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Abstract A third-party E-payment protocol based on quantum group blind signature is
proposed in this paper. Our E-payment protocol could protect user’s anonymity as the tra-
ditional E-payment systems do, and also have unconditional security which the classical
E-payment systems can not provide. To achieve that, quantum key distribution, one-time
pad and quantum group blind signature are adopted in our scheme. Furthermore, if there
were a dispute, the manager Trent can identify who tells a lie.

Keywords Third-party E-payment · Quantum group blind signature · Four-qubit
entangled state · Unconditional security

1 Introduction

Nowadays, with the rapid development of internet, E-commerce is favored by the major-
ity of individuals for its convenience and speeding. Hence, choosing an appropriate model
of payment is very important for E-commerce transaction. E-cash has the properties of
anonymity and off-line transferability. Since Chaum first proposed the concept of E-
cash [1], many researchers turned to research E-cash system and proposed a number of
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E-cash payment schemes [2–6]. The current E-payment system is mainly based on group
and blind signature to design.

To ensure scheme’s unconditional security, quantum signature was introduced by com-
bining classical cryptography and quantum theory. Recently, the application of quantum
signature in E-payment also attracted some attention. An E-payment system based on quan-
tum group and blind signature was proposed by Wen and Nie, employing two-third trusted
party instead one to enhance the system’s robustness [7]. In succession, Wen et al. proposed
an inter-bank E-payment protocol based on quantum proxy blind signature [8]. However,
Cai et al. [9] pointed that the dishonest merchant can succeed to change the purchase infor-
mation of the customer in this protocol. Recently, Chou et al. [10] proposed an efficient
novel online shopping mechanism based on quantum communication. However, Huang
et al. [11] pointed that the controller is able to eavesdrop the secret information of the
sender. Zhou et al. proposed an online banking system based on quantum cryptography
communication [12].

In this paper, we propose a third-party E-payment protocol based on quantum group
blind signature. Quantum key distribution and one-time pad are adopted in our scheme in
order to guarantee unconditional security. This is the first time to propose a third-party
quantum E-payment scheme, which not only supports the E-payment among different banks
but also enhances the transaction credibility and improves the success of business rate. The
property of group blind signature could protect the anonymity of E-payment systems, while
the quantum signature could guarantee unconditional security. Our scheme only need Bell-
measurement, it can be easily implemented with the current experimental conditions.

2 Preliminary Theory

2.1 Group Blind Signature

Group signature [13] allows a member to sign a message on behalf of the group and
no one knows who signed it except group manager. As for blind signature [14, 15], the
message owner could get the authentic signature for his own message, but not reveal the
specific content of the message. Both the property of group and blind signature are required
for application and security concern in E-payment systems, so group blind signature was
proposed.

Different from classical signature scheme, our quantum group blind scheme is based on
the theory below. The four Bell states of 2-qubit are

|φ±〉 = 1√
2
(|00〉 ± |11〉), |ψ±〉 = 1√

2
(|01〉 ± |10〉). (1)

Suppose that Alice and Charlie share a Bell-state

|φ+〉AC = 1√
2
(|00〉 + |11〉)AC = 1√

2
(| + +〉 + | − −〉)AC, (2)

where

|+〉 = 1√
2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉).

Due to the entanglement property of EPR pairs, after Alice measures particle A, particle
C will collapse to the same state as particle A. Thus, if Alice and Charlie choose the same
base Bz = {|0〉, |1〉} or Bx = {|+〉, |−〉} to measure their particles respectively, they will get
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the same results. For example, if both Alice and Charlie choose the base Bx and Alice gets
|+〉, then Charlie’s measurement result must be |+〉. However, after Alice’s measurement,
if Charlie chooses a different base from Alice, Charlie will get a random result.

2.2 Controlled Quantum Teleportation

The quantum group blind signature is based on controlled quantum teleportation. In this
section, we will introduce the controlled teleportation using four-qubit entangled state [16]
as quantum channel. It is given by

|ξ〉1234 = 1

2
(|0000〉 + |0110〉 + |1001〉 − |1111〉)1234. (3)

Trent owns particles (3,4), particle 1 and particle 2 belong to Bob1 and Charlie, respectively.
Suppose that the quantum state of particle M carrying the message by Bob1 is the

following form

|ψ〉M = (α|0〉 + β|1〉)M, (4)

where the coefficients α and β satisfy |α|2 + |β|2 = 1.
The combining state |�〉M1234 of the whole system be composed of particles M and

(1,2,3,4) is given by

|�〉M1234 = |ψ〉M ⊗ |ξ〉1234 = (α|0〉 + β|1〉)M ⊗ |ξ〉1234. (5)

The details are given in the following.

