8t ð17Þ

ECboiler;zt ¼
�860 � qNG;t

HVNG
� Pboil;zt

gboil;z

 !
; 8z; 8t ð18Þ

where ECchp;zt and ECboiler;zt are the energy costs of CHPs and boilers at
period t and zone z, respectively. gchp;z and gboil;z indicate the electri-
cal efficiency of CHP and efficiency of boiler in zone z, respectively.
SCchp;z and SHCchp;z are, respectively, the startup and shutdown cost
of CHP units in zone z. qNG;t is the natural gas price in period t.
ECe
st;zt ¼ � ae

st;z P
e
st;zt

��� ���þ be
st;z

� �
; 8z; 8t ð19Þ

ECt
st;zt ¼ � at

st;z P
t
st;zt

��� ���þ bt
st;z

� �
; 8z; 8t ð20Þ

where ECe
st;zt and ECt

st;zt are, respectively, the energy cost functions of

electrical and thermal storages in period t and zone z. ðae
st;z; b

e
st;zÞ and

ðat
st;z; b

t
st;zÞ are positive coefficients of energy cost functions of elec-

trical and thermal storages in zone z, respectively.

ECx
drp;zt ¼ �

XIII
k¼I

qE;k
drp;t � Pk;x

drp;zt � Pk;s
drp;zt

� �� �
; 8z; 8t; 8x ð21Þ

ECx
dg;zt ¼ � ECdg Pxdg;zt

� �
� ECdg Ps

dg;zt

� �
þ SCdg;z � Ixdg;zt

�
�SCdg;z � Isdg;zt þ SHCdg;z � Jxdg;zt � SHCdg;z � Jsdg;zt

�
;

8z; 8t; 8x; 8dg ð22Þ
where ECx

drp;zt and ECx
dg;zt are the supplementary energy cost of the

three-level DRP and DG units in period t, zone z and scenario x,
respectively.

4.2. DG units

4.2.1. Scenario-independent (scheduled) constraints
The scheduled power and spinning reserve up/down of DGs

should meet the inequalities shown in (23) and (24) at each time
period and each zone. the scheduled spinning reserve up/down
provided by each DG unit should be bounded into DG’s operational
spinning reserve up/down limitations (RU

dg max;z and RD
dg max;z) as

given in (25) and (26). The inter-relationships of the three binary
decision variables of DG units are given in (27)–(29).

RU;s
dg;zt 6 us

dg;zt � Pdg max;z � Ps
dg;zt; 8z; 8t; 8dg ð23Þ

RD;s
dg;zt 6 Ps

dg;zt � us
dg;zt � Pdg min;z; 8z; 8t; 8dg ð24Þ

0 6 RU;s
dg;zt 6 RU

dg max;z; 8z; 8t; 8dg ð25Þ

0 6 RD;s
dg;zt 6 RD

dg max;z; 8z; 8t; 8dg ð26Þ

us
dg;zt � us

dg;zt�1 6 Isdg;zt; 8z; 8t; 8dg ð27Þ

us
dg;zt�1 � us

dg;zt 6 Jsdg;zt ; 8z; 8t; 8dg ð28Þ

us
dg;zt � us

dg;zt�1 ¼ Isdg;zt � Jsdg;zt; 8z; 8t; 8dg ð29Þ
where Pdg max;z and Pdg min;z are the maximum and minimum opera-

tional power of DG in zone z, respectively. RU
dg max;z and RD

dg max;z are
the maximum operational spinning reserve up and the maximum
operational spinning reserve down of DG in zone z, respectively.

4.2.2. Scenario-dependent constraints
The scheduled spinning reserve up/down provided by each DG

unit must cover the maximum difference between DG’s scheduled
power and the one produced in each scenario that can be
expressed by (30)–(32). The DG’s produced power at each scenario
must be bounded by its minimum ðPdg min;zÞ and maximum
ðPdg max;zÞ allowable power as given in (33).

