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a b s t r a c t

Direct marketing is one of the most effective marketing methods with an aim to maximize the customer’s
lifetime value. Many cost-sensitive learning methods which identify valuable customers to maximize
expected profit have been proposed. However, current cost-sensitive methods for profit maximization
do not identify how to control the defection probability while maximizing total profits over the cus-
tomer’s lifetime. Unfortunately, optimal marketing actions to maximize profits often perform poorly in
minimizing the defection probability due to a conflict between these two objectives. In this paper, we
propose the sequential decision making method for profit maximization under the given defection prob-
ability in direct marketing. We adopt a Reinforcement Learning algorithm to determine the sequential
optimal marketing actions. With this finding, we design a marketing strategy map which helps a market-
ing manager identify sequential optimal campaigns and the shortest paths toward desirable states. Ulti-
mately, this strategy leads to the ideal design for more effective campaigns.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Direct marketing is one of the most effective marketing meth-
ods with an aim to maximize the expected profits [13]. A number
of cost-sensitive learning methods which focus on predicting prof-
itable customers have been proposed for direct marketing
[2,3,13,15]. However, a common objective of these methods is to
only maximize the short-term profit associated with each market-
ing campaign. They ignore the interactions among decision out-
comes when sequences of marketing decisions are made over
time. These independent decision-making strategies cannot guar-
antee the maximization of total profits generated over a customer’s
lifetime because they often inundate profitable customers with fre-
quent marketing campaigns or encourage radical changes in cus-
tomer behavior [10]. This approach can decrease customer
profitability because of the annoyance factor or their budgetary
limits per unit time.

Some researchers have recognized the importance of sequen-
tial decision making to overcome the limitations of isolated deci-
sion making. For example, Pednault et al. [10] and Abe et al. [1]
proposed sequential cost-sensitive learning methods for direct
marketing. These sequential cost-sensitive methods, however, fail
to consider the cost generated from customer defections.
Although a primary objective of direct marketing is to maximize
ll rights reserved.
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total profit, it is also important to control the probability of cus-
tomer defection, keeping it under a desirable or acceptable level
because the occurrence of a customer defection brings about tan-
gible and intangible loss, (i.e., an increase of acquisition cost of a
new customer, loss of word-of-mouth effects, and loss of future
cash flows and profits). Since customer switching costs are much
lower in e-commerce marketplaces, a company always needs to
pay more attention to customer defection. However, current
sequential cost-sensitive methods for maximizing profit do not
indicate how to control the probability of customer defection
while maximizing total profits over the customer’s lifetime.
Unfortunately, optimal marketing actions designed to maximize
profits often perform poorly in minimizing the probability of cus-
tomer defection due to a conflict between a profit maximization
and defection probability minimization. For example, an optimal
marketing action for profit maximization is liable to give up
unprofitable customers who are most likely to defect but are prof-
itable from a long-term perspective. In contrast, an optimal mar-
keting action for the minimization of defection probability is apt
to unnecessarily sacrifice loyal customers’ profit with excessive
marketing cost.

To overcome this conflict, we regard the customer defection
probability as a constraint and try to control it under the given
threshold because, in general, controlling defection probability un-
der the threshold is more cost effective than completely avoiding
customer defection with 0%. We also think that most companies
have more interest in a strategy which guarantees the maximiza-
tion of total profits while the defection probability is bounded by
a desirable or acceptable level.
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In this paper, we have developed a sequential decision-making
methodology for profit maximization under the given defection
probability constraint. For effective sequential learning, we have
adopted the Reinforcement Learning algorithm. We have also sug-
gested the concept of a marketing strategy map which visualizes
the results of learning such as an optimal marketing action in each
state and customer’s behavior dynamics according to suggested
marketing actions. This marketing strategy map can help a com-
pany identify sequential optimal campaigns and the shortest paths
toward desirable states. Ultimately, this strategy leads to the ideal
design for more effective campaigns.

The rest of this paper is organized in the following manner: In
Section 2, a Self-Organizing Map and Reinforcement Learning that
are prerequisites for our study are briefly introduced. Section 3 de-
tails our method for direct marketing and Section 4 reports exper-
imental results with real-world data sets. Section 5 describes a
marketing strategy map and its applications. Finally, Section 6
summarizes our works and contributions.

2. Background

The proposed method adopts a Self-Organizing Map (SOM) and
Reinforcement Learning for effective sequential learning and its
visualization.