1) Bob1 performs a Bell-state measurement on his particles (M,1), and sends his measure-
ment outcome to Trent via secure quantum channel. The Bell-state measurement can
collapse the state of particles (2,3,4) into one of the following four states

〈
φ±

M1|�
〉
M1234 = 1

2
(α|000〉 + α|110〉 ± β|001〉 ∓ β|111〉)234,

〈
ψ±

M1|�
〉
M1234 = 1

2
(α|001〉 − α|111〉 ± β|000〉 ± β|110〉)234. (6)

2) Trent performs a Bell-state measurement on his particles (3,4). Suppose that Bob1’s
measurement result is |φ+〉M1, the Bell-state measurement on Trent’s particles (3,4)
will collapse the state of particle 2 into one of the following four states

〈
φ±
34|φ+

M1|�
〉
M1234 = 1√

2
(α|0〉 ∓ β|1〉)2,

〈
ψ±
34|φ+

M1|�
〉
M1234 = 1√

2
(β|0〉 ± α|1〉)2. (7)

Trent sends his measurement result to Charlie through secure quantum channel.
4) According to Bob1’s and Trent’s measurement outcomes, Charlie imposes an appropri-

ate unitary operation on particle 2, so that he can reconstruct the original state |ψ〉M .
The unitary operations are pauli operators (I, σz, σx, iσy)

I =
(
1 0
0 1

)
, σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
, iσy =

(
0 1

−1 0

)
.
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Assume that Bob1’s and Trent’s measurement results are |φ+〉M1 and |φ+〉34, respec-
tively, Charlie’s operation on particle 2 is σz. For other cases, the relationship between
Bob1’s, Trent’s measurement outcomes and Charlie’s operation are listed in Table 1.

3 The Third-party Quantum E-payment Protocol

3.1 Protocol Description

Suppose that Trent is a group manager who is the trusted third-party, both Alice(customer)
and Charlie(merchant) register as members of the group. Bob1 is Alice’s agent bank, while
Bob2 is Charlie’s agent bank. Alice trades with Charlie in the third-party payment platform.
In the process of trading, banks can not know the content of transactions, that is, the confi-
dentiality of the trading are ensured. The receiver Charlie verifies the signature’s validation
without knowing who gives the message, that is, the customer’s anonymity is protected. If
there were a dispute, the group manager Trent can identify who tells a lie.

The brief procedure of our scheme has been illustrated in Fig. 1.

3.2 Initial Phase

Step1: Alice, Bob1 and Bob2 share secret key KAT , KB1T and KB2T with Trent, respec-
tively. All these keys are distributed via QKD protocols [17–19], which have been
proved unconditional security.

Step2: Trent generates n EPR pairs

|ψi〉 = 1√
2
(|00〉 + |11〉)AiTi

, i = 1, 2, · · · , n. (8)

In each EPR pair, Trent sends particle Ai to Alice while leaving Ti for himself.

Table 1 The relationship
between Bob1’s, Trent’s
measurement outcomes and
Charlie’s operation

Bob1’s measurement Trent’s measurement Charlie’s

outcome outcome operation

|φ+〉M1 |φ+〉34 (σz)2

|φ+〉M1 |φ−〉34 I2

|φ+〉M1 |ψ+〉34 (σx)2

|φ+〉M1 |ψ−〉34 (iσy)2

|φ−〉M1 |φ+〉34 I2

|φ−〉M1 |φ−〉34 (σz)2

|φ−〉M1 |ψ+〉34 (iσy)2

|φ−〉M1 |ψ−〉34 (σx)2

|ψ+〉M1 |φ+〉34 (iσy)2

|ψ+〉M1 |φ−〉34 (σx)2

|ψ+〉M1 |ψ+〉34 I2

|ψ+〉M1 |ψ−〉34 (σz)2

|ψ−〉M1 |φ+〉34 (σx)2

|ψ−〉M1 |φ−〉34 (iσy)2

|ψ−〉M1 |ψ+〉34 (σz)2

|ψ−〉M1 |ψ−〉34 I2
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Fig. 1 The third-party quantum E-payment protocol