Pxdg;zt � Ps
dg;zt ¼ RU;x

dg;zt � RD;x
dg;zt ; 8z; 8t; 8x; 8dg ð30Þ

0 6 RU;x
dg;zt 6 RU;s

dg;zt ; 8z; 8t; 8x; 8dg ð31Þ
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0 6 RD;x
dg;zt 6 RD;s

dg;zt; 8z; 8t; 8x; 8dg ð32Þ

uxdg;zt � Pdg min;z 6 Pxdg;zt 6 uxdg;zt � Pdg max;z; 8z; 8t; 8x; 8dg ð33Þ

uxdg;zt � uxdg;zt�1 6 Ixdg;zt; 8z; 8t; 8x; 8dg ð34Þ

uxdg;zt�1 � uxdg;zt 6 Jxdg;zt; 8z; 8t; 8x; 8dg ð35Þ

uxdg;zt � uxdg;zt�1 ¼ Ixdg;zt � Jxdg;zt; 8z; 8t; 8x; 8dg ð36Þ
4.3. Cogeneration systems (CHP)

The thermal output power of cogeneration systems is related to
the electric one by multiplying the heat-to-electric power ratio (k)
[45]. The output power of CHP units could be zero or between the
technical minimum and maximum rates. The set of constraints
shown in (39)–(41) ensure that the inter-relationships of the three
binary decision variables of CHP units, bchp;zt , Ichp;zt , and Jchp;zt , are in
sequential logical order and there are no conflicting situations.

Pt
chp;zt ¼ kchp;z � Pe

chp;zt; 8z; 8t ð37Þ

uchp;zt � Pe
chp min;z 6 Pe

chp;zt 6 uchp;zt � Pe
chp max;z; 8z; 8t ð38Þ

uchp;zt � uchp;zðt�1Þ 6 Ichp;zt ; 8z; 8t ð39Þ

uchp;zðt�1Þ � uchp;zt 6 Jchp;zt; 8z; 8t ð40Þ

uchp;zt � uchp;zðt�1Þ ¼ Ichp;zt � Jchp;zt; 8z; 8t ð41Þ
where Pe

chp min;z and Pe
chp max;z are the minimum and maximum oper-

ational power of CHP in zone z, respectively. kchp;z is heat-to-
electricity ratio for CHP units in zone z.

4.4. Boiler

A boiler could be applied if the CHP unit and thermal storage are
not able to cover thermal load, entirely, or when using them is not
economical. The output power of each boiler is bounded by its
operational constraint.

0 6 Pboil;zt 6 Pboil max;z; 8z; 8t ð42Þ
where Pboil max;z is the rated power of boiler in zone z.

4.5. Storages

Energy storage devices can usually be modeled by their mini-
mum and maximum allowable level of energy. The minimum
allowable level of energy is detected by the Depth of Discharge
(DoD) of storages that has a significant effect on their life cycle.
To this end, the State of Charge (SoC) of each storage device must
be bounded to the mentioned ranges as shown in (43)–(46) for
electrical storages and (47)–(50) for thermal storages. Pe

st;zt is
assumed to be positive and negative if storage is in discharging
and charging modes, respectively. It should be mentioned that
Pe
st;zt is assumed to remain constant during each time period (one

hour in here); so, power and energy values of storages could be
combined for each time period (as shown in (43) and (47)).

SoCe
st;zt ¼ SoCe

st;zðt�1Þ � Pe
st;zt; 8z; 8t ð43Þ

SoCe
st;zt ¼ Ee

st;initial;z; 8z; t ¼ 0 ð44Þ

SoCe
st;zt ¼ Ee

st;final;z; 8z; t ¼ 24 ð45Þ
Ee
st;min;z 6 SoCe

st;zt 6 Ee
st;max;z; 8z; 8t ð46Þ

SoCt
st;zt ¼ SoCt

st;zðt�1Þ � Pt
st;zt ; 8z; 8t ð47Þ

SoCt
st;zt ¼ Et

st;initial;z; 8z; t ¼ 0 ð48Þ

SoCt
st;zt ¼ Et

st;final;z; 8z; t ¼ 24 ð49Þ

Et
st;min;z 6 SoCt

st;zt 6 Et
st;max;z; 8z; 8t ð50Þ

where Ee
st;initial;z, E

e
st;final;z, E

e
st;max;z and Ee

st;min;z are the initial, final, max-
imum and minimum level of energy in electrical storage in zone z,
respectively. SoCe

