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Abstract—The advent of the Internet of Things (IoT) leads
to the pervasion of business and private spaces with ubiquitous,
networked computing devices. These devices do not simply act
as sensors, but feature computational, storage, and networking
resources. These resources are close to the edge of the network,
and it is a promising approach to exploit them in order to execute
IoT services. This concept is known as fog computing.
Despite existing theoretical foundations, the adoption of fog

computing is still at its very beginning. Especially, there is a
lack of approaches for the leasing and releasing of resources. To
resolve this shortcoming, we present a conceptual framework for
fog resource provisioning. We formalize an optimization problem
which is able to take into account existing resources in fog/IoT
landscapes. The goal of this optimization problem is to provide
delay-sensitive utilization of available fog-based computational
resources. We evaluate the resource provisioning model to show
the benefits of our contributions. Our results show a decrease in
delays of up to 39% compared to a baseline approach, yielding
shorter round-trip times and makespans.

I. INTRODUCTION

Due to the wide adoption of virtualization and cloud

technologies, companies and end users nowadays have the

means to lease and release computational assets in an on-

demand, utility-like fashion [1]. As a second major technology

trend, the arrival of the Internet of Things (IoT) leads to

the pervasion of business and private spaces with ubiquitous

computing devices, which are available in many forms, are

able to act autonomously, and are connected to both the

Internet and other devices [2]. Furthermore, IoT devices, e.g.,

IoT gateways, sensor nodes, or single board computers used

in IoT environments, do not simply act as sensors, but feature

computational, storage, and networking resources.

Together, the proliferation of cloud and IoT technologies

enables both, small-scale and large-scale smart environments

and systems for various domains, such as smart healthcare,

smart cities, smart energy grids, or smart factories [3]. How-

ever, from a technical point of view, the decentralized nature

of the IoT does not match the rather centralized structure of

the cloud. Today, IoT data is often sourced in a distributed

way, sent to a centralized cloud for processing, and is then

delivered to the distributed stakeholders interested in this data

or other IoT (edge) devices, which in many cases are located

close to the data sources. This results in high link delays and,

accordingly, low data transfer speed between IoT devices as

well as the IoT devices and potential users [4].

In order to prevent this, the support of decentralized process-

ing of data on IoT devices in combination with the benefits

of cloud technologies and virtualization has been identified

as a promising approach to reduce communication overhead

and data transfer time in the IoT [5], [6]. To achieve this, it

is necessary to move parts of the computational and storage

resources needed to execute IoT services closer to the edge

of the network [7]. The underlying conceptual approach, i.e.,

the virtualization of IoT devices and the subsequent usage of

the virtualized resources to execute services, is known as fog
or edge computing [4]. We use the term fog computing in the

following.

Fog computing mirrors the basic structure of the IoT, where

a multitude of heterogeneous, networked devices cooperate

[2], [7]. Fog cells, i.e., single IoT devices coordinating a

group of other IoT devices and providing virtualized resources,

are located close to the edge of the network. These cells

allow executing IoT services close to the data sources or

sinks, instead of involving the cloud. This leads to decreased

delays, as well as a better utilization of already available

computational, storage, and networking resources in the fog.

Potential use cases for fog computing include typical IoT

scenarios, e.g., data prefiltering in Big Data scenarios [8] or

preprocessing of data streams from sensor nodes [9]. In many

application areas, fog computing and cloud computing are

combined in order to benefit from both computing paradigms.

While the basic idea and theoretical foundations of fog

computing are already established, there is still a lack of

concrete solutions to implement fog computing in practice.

Apart from the question of how to virtualize the resources

offered by IoT devices, another major barrier for the uptake

of fog computing is the question how to distribute IoT services

on available fog resources.