2.1. Self-Organizing Map (SOM)

The SOM [8,11] is a sophisticated clustering algorithm in terms
of the visualization of its clustering results. It clusters high-dimen-
sional data points into groups and represents the relationships be-
tween the clusters onto a map that consists of a regular grid of
processing units called ‘‘neurons.” Each neuron is represented by
an n-dimensional weight vector, m = [m1,m2, . . .,mn] where n is
equal to the dimension of the input features. The weight vector
of each neuron is updated during iterative training with input data
points. The SOM tends to preserve the topological relationship of
the input data points so the similar input data points are mapped
onto nearby output map units. This topology-preserving property
of SOM facilitates the ability to design the marketing strategy
map in our proposed method. In our method below, we define
the possible customer states using SOM, and with the output
map of SOM, we design the marketing strategy map.

2.2. Reinforcement learning

Reinforcement Learning [9,12] is characterized by goal-directed
learning from interaction with its environment. At each discrete
time t, the learning agent observes the current state st 2 S, where
S is the set of possible states in a system and selects an action
at 2 A(st), where A(st) is the set of actions available in state st. As
a consequence of its action at in state st, the agent receives an
immediate positive or negativereward rt+1, and next state st+1.
Based on these interactions, the agent attempts to learn a policy
p:S ? A which is a function of mapping states to actions to maxi-
mize the expected sum of its immediate rewards, R ¼

P1
t¼0ctrt

[where c (i.e.,0 6 c < 1) is a discount rate]. Thus, Reinforcement
Learning is particularly well suited to multi-step decision problems
where the decision criteria can be represented in a recursive way
as a function of the immediate numerical value [4].
3. The proposed method

We suggest the following method for profit maximization under
the control of defection probability in direct marketing. As shown
in Fig. 1, we prepared customer episodes with campaigns and the
response history data and adopted the Reinforcement Learning
algorithm to determine an optimal policy. We then design a mar-
keting strategy map. To provide more simple and practical busi-
ness intelligence, we designed a method for segmentation
marketing instead of for individualized marketing.

3.1. Definition of states and actions

States are representations of the environment that the agent
observes and are the basis on which agent’s decisions are made.
In this method, states would be represented as customer segments
which have similar purchase patterns and response behaviors
against promotion (e.g., recency, frequency, and monetary value)
at the time of each campaign. In the rest of the paper, the following
terms are used interchangeably: ‘‘state” and ‘‘customer segment.”
Thus,

S ¼ fs1; s2; . . . ; sNg

where S is the set of states, N is the total number of states.
The actions are defined as all of the marketing campaigns con-

ducted in a company. As the number of campaigns increases, com-
panies feel the need to analyze the effects of diverse competing
campaigns in each state (e.g., customer segments) in a systematic
way. Thus,

A ¼ fa1; a2; . . . ; aMg

where A is the set of actions, M is the total number of actions (i.e.
campaigns)

3.2. Definition of profit and defection probability

The agent achieves both profit and defection probability as
immediate rewards at each transition. An immediate profit P is
the net profit which is computed as the purchase amount minus
the cost of action. An immediate defection probability D is com-
puted as the probability of falling into a fatal state (i.e., defection
state). The concept of fatal state was first introduced by Geibel
[5,6] who noted that processes, in general, have a dangerous
state which the agent wants to avoid by the optimal policy.
For example, a chemical plant where temperature or pressure ex-
ceeds some threshold may explode. Thus, the optimal strategy of
operating a plant is not to completely avoid the fatal state when
considering the related control costs, but to control the probabil-
ity of entering a fatal state (i.e., an exploration) under a
threshold.

In this method, a fatal state means the status of customer defec-
tion. Like an exploration in a chemical plant, customer defection is
fatal to a company and brings about tangible and intangible loss.
However, it is difficult to reflect both the tangible and intangible
loss from defection to the reward of profit. It is also impossible
and cost-ineffective to completely avoid customer defection, but
customer defection could be controlled under the threshold – an
acceptable or desirable level for a company. The defection proba-
bility means the customer defection rate of each state as well as
the defection probability of a customer in each state. The immedi-
ate defection probability D on transition from s to s0 under action a
is defined by:

Dðs; a; s0Þ ¼
1 if s is a non-fatal state; s0 is a fatal state
0 else

�
ð1Þ

If the agent enters a fatal state from a non-fatal state, the immediate
defection probability is 1 and the immediate profit is 0. It is natural
to consider a fatal state as a final state (i.e., an absorbing state) in
which the agent ends its learning with the current sequence (i.e.,
a sequence of (s, a, r) sets).



Fig. 1. The proposed framework for sequential marketing campaigns.
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3.3. Learning strategy

The objective of the proposed method is to maximize the total
profit while the defection probability is controlled under the given
threshold for all states, as follows:

Vp
P ðsÞ ¼ E

X1
t¼0

ct
PPt

 !
!max

Vp
DðsÞ ¼ E

X1
t¼0

ct
DDt

 !
6 h ð2Þ

where Vp
P ðsÞ is the cumulative profits and Vp

DðsÞ is the probability
that an agent ends in a defection state, when it starts in state s.
An immediate profit P and an immediate defection probability D
are discounted by discount rates cP (0 < cP < 1) and cD = 1, respec-
tively. Since cP is lower than 1, the agent will try to reach a more
profitable state as quickly as possible, controlling the defection
probability under the threshold. In addition, since cD is 1 and D is
defined by (1), a value of

Pk
t¼oct

DDt is 1, if and only if a customer
in state s enters a defection state and ends his relationship with
the company at time k. If not, a value of

Pk
t¼oct

DDt is zero and a cus-
tomer in state s continuously has a relationship with a company.