st;zt is the state of charge in electrical storage in per-
iod t and zone z. The superscript t is used to model the thermal
storages.

Another important characteristic of storages is the rate of
charge and discharge at each time period. The input power to or
output power from storage must be between the maximum charge
and discharge power at each hour given as follows:

�Pe
st;charge;z 6 Pe

st;zt 6 Pe
st;discharge;z; 8z; 8t ð51Þ

�Pt
st;charge;z 6 Pt

st;zt 6 Pt
st;discharge;z; 8z; 8t ð52Þ

where Pe
st;charge;z and Pe

st;discharge;z are the maximum rechargeable and
discharge power of electrical storage in zone z.

4.6. Electrical load curtailment

To implement DRPs in the proposed method, an incentive-
based three-level DRP is modeled. The demand response resources
are divided to three capacity programs, first, second and third level
(I, II and III). A specified capacity with corresponding incentive pay-
ment is considered for each level of DRP.

4.6.1. Scenario-independent (scheduled) constraints
The scheduled power and reserve up/down of the three-level

DRP should meet the inequalities shown in (53) and (54) at each
time period and each zone. the scheduled reserve up/down pro-
vided by each level of DRP should be bounded into its operational

reserve up/down limitations (RU;k
drp max;zt and RD;k

drp max;zt) as given in

(55) and (56). In (54), PMAXk
drp;zt is the maximum allowable cur-

tailed power of kth level of DRP in period t and zone z.

0 6 Pk;s
drp;zt � RD;k;s

drp;zt; 8z; 8t; k ¼ I; II; III ð53Þ

RU;k;s
drp;zt 6 PMAXk

drp;zt � Pk;s
drp;zt; 8z; 8t; k ¼ I; II; III ð54Þ

0 6 RU;k;s
drp;zt 6 RU;k

drp max;zt ; 8z; 8t; k ¼ I; II; III ð55Þ

0 6 RD;k;s
drp;zt 6 RD;k

drp max;zt ; 8z; 8t; k ¼ I; II; III ð56Þ
4.6.2. Scenario-dependent constraints
Similar to the expressed relations for DG units, the scheduled

reserve up/down provided by each level of DRP must cover the
maximum difference between DG’s scheduled power and the one
produced in each scenario that can be expressed by (57)–(59). If
it is not possible to meet the entire electricity demand, due to net-
work constraints or inadequacy of the local production, a load cur-
tailment, that is known as Energy Not Served (ENS), is scheduled,
considering a share of the electric demand, up to a maximum
value, PMAXens;zt , as given by (61):
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Pk;x
drp;zt � Pk;s

drp;zt ¼ RU;k;x
drp;zt � RD;k;x

drp;zt ; 8z; 8t; 8x; k ¼ I; II; III ð57Þ

0 6 RU;k;x
drp;zt 6 RU;k;s

drp;zt ; 8z; 8t; 8x; k ¼ I; II; III ð58Þ

0 6 RD;k;x
drp;zt 6 RD;k;s

drp;zt ; 8z; 8t; 8x; k ¼ I; II; III ð59Þ

0 6 Pk;x
drp;zt 6 PMAXk

drp;zt; 8z; 8t; 8x; k ¼ I; II; III ð60Þ

0 6 Pxens;zt 6 PMAXens;zt; 8z; 8t; 8x
0 6 Ps

ens;zt 6 PMAXens;zt; 8z; 8t ð61Þ
4.7. Output power of PV modules and wind turbines

Once the wind speed and solar irradiation scenarios have been
generated based on PEM, the mathematical model of wind turbines
and PV modules must be applied to compute the output power of
these units. The output power of the PV module is dependent on
the solar irradiance and ambient temperature of the site as well
as the characteristics of the module itself that is well addressed
in [46]. There are some known approaches to determine the output
power of wind turbines according to wind speed of the site. In this
paper, a linear relation for modeling the performance of wind tur-
bines has been used [46–48].