Therefore, in this paper, we introduce a conceptual frame-

work for fog resource provisioning. For this, we apply the

concept of fog colonies. Fog colonies are micro data centers
made up from an arbitrary number of fog cells. As in a

cloud data center, within a fog colony, task requests and data

can be distributed and shared between the single cells. The

operational purpose of fog colonies is the cooperative exe-

cution of arbitrary IoT services. Thus, fog colonies facilitate

to move from centralized cloud-based data processing to a

decentralized processing network that includes networked IoT

devices, allowing cloud offloading and multi-cloud deploy-

ment. Based on this framework, we are able to orchestrate fog

cells and to provide a suitable resource provisioning approach,

i.e., a solution on how to distribute task requests and data

among fog cells. For this, we formalize a system model

which aims at minimization of delays arising from the transfer
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times between the fog and the cloud, and at maximization

of resource utilization of existing fog cells. For evaluating

the proposed system model, we apply different scenarios and

resource provisioning policies. The goal of the evaluation is

to identify the best provisioning policy by comparing suitable

metrics, i.e., round-trip time, delay, makespan, and cost.

The remainder of this paper is organized as follows: In

Section II we discuss the state-of-the-art work in the area of the

fog computing frameworks and resource provisioning. Second,

we describe the architecture of our conceptual fog computing

framework in Section III. Next, in Section IV, we formalize

the envisioned resource provisioning model. We evaluate the

model extensively in Section V. Finally, we conclude the paper

in Section VI.

II. RELATED WORK

As fog computing is still a very recent research topic,

there is a lack of concrete solutions supporting this computing

paradigm. Nevertheless, there is some conceptual as well as

fundamental work in related areas, which needs to be regarded.

First, there has been some work on fog computing ar-

chitectures. In their seminal conceptual work on the topic,

Bonomi et al. introduce a layered model bridging the IoT

and the cloud [5]. The authors show that applications might

be placed in the cloud and in the fog, spanning potentially

different cloud providers. In addition, it is shown that a

fog computing framework needs to allow the communication

between the cloud and the fog, inside the fog, and between the

fog and IoT devices. Dastjerdi et al. [7] present a reference

architecture for fog computing which follows a very similar

structure if compared to the work by Bonomi et al. The

reference architecture implies serving IoT requests in the

local fog rather then involving the cloud. In the reference

architecture, central fog services are placed in a Software-
Defined Resource Management layer, which provides a cloud-
based middleware. Notably, this prevents that fog colonies

act in an autonomous way. Instead, fog cells are analyzed,

orchestrated, and monitored by the cloud-based middleware.

Also, fog resource provisioning and the offloading of compu-

tational tasks from the fog to the cloud are achieved through

the middleware. In another discussion of basic fog features,

Vaquero et al. [10] considers different concepts to realize fog

architectures, including both centralized and decentralized, i.e.,

peer-to-peer, approaches. Notably, the authors introduce the

notion of edge clouds, which are private fogs made up from
IoT devices, resembling our notion of fog colonies.

The conceptual frameworks discussed so far do not take

into account the concrete needs of fog resource provisioning.

Instead, the focus is on the communication and task sharing

between the different layers, i.e., cloud, fog, and IoT. In fact,

the number of resource provisioning mechanisms specifically

aiming at fog computing is quite limited so far: Hong et al.

present a programming model including a simple resource

provisioning strategy, which relies on workload thresholds, i.e.,

if the utilization of a particular fog cell exceeds a predefined

value, another fog cell is leased [11]. Aazam and Huh present

a more sophisticated resource provisioning mechanism, which

is based on the prediction of resource demands [12], [13].

The dynamic allocation of resources is performed in advance

during the design time of the system. This approach is based

on cost optimization, and resource allocation depends on the

probability fluctuations of the demand of the users, types of

services, and pricing models. Cost function parameters are

set up during the time the contract between the user and

provider is negotiated. The approach also takes user incentives

and encouragement mechanisms into account. In contrast, our

work provides runtime resource provisioning, i.e., accounts for

dynamic infrastructural changes in a fog colony.

Apart from fog-specific resource provisioning solutions,

resource allocation and service scheduling are major research

challenges in the general field of cloud computing [14],

[15], [16]. While these approaches offer interesting insights,

there are certain differences between fog services and cloud

services. These prevent a direct adaptation for the use in the

work at hand. First, the size and type of cloud resources is very

different from its counterparts in fog computing. While cloud

resources are usually handled on the level of physical ma-

chines, virtual machines (VMs), or containers, fog resources

are usually not as powerful and extensive. Second, fog colonies

may be distributed in a rather large area and heterogeneous

network topology, while cloud resources are usually placed

in centralized data centers, making it more important to take

into account data transfer times and cost in the fog. This is

especially important since one particular reason to use fog

computing in IoT scenarios is the higher delay-sensitivity

of fog-based computation [4]. Hence, resource provisioning

approaches for the fog need to make sure that this benefit is

not foiled by extensive data transfer times and cost.