In order to construct an optimal policy p*, the state–action value
function Qp(s,a), which is a value of taking action a in state s under
policy p, is computed by Watkin’s Q-learning algorithm [14]. The
state–action value function QP (s,a) and QD (s,a) can be defined by:

Q Pðs; aÞ ¼ E½Pðs; aÞ þ cPV�Pðs0Þ�
Q Dðs; aÞ ¼ E½Dðs; aÞ þ cDV�Dðs0Þ� ð3Þ

where P(s,a) and D(s,a) are an immediate profit and defection prob-
ability of taking action a in state s, respectively, and V�Pðs0Þ and V�Dðs0Þ
are optimal values of the next state s0 under the optimal policy p*.
To optimize the total profit under the given defection probability,
the optimal policy is selected by a reverse-1st lexicographic ordering
(i.e., action a is preferred to a0 if Q1 < Q 01, or if Q1 ¼ Q 01 and
Q2 P Q 02Þ:

p�ðsÞ ¼ arg maxa � maxðQp
Dðs; aÞ; hÞ;Q

p
P ðs; aÞ

� �
ð4Þ

where max Qp
Dðs; aÞ; h

� �
is higher value between Qp

Dðs; aÞ and h.
The agent prefers an action a to a0 if max Qp

Dðs; aÞ; h
� �

<

max Qp
Dðs; a0Þ; h

� �
or if max Qp

Dðs; aÞ; h
� �

¼max Qp
Dðs; a0Þ; h

� �
and

Qp
P ðs; aÞP Qp

P ðs; a0Þ. If several marketing actions would have
Qp

Dðs; aÞ less than threshold h, they have the same value h compared
to the first component, max Qp

Dðs; aÞ; h
� �

. Then, the agent compares
the second component Qp

P ðs; aÞand selects the action with the high-
est profit value as an optimal action.
Fig. 2 shows the algorithm for learning QP(s,a) and QD(s,a)
and achieving the optimal policy p*(s). Input training data E is
a set of episodes where each episode is a sequence of events,
and each event consists of a state, an action, profit, and defec-
tion probability. Each episode represents the campaign interac-
tions between a customer and a company as time goes on.
Note that we introduce a dummy state sdef and a dummy action
adef for a defection state and its action for technical reasons. If a
customer falls into a defection state, we construct his last event
with hsdef,adefi. We also compute both QP(sdef,adef) and QD(sdef,adef)
at zero (i.e., no values), because customers entering a defection
state have no permanent rewards. QP(s,a) and QD(s,a), which are
N- by- M matrix where N is the number of states and M is the
number of actions, are updated with each episode from line 2 to
8. At line 4, a is a step-size-parameter which affects the rate of
convergence to Q*(s,a). Since a is set up to be a decreasing func-
tion of t (at line 5), we can assure convergence to Q*(s,a) as
t ?1, for all (s,a). After the learning for all episodes, the agent
can achieve the optimal policy in each state at line 9 and 10.
However, the agent changes the optimal action a* into ‘‘no
action” if the cumulative profit (i.e.,QP(s,a*)) is negative regard-
less of the QD (s,a*) value. If companies determine that ‘‘no
action,” is needed for the state, they have to give up customers
in the state or develop new campaigns which are especially
effective for the state.
4. Experiments

To the best of our knowledge, this is the first study suggesting
sequential optimal marketing actions for maximizing long-term
total profit while keeping the defection probability below a given
threshold, and the first study to design a marketing strategy map
for these purposes. To evaluate our sequential decision making
method’s feasibility in direct marketing, we experimented with a
part of KDD-CUP-98 datasets [7] which concerns direct-mail pro-
motions soliciting donations.

4.1. Data sets and pre-processing

The dataset for experiments consists of 95,412 records. Each re-
cord contains each donor’s direct-mail promotion pattern (e.g.,
which direct-mail was sent or not, when it was sent, etc.) for 22
campaigns conducted monthly for about two years. Other informa-
tion such as response behavior against each promotion (e.g.,
whether a donor responded or not, how much was donated) was
also collected.