4.8. Exchanged reserve with spinning reserve market

The reserve concept is commonly defined as a power balancing
source to improve the reliability margin of power system. The
available reserve in each zone and each scenario ðARxztÞ can be
attained by (62), in which, the total scheduled capacity (scheduled
power plus scheduled reserve) minus the produced power of the
reserve providing resources in each scenario is considered as avail-
able reserve provided by each zone. To accurate modeling, an aux-
iliary variable, named as feasible reserve ðFRxztÞ, is defined to take
network limitations into account as shown in (63). To this end, a
recurrence relation is considered to calculate the allowable reserve
that can be crossed from each line of the radial network. As the
plausible energy shortage in the scheduled bids of VPP to energy
market ðPNz ;x

line;t � PNz ;s
line;tÞ must be supported by reserve, this value is

also embedded in the proposed model. Finally, the minimum
obtained value of feasible reserve plus VPP’s energy shortage
through the all implemented scenarios is called as the amount of
reserve offered from VPP to spinning reserve market as given in
(64). It is assumed that the substation transformer capacity is
restricted by the thermal limit of line Nz ðPline max;Nz Þ. The value of
the exchanged power with spinning reserve market should meet
the constraints expressed in (65) and (66).

ARxzt ¼
XNdg

dg¼1

Ps
dg;zt þ RU;s

dg;zt � Pxdg;zt
� �

þ
XIII
k¼I

Pk;s
drp;zt þ RU;k;s

drp;zt � Pk;x
drp;zt

� �
; 8z; 8t; 8x ð62Þ

FRxzt ¼ min ðARxzt þ FRxz�1tÞ; ðPline max;z � Pxline;ztÞ
n o

;

8z; 8t; 8x FRx0t ¼ 0
�� ð63Þ

PSR;t ¼ minx FRxNzt þ ðPNz ;x
line;t � PNz ;s

line;tÞ
n o

; 8t ð64Þ

PSR;t 6 Pline max;Nz � PNz ;s
line;t ; 8t ð65Þ
�Pline max;Nz � PNz ;s
line;t 6 PSR;t ; 8t ð66Þ
4.9. Thermal limit of power lines

The power flow through each line should be bounded by ther-
mal limit of the line ðPline max;zÞ. Because of radial topology of the
network, this constraint is the only one that is considered to
involve grid constraints. As this paper mainly focuses on optimal
scheduling of VPP’s resources for providing optimal bids to the
electricity market and gaining to the maximum profit, thereby
the role of reactive power for participating in the reactive power
market or voltage control purposes and so on has not been inves-
tigated and the reactive power flow relationships are ignored.
However, the proposed method is able to manage and schedule
the active and reactive power equations, simultaneously.

Ps
line;zt

��� ��� 6 Pline max;z; 8t; z ¼ 1 : Nz � 1 ð67Þ

jPxline;ztj 6 Pline max;z; 8z; 8t; 8x ð68Þ
4.10. Power balance

As the presented model is composed from two sections, the
electrical and thermal parts, two power balance equations must
be included for each zone as expressed by (69)–(75). In (69),
Ps
sel;zt is the scheduled served electrical load demand used in the

objective function that is interpreted by (70). Ps
eq;zt , is an auxiliary

variable that reflects the scheduled equivalent electric output
power of each zone. The corresponding scenario-dependent
expressions are shown in (72)–(74). The Eq. (75) indicates the ther-
mal power balance of each zones of VPP.