Step3: Charlie produces t + n entangled four-qubit states as shown in (3) and distributes
the particles (3,4) to Trent, the particle 1 to Bob1, and he holds particle 2. To
ensure the channel is secure, they have to detect channel. Firstly, Trent randomly
chooses t four-qubit entangled states and records their positions. Then, he per-
forms two particles measurement on particles (3,4) basis in {|00〉, |01〉, |10〉, |11〉}.
Trent announces measurement results and positions. Secondly, Bob1 and Charlie
measure the corresponding particles basis in {|0〉, |1〉}. Then, Bob1 and Charlie
announce their measurement results. If measurement results satisfy the correlation
in Table 2, the safe channel sets up successfully.

3.3 Initialization Protocol

Step1: Alice divides her purchase information into two parts: M1, involving the amount
that Alice ought to pay; M2 = {M2(1),M2(2), · · · , M2(i), · · · ,

M2(n)}(M2(i) ∈ {0, 1}), including Alice’s purchase information which can not
be seen by others. So Alice needs to blind the part M2.
Alice measures her particle sequence according to message M2. If M2(i) = 0,

she measures Ai on the base Bz = {|0〉, |1〉}, if M2(i) = 1, she chooses the
base Bx = {|+〉, |−〉}. Alice records the measurement results as M ′, M ′ =
{M ′(1),M ′(2), · · · ,M ′(i) · · · ,M ′(n)}(M ′(i) ∈ {|0〉, |1〉, |+〉, |−〉}). Here M ′
could be encoded into two classical bits M ′′ as followsing

|0〉 → 00, |1〉 → 01, |+〉 → 10, |−〉 → 11. (9)

Therefore, the message M2 (n-bit) has been blinded into M ′′ (2n-bit).

Table 2 The measurement
relationship between Bob1’s,
Trent’s, and Charlie’s results

Bob1’s result Trent’s result Charlie’s result

|0〉1 |00〉34 |0〉2
|0〉1 |10〉34 |1〉2
|1〉1 |01〉34 |0〉2
|1〉1 |11〉34 |1〉2
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Step2: Alice encrypts M1, M ′′ with the secret key KAT to get the message SAT =
EKAT

{M1, M ′′}. We adopt one-time pad [20] as the encryption algorithm to guar-
antee the unconditional security. Alice sends the message SAT to Trent through
QSDC protocols [21–23].

3.4 Trading Purchase Phase

Step1: After Trent received the message SAT , he decrypts it with the secret key
KAT to get the message M1, M ′′. Trent encrypts Ti and M1 with the secret
key KB1T to get the message SB1T = EKB1T

{Ti,M1}. Trent sends SB1T to
Bob1.

Step2: After Bob1 received Trent’s signature requirement, he decrypts it with the secret
key KB1T to get the message Ti and M1. If he agrees Alice to trade in the
third-party platform, he will help Trent finish the controlled teleportation. Bob1
performs the Bell-state measurement on particles (Ti ,1) and records the results
as βA = {β(i)Ti1, i = 1, 2, · · · , n}(β(i)Ti1 ∈ {|φ±〉, |ψ±〉}). Then Bob1 sends
SA = EKB1T

{βA} to Trent.
Step3: After Trent received the message SA, he decrypts it with the secret keyKB1T to get

the message βA. Trent performs a Bell-state measurement on particles (3,4) and
records the results as βB = {β(i)34, i = 1, 2, · · · , n}(β(i)34 ∈ {|φ±〉, |ψ±〉}).
Then Trent announces the signature (M ′′, βA, βB).

3.5 Trading Payment Phase

Step1: According to βA, βB from Trent, Charlie performs a corresponding unitary oper-
ation on particle 2 to successfully replicate the original unknown quantum state
information.

Step2: Then, Charlie measures particle 2 on appropriate base according to the rule by the
step 1 in § 3.3. The measuring results could be encoded into two classical bits
according to (9), the encoded result is wrote as d.

Step3: If d = M ′′, Charlie accepts the message and the signatures. Then Charlie unblinds
M ′′, namely, the odd number of blind message M ′′ is the original message M2,
Charlie confirms the signature (M2, βA, βB).

Step4: If there is no dispute, Charlie should send the corresponding goods to Alice. After
Alice receives goods from Charlie, he will inform Trent to pay for Bob2.

Step5: Trent encrypts M1 with the secret key KB2T to get the message SB2T =
EKB2T

{M1}. Trent sends the message SB2T to Bob2, meanwhile Bob2 could
receive the proper amount from Trent.