Fig. 2. The learning strategy with profit maximization under the given defection probability.
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For effective experiments, we classified the original dataset
into two donor groups. The first group included donors who of-
ten responded to campaigns except for the last (22nd) campaign.
We collected data from the ‘‘active donors” group by excluding
the data from the last two campaigns from each donor in this
group. The second group included donors who had previously ac-
tively donated, but stopped donations long before the last (22nd)
campaign. By definition of Paralyzed Veterans of America (PVA, a
donor of KDD-CUP-98 datasets), the second group included ”the
lapsed donors” who had not made a donation within the last
12 months. Out of this group, we prepared data from the defec-
tor’s group by collecting campaigns and response history until
the donors became lapsed donors. We defined the lapsed donors
as a fatal state (i.e., a defection state) and had an agent learn the
optimal policy controlling the probability of being a lapsed do-
nor. The original dataset had some fields showing whether a do-
nor would become a lapsed donor or not at each promotion. We
Table 1
Input features of SOM.

Category Features

Promotion pattern tot_num_pro
tot_num_pro_6m

Response behavior History tot_amt_don
tot_num_don
amt_per_don
frequency
amt_per_pro

Recent (6 months) tot_amt_don_6m
tot_num_don_6m
amt_per_don_6m

frequency_6m
amt_per_pro_6m

Last recency
last_amt
sampled 10,000 records which consisted of 50% active donors
and 50% defectors to equally ascertain information from both
groups.

In the original dataset, the set of actions, A had 11 types of ac-
tions (e.g., direct-mail campaigns), and we gave a number to each
action from a1 to a11. In order to determine a set of possible states
S, we conducted customer segmentation using a Self-Organizing
Map (SOM). The input features of the SOM include 14 features
regarding the promotion pattern and response behavior which
were collected at the time of each campaign (See Table 1).

Since the SOM was given no information about the optimal
number of states, we had to experiment with the number of states
of the SOM. For experiments to test our method, we chose two
SOM models, 6 � 8 SOM (48 states) and 6 � 7 SOM (42 states).
The 6 � 8 SOM outperformed the others by achieving the highest
average total profit over all the states and was optimal for profit
maximization. The 6 � 7 SOM outperformed the others by achiev-
Descriptions

Total number of promotions to date
Total number of promotions in the last 6 months

Total amount of donations to date
Total number of donations to date
Average amount per donation to date (tot_amt_don/tot_num_don)
Response rate to date (tot_num_don/tot_num_pro)
Average amount per promotion to date (tot_amt_don/tot_num_pro)
Total amount of donations in the last 6 months
Total number of donations in the last 6 months
Average amount per donation in the last 6 months (tot_amt_don_6m/
tot_num_don_6m)
Response rate in the last 6 months (tot_num_don_6m/tot_num_pro_6m)
Average amount per promotion in the last 6 months (tot_amt_don_6m/
tot_num_pro_6m)
Number of months since the last donation
Amount of the last donation



Fig. 3. A set of states on the output map of SOM (6 � 8 SOM).

Y.A. Kim et al. / Knowledge-Based Systems 22 (2009) 327–335 331
ing the lowest average defection probability over all the states and
was optimal for defection probability minimization.

Fig. 3 illustrates the result of the 6 � 8 SOM which we con-
ducted with Clementine, a SPSS data mining tool. Each state’s num-
ber was assigned to distinguish the states, (e.g., s1,s2, . . .,s48). In
Fig. 3, each point represents a donor at the time of each campaign
and each red point is a donor who became a lapsed donor in the
next period according to the current campaign. We can see that
the states in the red box (s12,s18,s23,s24,s29,s30,s35,s36,
s41,s42,s48) have more red points than the other states. The prob-
ability of being a lapsed donor in the next period in these risky
states was over 10%. To be more specific, the average probability
of being a lapsed donor in the next period over these risky states
was 16.1%, while the average over all states was 5.2%.

After determining the customer segmentation, we constructed a
customer episode for each donor. Whenever an action a was con-
ducted, we determined a state s through the trained SOM model.
We then calculated the defection probability and a profit value of
the state–action set (s,a). The immediate defection probability
was 0 or 1 according to whether the donor was a lapsed donor
the next time or not. The profit value was computed by the dona-
tion amount – the cost of the campaign ($0.68) including the mail
cost. In the same way, we prepared 10,000 episodes as input train-
ing data.

4.2. Results

In our method, the threshold reflects a desirable or acceptable
level of customer defections for each company. The decision of
the threshold is invariably dependent on several factors including
the conditions of the market and the characteristics and goals of
each company. Therefore, we experimented with our method using
various levels of thresholds and the selected SOM models (i.e.,
Table 2
Results of basic models for the decision of a meaningful range of thresholds.

Min. of defection probability

Average total profit Average defection pro. The highest defection p

6 � 8 SOM 7.29 0.0013 0.0307
6 � 7 SOM 7.41 0 0
6 � 8 SOM and 6 � 7 SOM). We then observed the change of the
average QP and QD values. For finite experiments on the threshold,
we increased the value of the threshold by 0.05 (5%) within a
meaningful range of thresholds.