Ps
eq;zt ¼ Pe

chp;zt þ P f
pv;zt þ

XNdg

dg¼1

Ps
dg;zt þ Pe

st;zt � Ps
sel;zt þ P f

wt;zt; 8z; 8t

ð69Þ

Ps
sel;zt ¼ P f

el;zt � PI;s
drp;zt þ PII;s

drp;zt þ PIII;s
drp;zt þ Ps

ens;zt

� �
; 8z; 8t ð70Þ

Ps
line;zt ¼ Ps

eq;zt þ
Xz�1

i¼1

Ps
eq;it; 8z; 8t ð71Þ

Pxeq;zt ¼ Pe
chp;zt þ Pxpv;zt þ

XNdg

dg¼1

Pxdg;zt þ Pe
st;zt � Pxsel;zt

þ Pxwt;zt; 8z; 8t; 8x ð72Þ

Pxsel;zt ¼ Pxel;zt � PI;x
drp;zt þ PII;x

drp;zt þ PIII;x
drp;zt þ Pxens;zt

� �
; 8z; 8t; 8x ð73Þ

Pxline;zt ¼ Pxeq;zt þ
Xz�1

i¼1

Pxeq;it; 8z; 8t; 8x ð74Þ

Pthl;zt ¼ kchp;z � Pe
chp;zt þ Pboil;zt þ Pt

st;zt � Psh;zt; 8z; 8t ð75Þ

where P f
pv;zt , P

f
wt;zt and P f

el;zt are the forecasted (mean) values of PV’s
output power, wind turbine’s output power and electrical load
demand in period t and zone z, respectively. Pthl;zt is the thermal
load demand in period t and zone z.

The complete procedure of the proposed day-ahead Probabilis-
tic Mixed-Integer Linear Programming (PMILP) model of VPP is
shown in Fig. 3. The proposed model is solved using Mixed Integer
Linear Programming (MILP) solver CPLEX under GAMS software.
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5. Case study

The proposed method is tested on the typical network as intro-
duced in Section 2 considering 4 zones for this study. Before pre-
senting the simulation results, it is necessary to be expressed
some important notes as follows:

� As the renewable energy plants are fed by no cost sources (solar
and wind) and in support of clean energies, no charge is consid-
ered for these resources [49,50]. Otherwise, any other tariffs can
be embedded in the proposed model.

� The considered VOLL in this paper ðqens;tÞ, is taken as 4000 $/
MWh [44].

� The required technical input data for the generating units are
provided in Table 1. The operational parameters of CHPs and
DG units are taken from [19,20], respectively. Electrical and
thermal storages data are taken from [11,19]. For gas-fired
resources (boilers and CHPs), according to (10), qNG;t is chosen
as 0.2623 dollars per cubic meter, based on reports of Ontario
Energy Board (OEB) for winter 2014 [51]. Besides, the heating
value of natural gas ðHVNGÞ equals 10,852 kcal/m3 [52]. The val-
ues pertaining to prices and allowable curtailed load of the
three-level DRP are shown in Fig. 4, as well.

� The data used for wind speed and solar radiation are taken from
data archives of Waterloo university for one month (November
2014) to provide mean and standard deviation of these two
parameters at each hour [53]. The applied mean data for uncer-
tainty modeling of energy market price are derived from OEB,
equal to 90% of the TOU prices announced for residential appli-
cations [54].

� The hourly mean (forecasted) values and estimated points of
uncertain parameters by PEM are shown in Fig. 5.



Table 1
Input data for DGs, CHPs, boilers, storages and thermal limits of power lines.