4 Scheme Properties and Security Analysis

4.1 Group Property

If a person wants to join a group, he needs to send an application to the group manager Trent.
Trent will examine the identify of him, so every member in the group must be eligible. In
the scheme, the member of group has to register at group manager Trent, so that others can
not send the message instead of Alice. Alice can not communicate with others except Trent,
so anyone else can not know which member sent the message. Charlie could verify whether
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the message comes from the group without knowing which individual in the group sent the
message. In a word, the customer’s anonymous is protected.

4.2 Blind Property

The message M2 has been blinded into M ′ by the owner Alice, where every M ′(i) ∈
{|0〉, |1〉, |+〉, |−〉}. If Bob1 attempts to gain the states M ′, the only way is to perform mea-
surement. However, the n states M ′ are nonorthogonal, so Bob1 can not distinguish the
message M ′. If Bob1 chooses basis {|0〉, |1〉} or {|+〉, |−〉} randomly to measure M ′, he can
obtain it with the probability of 1

2n which is negligible if n is large enough. So Bob1 can not
get the message M2. Meanwhile, Bob2 also can get nothing about M2. As a result, in the
whole transaction, the banks Bob1 and Bob2 are kept blind for the content of message M2.
In addition, Charlie could verify and accept the message.

4.3 Impossibility of Denial

Firstly, we show that the banks Bob1 and Bob2 can not disavow their message. In our
scheme, the group manager Trent is trusty. According to step 3 in § 3.4, Trent decrypts
message SA with key KB1T can get Bob1’s signature βA, while according to step 5 in §
3.5, group manager Trent sends the message SB2T to Bob1. All keys are distributed via
QKD protocols, which have been proved unconditionally secure and all message are sent
through the secure quantum channel. Hence, Bob1 can not deny that he indeed have signed
the signature and Bob2 can not deny he has received the message and money.

Secondly, we show that it is impossible for Trent and Charlie to disavow their message.
Trent announces the signatures by step 3 in § 3.4. Moreover, the process of the verifying
indicates Charlie has received the signatures and message. Therefore Trent can not deny
that he has signed the message and Charlie can not deny he has received the signatures.

4.4 Impossibility of Forgery

Firstly, we show that it is impossible for the dishonest insider to forge Bob1’s or Trent’s
signature. Suppose that the merchant Charlie is dishonest and attempts to forge Bob1’s and
Trent’s signature. If this happens, he can not pass the verification by step 3 in § 3.5. The
only way to forge signature is to get the information about KB1T or KB2T , however it is
impossible. Otherwise, he can not forge the message which is encrypted by secret key KAT .
Similarity, everyone in the scheme can not forge other’s signature. In a word, the dishonest
insider can not forge the signatures.

Secondly, we discuss the forgery made by the outside attacker Eve. Assume that the
outsider Eve intend to forge Bob1’s signature βA, as Eve has not the secret key KB1T , she
can not send secret message SA to Trent. Even if Eve gets KB1T , he only can get the valid
βA with the probability of 1

2n which is negligible if n is large enough. If Eve attempts to
eavesdrop the quantum channel, he will be detected by step 3 in § 3.2. In a word, Bob1’s
signature can not be forged. Similarity, the Trent’s signature can not be forged either.

4.5 Traceability Property

Only the group manager Trent knows that who sent the message, meanwhile, he records
all the signatures and message. If there exists a dispute, Trent can reveal the identify of the
sender and indicate who tells a lie.
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4.6 Unconditional Security

Our scheme ensures security by the following three aspects. Firstly, the protocol BB84 is
adopted for quantum key distribution; Secondly, we employ one-time pad to encrypt the
message and signatures; Finally, our protocol is based on the secure quantum channel, which
has instantaneous transmission not restricted by distance, time or obstacles, all of these are
proved to be unconditional security.

5 Conclusion

Combined with the actual demand for third-party E-payment, in this paper, we propose a
third-party quantum E-payment protocol based on quantum group blind signature. Com-
pared with previous works in [7–10, 24], our protocol can blind the customer’s payment
message into the blinded message, which can protect the payment messages. Furthermore,
our protocol can protect customer’s anonymity. Meanwhile, our scheme is based on four-
qubit state which achieves a higher security. As the key techniques of our protocol only rely
on the Bell-measurement, which can make the protocol reliable and practical.
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