Table 2 shows the results of the basic models which were
learned for profit maximization or defection probability minimiza-
tion, respectively. The highest defection probability of each basic
model provided the lower and upper bound on experiment thresh-
olds. In the case of the 6 � 8 SOM model, if the agent learns to min-
imize the defection probability, the agent is able to control the
defection probability under 0.0307 over all states. This value of
0.0307 is the lowest threshold which the agent is able to achieve
with the 6 � 8 SOM. In contrast, if the agent learns to maximize
the total profit, the agent does not consider the defection probabil-
ity and, therefore, retains the defection probability under 0.3025
over all states. The value of 0.3025 is the upper bound of the
threshold. Values over this threshold are meaningless in the
6 � 8 SOM because the agent is not able to achieve more than
the average total profit in the total profit maximization model
(i.e., $28.91) even though the threshold is increased over 0.3025.
Based on the results in Table 2, we changed the thresholds by
0.05 between 0.0307 and 0.3025 in the 6 � 8 SOM model and be-
tween 0 and 0.2846 in the 6 � 7 SOM model.

Fig. 4 shows the performance comparison of our methods with
different thresholds. We compared the average QP and QD values
over all starting states assuming equal distribution of donors into
all states. Note that the first bar and triangular point correspond
to the basic model for minimization of the defection probability,
and the last bar and triangular point are the basic model for max-
imization of the total profits. As mentioned earlier, we were able to
observe the conflict between the two marketing objectives: maxi-
mization of the total profit and minimization of the defection prob-
ability. As we achieve more total profit by alleviating the
Max. of total profit

ro. Average total profit Average defection pro. The highest defection pro.

28.91 0.1333 0.3025
27.28 0.1400 0.2846



Fig. 4. Performance comparison of different thresholds. (a) Average QP and QD value
in the 6 � 8 SOM model; (b) Average QP and QD value in the 6 � 7 SOM model.
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constraints of the defection probability, the number of donors who
are apt to defect increases more. Fig. 4 also shows that the basic
model for minimization of the defection probability achieves very
poor performance of the total profits, $7.29. In addition, the basic
model for maximization of the total profits achieves poor perfor-
mance of the defection probability, 0.133 (13.3%), and the thresh-
old, 0.3025 (30.25%), because it disregards the other objective.
However, when learning with each threshold in our model, we
could achieve far more satisfactory results of both the total profit
and the defection probability.

At this point, marketing experts in each company could decide
the threshold based on observed tradeoffs and acquired knowl-
edge. For further analysis, we selected 0.05 (5%) based on Duncan’s
test (significance level = 0.05) of the average QP and QD values.
Duncan’s test in the 6 � 8 SOM showed that as the threshold in-
creased from 0.05 to 0.3, the average QD value significantly in-
creased at each step, but the average QP value was not
significantly different. Duncan’s test in the 6 � 7 SOM also showed
similar results, so as the threshold increased from 0.05 to 0.15, the
average QD value significantly increased at each step, but the aver-
age QP value was not significantly different. Therefore, when
selecting 0.05 as the threshold in both the 6 � 8 SOM and 6 � 7
SOM, we could achieve a significantly lower average QD value than
the models with thresholds of 0.1 or 0.15. We could also achieve
Table 3
Performance comparison with basic models.

Average QP Average QD Expected revenue Thresh

Max. of total profit 28.91 0.1333 25.95 0.3025
Our model (h = 0.05) 26.66 0.0248 26.02 0.05
Min. of defection Pro. 7.29 0.0013 7.20 0.0307
No optimization model 6.38 0.44 3.48 0.67
the same average QP value as models with thresholds of 0.1 or
0.15 achieved.

To choose a better model, we took a T-test (significance le-
vel = 0.05) with two SOM models (the 6 � 7 SOM and 6 � 8 SOM
with a threshold of 0.05). The T-test demonstrated that the 6 � 8
SOM model significantly outperformed the 6 � 7 SOM model. The
6 � 8 SOM achieved a significantly higher average QP value
($26.66) than the 6 � 7 SOM ($24.86), but a significant difference
in the average QD value was not observed between the 6 � 8
SOM (0.025) and the 6 � 7 SOM (0.023).

Table 3 shows the performance comparison of our model with a
threshold of 0.05 and the basic models in the 6 � 8 SOM. The last
row in Table 3 gives the results when campaigning without any
optimization model. The QP(s,a)and QD(s,a) values in no optimiza-
tion model are calculated as follows:

Qðs; aÞ ¼ E½rðs; aÞ þ cVðs0Þ�
¼ E½rðs; aÞ� þ c

X
s0

pðs0js; aÞQðs0; a0Þ ð5Þ

Unlike other optimization models, there is no strategy to select
optimal action a* in transition state s0. It uses the QP (s0,a0) and
QD(s0,a0) values observed from a training dataset instead of the opti-
mal values Q �Pðs0; a�Þ and Q �Dðs0; a�Þ.