Parameter Zone 1 Zone 2 Zone 3 Zone 4 Parameter Zone 1 Zone 2 Zone 3 Zone 4

adg ($/kWh)a 0.04 0.04 – – kchp;z 0.9 0.7 1.1 1.5

aU
dg ;a

D
dg ($/kWh)a 0.01 0.01 – – gchp;z 0.33 0.25 0.25 0.33

bdg ($/h)a 0.85 0.85 – – SCchp;z ($) 0.22 0.22 0.29 0.24

bUdg , b
D
dg ($/h)a 0.21 0.21 – – SHCchp;z ($) 0.09 0.09 0.13 0.1

Pdg max;z (kW)a 200 200 – – gboil;z 0.85 0.95 0.9 0.85
Pdg min;z (kW)a 50 50 – – aest;z ($/kWh) 8�10�4 8�10�4 10�3 8�10�4

RU
dg max;z (kW)a 60 60 – – atst;z ($/kWh) 10�3 8�10�4 10�3 10�3

RD
dg max;z (kW)a 60 60 – – best;z ($/h) 0.01 0.02 0.02 0.015

SCdg;z ($)a 0.09 0.09 – – btst;z ($/h) 0.01 0.02 0.02 0.015

SHCdg;z ($)a 0.08 0.08 – – Eest;initial;z (kWh) 18 60 0 20

#adg ($/kWh) – – 0.03 0.03 Eest;final;z (kWh) 20 50 10 40

#aU
dg ;a

D
dg ($/kWh) – – 0.01 0.01 Etst;initial;z (kWh) 18 60 0 20

#bdg ($/h) – – 2.5 2.5 Etst;final;z (kWh) 20 50 10 40

#bUdg ;b
D
dg ($/h) – – 0.63 0.63 Eest;max;z (kWh) 30 60 10 20

#Pdg max;z (kW) – – 100 100 Etst;max;z (kWh) 50 70 20 40

#Pdg min;z (kW) – – 20 20 Eest;min;z (kWh) 10 20 0 0

#RU
dg max;z (kW) – – 30 30 Etst;min;z (kWh) 10 10 5 0

#RD
dg max;z (kW) – – 30 30 Pe

st;charge;z (kW) 7 5 1 10

#SCdg;z ($) – – 0.16 0.16 Pt
st;charge;z (kW) 7 5 1 10

#SHCdg;z ($) - - 0.09 0.09 Pe
st;discharge;z (kW) 5 10 5 5

Pe
chp max;z (kW) 90 80 100 50 Pt

st;discharge;z (kW) 5 10 5 5

Pe
chp min;z (kW) 55 10 20 5 Pline max;z (kW) 300 400 500 600

a First type DG: micro turbine. # second type DG: fuel cell.
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Fig. 4. The values pertaining to energy/reserve prices and allowable curtailed load of the three-level DRP.
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The proposed method has been evaluated in three different
cases described as follows:
5.1. Case 1. Deterministic state

In this case, the determined values are taken into account as
input data. The hourly profit of VPP is shown in Fig. 6. According
to the results, the VPP’s profit is low in the beginning and end peri-
ods of the entire simulation horizon, due to lack of solar energy and
also the wind power is at its lowest level. However, in periods
8:00–12:00 and 16:00–19:00, due to increase of the renewable
power generation, the VPP’s profit is at its highest levels. During
periods 12:00–16:00, the VPP’s profit is in lower levels if compared
with other middle hours because of reducing energy market price
and VPP’s retail rate. In order to analyze the thermal part of the
proposed model, the thermal output power of CHP systems and
thermal load demand are concurrently illustrated in Fig. 7. As the
efficiencies of CHPs in zones 1 and 4 are at a high level, these units
are fully committed at all hours but the CHP unit in zone 1 is not
able to meet the entire thermal load power, so boiler and thermal
storage must be committed to feed the remained part of thermal
load, (also in zone 2). For zone 3, because of economic benefits in
electrical part, the thermal output power of CHP system exceeds
from thermal demand; the surplus heat can be used for recharging
thermal storages.
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to contracted prices between VPP and end-consumers as well as spinning reserve market price and (d) VPP’s electrical load power.
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5.2. Case 2. Probabilistic state

In this case, the proposed model is simulated in which, scenar-
ios are generated based on the presented approach in Section 3 for
each uncertain parameter. The expected value of VPP’s hourly
profit and the scheduled exchanged power between VPP and
energy/spinning reserve market are shown in Figs. 8 and 9, respec-
tively. According to these results, during hours 1:00–6:00 and
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21:00–24:00, VPP acts similar to a real power plant and sells speci-
fic amounts of energy to the energy market, while, its hourly profit
is at the lowest levels, because, the level of solar energy equals zero
(night hours) and the energy and VPP’s retail prices are at the
lowest levels. For the other hours (7:00–20:00), VPP is purchasing
from energy market and its hourly profits are at high levels,
because, the local productions are not able to meet the local
demand, while, the retail prices goes up in the periods, if compared
with the other periods. In periods (1:00–6:00), (8:00–11:00),
(18:00–19:00) and (22:00–24:00), VPP’s reserve providing
resources not only are able to compensate VPP’s energy shortage
but also sell specific amounts of reserve to spinning reserve mar-
ket. The state of charge in electrical storages is given in Fig. 10
which shows that at the most expensive hours of electricity
(8:00–11:00 and 18:00–19:00), electrical storages are in discharg-
ing mode. On the other hand, when the electricity prices are low
(in periods 1:00–7:00 and 20:00–24:00), electrical storages are in
charging mode.
5.3. Case 3. Special state

In this case, a special state is investigated assuming that maxi-
mum power flow through upstream line of zone 2 is restricted to
120 kW to take network limitations into account. In fact, this case
is just considered for performance assessment of the proposed
model and how VPP manages its resources in the presence of net-
work constraints. This case is run for two conditions, with/without
presence of the proposed DRP. The VPP’s hourly profits, curtailed
power of the DRP and the energy not-served are shown in Figs. 11–13,
respectively, which demonstrate that in the presence of DRP, the
amounts of VPP’s hourly profit and energy not-served are consider-
ably improved if compared with the ones in the case without DRP.
For instance, in period 18:00 at which a sharp drop is occurred in
the VPP’s profit, the considerable amount of curtailed load power
from executing DRP is replaced with the energy not-served; so,
the cost due to an incentive-based payment is substituted with
VOLL that consequently imposes much more cost to VPP.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

10

20

30

40

50

60

70

80

Time (hour)

First level of DRP

Second level of DRP

Third level of DRP

Po
w

er
 (k

W
)

Fig. 12. The scheduled summation of curtailed power at each level of DRP for all zones in case3.

338 A.G. Zamani et al. / Applied Energy 169 (2016) 324–340



Time (hour)

Po
w

er
 (k

W
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

10

15

20

25

30

35

40

Fig. 13. The scheduled summation of energy not-served for all zones in case 3.

Table 2
The VPP’s daily profit (value of objective function) at each case ($).

Case 1 Case 2 Case 3

With DRP Without DRP

822.39 763.44 632.09 139.11

A.G. Zamani et al. / Applied Energy 169 (2016) 324–340 339
In order to compare these three simulated cases, the obtained
results for VPP’s daily profit at each case are reported in Table 2
which shows that the expected value of VPP’s daily profit in case
2 is more than the ones obtained in case 3. A comparison between
the results in cases 1 and 2 demonstrates that the VPP’s profit
extremely depends on the network situations.

6. Conclusion

In this paper, a probabilistic model is proposed for optimal elec-
trical/thermal scheduling of a virtual power plant to incorporate in
both energy and spinning reserve markets. To this end, the PEM is
applied for modeling of existing uncertainties in operation of a
generic VPP. Moreover, simultaneous energy and reserve schedul-
ing method considering DRPs has been presented. The results evi-
denced that the VPP’s reserve providing resources are not only able
to compensate the plausible shortage of VPP’s committed energy to
the energy market due to the existing uncertainties, but also can
bid the specific amounts of reserve to the spinning reserve market
in some periods. Also, the results showed that coordination perfor-
mance of storages and the proposed demand response resources
could increase VPP’s profit and reduce its dependency on the
upstream network.
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