As shown in Table 3, our method significantly outperformed the
basic models in terms of expected revenue (significance le-
vel = 0.1). The expected revenue is the average expected revenue
generated from the surviving customers who do not defect. It is
computed by multiplying the average total profit by the rate of sur-
viving customers as follows:P

S
QPðs; a�Þð1� Q Dðs; a�ÞÞ

N
ð6Þ

where N is the total number of states, QP is the average total profits
and (1 � QD) is the rate of surviving customers, when following
optimal action a* in each state.

The last three columns of Table 3 show the improvement over
no optimization model. Our model increased the average expected
revenue by 7.48 times over no optimization model, while the basic
models increased the average by 7.46 times and 2.07 times, respec-
tively. Our method was able to improve the total profit and control
the customer defection probability under the given threshold over
all states and ultimately, achieve higher expected revenues. In con-
trast, the basic model was effective in optimizing each objective,
but ineffective in considering its conflicting objective.

5. A marketing strategy map

We suggest the concept of a marketing strategy map and de-
scribe how to utilize the map for designing new marketing
strategies.

5.1. Design of a marketing strategy map

To clearly show an optimal action and customer behavior
dynamics in each state, we need to design a marketing strategy
map. Fig. 5a illustrates the marketing strategy map of our experi-
old QP Improvement (1 � QD) Improvement Exp. revenue improvement

4.5 (28.91/6.38) 1.55 (0.8667/0.56) 7.46 (25.95/3.48)
4.2 (26.66/6.38) 1.74 (0.9752/0.56) 7.48(26.02/3.48)
1.1 (7.29/6.38) 1.78 (0.9987/0.56) 2.07 (7.20/3.48)
– – –



Fig. 5. The marketing strategy map and its applications.(a) Optimal actions and major customer paths; (b) Customers’ shortest paths to the desirable states (s6, s34, s36, s37,
and s40); (c) Customer paths in risky states (high defection probability states) and (d) A marketing campaign strategy for the ineffective states. * s35 (D1), s36 (D0) and s41
(D2); * Red arrows in s35 and s36 are the shortest paths to the desirable state s36.
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ments. To find customers’ paths in each state, we exploited the
association rules of the form (state = s & action = a*) ? (next
state = s0), where action a* is the optimal action of state s. We se-
lected the association rules in order of high confidence until the
sum of confidences from the selected rules was over 70%. There-
fore, the strategy map can explain at least 70% of customer transi-
tions by the optimal campaign. On average, our strategy map
shows 77.3% of customer transitions over all states.

As expected, most customers shift from a current state to near-
by states on the strategy map by the targeted campaign because
input behavior patterns between two nearby states are mostly
similar according to the topology-preserving property of the
SOM. However, some customers significantly change their behav-
ior states. We describe these transitions with a direction arrow
and a state number on the map. For example, customers in state
s2 move into state s3 (24.3%), s9 (21.6%) or s45 (16.2%) or remain
in state s2 (21.6%) by action a3 in Fig. 5a.

The marketing strategy map also shows the desirable states to
which a company attempts to drive customers. We selected the
top 10% of states in terms of total profits as the desirable states
(i.e. s6, s34, s36, s37 and s40). However, we did not consider defec-
tion probability, because defection probability is controlled under
the given threshold over all states. Among these desirable states,
state s36 was one of the risky states from a short-term perspective
(See Fig. 3). However, it can be finally transformed into a desirable
state through sequential optimal campaigns in our method.

5.2. Marketing strategy map applications

A marketing manager can utilize the marketing strategy map to
design the shortest path map. The shortest path map can be used to
design more effective campaign strategies as well as to identify
sequential optimal campaigns and the shortest paths towards
desirable states.

To design the shortest path map, we found a set of states with
the shortest paths which lead to the desirable states after n period
(i.e.Dn) (See Table 4). We first selected all rules of the form
(state = s 2 (S � D0) & action = a*) ? (next state = s0 2 D0), where S
is a set of all possible states and D0 is a set of desirable states. With
these rules, we found all states (i.e., D1) and their paths which led
to the desirable states after 1 period. We then selected all rules of
the form (state = s 2 (S � [ i=0,1Di) & action = a*) ? (next
state = s0 2 D1). With these rules, we found all states (i.e.D2) and
their paths which led to the desirable states after 2 periods via
one of the states in D1. By repeating this process, we finally found
all the states from D1 to D4 and their paths. There was no further



Table 4
A set of states leading to the desirable states after n periods (Dn).

Dn States

D0 s6, s34, s36, s37, s40
D1 s5, s27, s33, s35, s39, s43, s44, s45
D2 s2, s4, s15, s20, s25, s26, s28, s31, s38, s41
D3 s1, s3, s8, s9, s13, s14, s16, s19, s32, s46
D4 s7, s19, s11, s21

Dn = {sj state s has the paths which lead to the desirable states after n periods}.
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Dn(n P 5). A state in Dn has direct paths to states in Dn�1 and leads
to states in D0 via states in Dn�i(i = 1,2, . . .n � 1), sequentially.

Fig. 5b illustrates the shortest path map. A marketing manager
can identify sequential optimal campaigns and the shortest paths
toward desirable states in each state. For example, customers in
state s38 can go to the desirable states after 2 periods through 2
different paths: s38(by a4) ? s44(by a5) ? s37 or s38(by
a4) ? s39(by a9) ? s34. The shortest path map can then be used
to determine if a current campaign is effective or not by identifying
states which have no path to the desirable states. In Fig. 5b, a total
of 10 states, gray color states (e.g., s12,s17,s18), cannot lead to
desirable states even though the suggested campaign is optimal.
Among these 10 ineffective states, 8 states are risky states in which
the probability of being a defector in next period is over 10%.

Fig. 5c shows customers’ transition in risky states. One of the
marketing manager’s major concerns about risky states is to detect
customer defections and drive potential defectors to safer and
more profitable states (i.e., desirable states). However, customers
Fig. 6. Understanding of customer dynamics in a marketing strategy map. Note: {D
in risky states except state s35 (D1), s36 (D0) and s41 (D2) fail to es-
cape these risky states through the current optimal campaigns.
They are kept in risky states and cannot go to desirable states.
Therefore, a marketing manager needs to develop new campaign
strategies for ineffective states.

The objective of designing new strategies is to provide the
shortest path to get to the desirable states. We adopt a gradual ap-
proach which suggests next state with the fastest path to desirable
states among immediate neighbors of an ineffective state. This ap-
proach is based on the fact that it is very difficult to significantly
change customer behavior in such a short period. Fig. 5 (d) illus-
trates new campaign strategies for the ineffective states. For exam-
ple, we designed this strategy to drive customers in state s22 to
state s27 (D1) among its immediate neighbors, [i.e. s15 (D2), s16
(D3), s21 (D4), s27 (D1), and s28 (D2)] (See Table 4) because state
s27 has the fastest path to state s34, as one of the states in D1. In
the case of state s29, we could select two strategies, (i.e., s34 (D0)
and s36 (D0)), but we selected state s34 with a higher total profit
as the next state. In the case of state s24, it has no immediate
neighbor states which have the shortest path to the desirable
states. Therefore, after designing new strategies of its neighbors
(i.e., s17,s18,s23,s29, and s30), we designed its strategy based on
new strategies.

As shown in Fig. 5d, most of the shortest paths to desirable
states including the shortest paths designed by new strategies have
a trend towards state s34 and s40 because these two states are the
top 2 total profit states. Therefore, we can say that our proposed
method gives a good performance in terms of suggesting optimal
marketing campaigns and designing new campaigns.
n = {s j state s has the paths which lead to the desirable states after n periods}.
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5.3. Understanding of customer dynamics

In order to meaningfully interpret customer dynamics by
sequential marketing campaigns, we need to understand each state
in a marketing strategy map in Fig. 5a or b. We analyzed each
state’s input features of the SOM in Table 1 and then classified
all states into 7 customer groups based on the knowledge of do-
main experts: (1) potential defectors whose total number of dona-
tions and total amount of donations are very low and did not give
donations in the last 6 months; (2) returning customers who
started to give donations again and increased donations in the last
6 months; (3) new customers who started giving donations; (4)
potentially valuable customers whose total amount of donations
is low, but are increasing in the last 6 months and who continu-
ously donate a little amount of money; (5) valuable customers
who continuously donate an average amount of money and also
have responded to recent direct mailings; (6) loyal customers
who donate more than an average amount of money and whose to-
tal number of donations and total amount of donations are higher
than the average, and (7) high loyal customers who are the most
highly profitable customers in the company.

Based on the analysis results of each state and the shortest path
map in Fig. 5b, we could design a new form of a shortest path map
in Fig. 6. Basically, this map shows the same shortest paths to the
desirable states and optimal marketing campaigns as the shortest
path map in Fig. 5b but, it is more meaningful and practical for a
marketing manager to understand customer dynamics by a
sequential marketing campaign.

With the shortest path map in Fig. 6, we can identify how a cur-
rent customer status is changed by sequential optimal campaigns
before becoming a loyal customer. For example, customers in state
s46 (potential pefector) can become a loyal customer after 3 peri-
ods through the path of ‘PD s46 (by a8) ? VC/PD s41 (by a8) ? VC
s35 (by a9) ? L s360 where VC/PD of state s41 means that a state
consists of both valuable customers (VC) and potential defectors
(PD). We can also find that most customers change their states
from returning customers or potential defectors to potential valu-
able customers or valuable customers and then finally become
loyal customers with these sequential marketing strategy.

As for customer dynamics by marketing campaigns, marketing
experts mentioned that as shown in the marketing strategy map
in Fig. 5a and the shortest path map in Fig. 5b and Fig. 6, marketing
campaign rules and customer behavior dynamics are not simple in
competitive marketplaces. Therefore, they should be different
depending on where a customer is before, what kind of marketing
campaign is conducted and where a customer is now by the mar-
keting action.

6. Conclusion

While direct marketing has garnered a great deal of attention,
few studies have addressed the tradeoff between two conflicting
objectives such as the profit and defection probability even though
these tradeoffs are of great interest to companies. To solve this
tradeoff conflict, we have developed a sequential decision-making
methodology for profit maximization under the given defection
probability constraint. Our method suggests sequential optimal
marketing actions for maximizing long-term total profit while con-
trolling the defection probability under the threshold over a cus-
tomer’s lifetime. In addition, the suggested marketing strategy
map clearly shows an optimal action and customers’ behavior
dynamics in each state. It also helps a marketing manager identify
sequential optimal campaigns and the shortest paths toward desir-
able states and, ultimately, a design for more effective campaigns.
Our experiments demonstrate the feasibility of our proposed
method in direct marketing. The proposed method is a practical
implementation procedure for direct marketing in telecommunica-
tions, online shopping malls, and other highly competitive market-
places suffering from profit loss and customer defections.
References

[1] N. Abe, N. Verma, C. Apte, R. Schroko, Cross channel optimization marketing by
reinforcement learning, in: Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(SIGKDD’04), 2004, pp. 767–772.

[2] P. Domingos, MetaCost: a general method for making classifiers cost sensitive,
in: Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (SIGKDD’99), ACM Press, 1999,
pp.155–164.

[3] W. Fan, S.J. Stolfo, J. Zhang, P.K. Chan, AdaCost: misclassification cost-sensitive
boosting, in: Proceedings of the. Sixteenth International Conference on
Machine Learning (ICML’99), 1999, pp. 97–105.

[4] Z. Gabor, Z. Kalmar, C. Szepesvari, Multi-criteria reinforcement learning, in:
Proceedings of the Fifteenth International Conference on Machine Learning
(ICML’98), 1998, pp.197–205.

[5] P. Geibel, Reinforcement learning with bounded risk, in: Proceedings of the
Eighteenth International Conference on Machine Learning (ICML ‘01), 2001, pp.
162–169.

[6] P. Geible, F. Wysotzki, Risk-sensitive reinforcement learning applied to control
under constraints, Journal of Artificial Intelligence Research 24 (2005) 81–108.

[7] KDD Cup 1998 Data Web site, http://kdd.ics.uci.edu/databases/kddcup98/
kddcup98.html, 1998.

[8] T. Kohonen, Self-Organizing and Associative Memory, Springer-Verlag, Berlin,
1995.

[9] T.M. Mitchell, Machine Learning, McGraw-Hill, 1997.
[10] E. Pednault, N. Abe, B. Zadrozny, Sequential cost-sensitive decision making

with reinforcement learning, in: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (SIGKDD
‘02), ACM Press, 2002, pp. 259–268.

[11] O. Simula, P. Vasara, J. Vesanto, R. Helminen, The Self-Organizing Map in
Industry Analysis, CRC Press, 1999.

[12] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
Cambridge, 1998.

[13] K. Wang, S. Zhou, J.M.S. Yeung, Mining customer value: From association rules
to direct marketing, Data Mining and Knowledge Discovery 11 (2005)
57–79.

[14] C.J.C.H. Watkins, P. Dayan, Q-learning, Machine Learning 8 (1992)
279–292.

[15] B. Zadrozny, C. Elkan, Learning and making decision when costs and
probabilities are both unknown, in: Proceedings of the Seventh ACM SIDKDD
International Conference on Knowledge Discovery and Data Mining
(SIGKDD’01), ACM Press, 2001, pp. 204–213.

http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html
http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html

	A new marketing strategy map for direct marketing
	Introduction
	Background
	Self-Organizing Map (SOM)
	Reinforcement learning

	The proposed method
	Definition of states and actions
	Definition of profit and defection probability
	Learning strategy

	Experiments
	Data sets and pre-processing
	Results

	A marketing strategy map
	Design of a marketing strategy map
	Marketing strategy map applications
	Understanding of customer dynamics

	Conclusion
	References