Resource allocation and service scheduling is also an im-

portant topic in mobile cloud computing (MCC) [17], which

integrates mobile devices (most importantly smartphones) and

cloud resources and offers solutions for offloading tasks from

mobile devices to the cloud [18]. However, MCC is mostly

based on a rather simple network topology with direct com-

munication between mobile devices and the cloud. Neither

groups of devices (as in fog colonies), nor the different

layers observed in fog computing are taken into account in

MCC. Therefore, again, the according resource provisioning

approaches offer interesting insights and ideas, but cannot be

directly ported to the field of fog computing.

III. FOG COMPUTING FRAMEWORK

In this section, we present the architecture of our fog

computing framework as depicted in Figure 1. The framework

enables the enactment of IoT services in an arbitrary fog

landscape. This allows to optimize resource provisioning in

the fog, as discussed in Section IV.

Following the basic structure of fog computing as pre-

sented in [5], [7], we allow for resource provisioning and

orchestration in both the cloud and fog. To achieve this, a

cloud-fog control middleware (see Section III-A) is introduced,
which controls fog cells (see Section III-B). As discussed
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Fig. 1. Fog Computing Framework Overview

above, fog applications should also be executable without any

involvement of the cloud. Hence, another level of control is

necessary, which needs to run exclusively in the fog. For

this, we introduce fog orchestration control nodes, which
are a specific kind of fog cells (see Section III-C). A fog

orchestration control node manages a number of fog cells

or other control nodes connected to it. As it was already

mentioned in Section I, we call such structures fog colonies.

In our framework, we support a hierarchy of fog colonies

with a head element in the cloud, i.e., the cloud-fog control

middleware. The further layers of the hierarchy are the fog

orchestration control nodes, the fog cells, and finally the IoT

devices at the very bottom of the hierarchy (see Figure 1).

In the following, we use the notion of task requests for com-
putational duties which need to be accomplished using cloud

or fog resources. The actual software instances executing these

task requests are called services. Possible examples of such
services include stream processing, MapReduce applications,

or distributed data storage.

A. Cloud-Fog Control Middleware

The cloud-fog control middleware is the central unit that

manages the execution of task requests in the cloud, and

supports the underlying fog landscape. The middleware per-

forms cloud resource provisioning for task requests that are

not delay-sensitive or cannot be executed in the fog, e.g.,

very resource-intensive Big Data analysis task requests. If

necessary, the middleware performs global optimization of

underlying fog colonies by restructuring them. For this, the

cloud-fog control middleware is supplemented by both the

means to control the cloud and the means to manage the un-

derlying fog colonies. Such control is performed continuously

or on-demand, depending on system events, e.g., if new fog

devices appear, which could be used to deploy fog cells, or

to recover after faults or damage of fog cells. Importantly, the

cloud-fog control middleware can overrule fog orchestration
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Fig. 2. Fog Cell and Fog Orchestration Control Node Architecture

control nodes in fog colonies, but the latter may also act

autonomously in the case that no middleware is available.

B. Fog Cells

Fog cells are software components running on fog devices.

Fog cells serve as access points allowing the control and

monitoring of the underlying IoT devices, e.g., sensor nodes.

In order to do so, the fog cells are able to receive task re-

quests, perform data analysis, allocate their own computational

resources if available, or propagate task requests to upper

layers of the fog colony hierarchy, i.e., to the fog orchestration

control nodes (as discussed below). Cells may interact with

an arbitrary number of IoT devices, however, in practice, the

number of devices to be controlled by a fog cell is limited by

the cell’s computational resources.

Each fog cell consists of the following components (Fi-

gure 2): The listener receives task requests from other fog cells

or IoT devices. The monitor observes service executions in the
compute unit. The database stores data about received task
requests, the current system state of the fog cell, i.e., available

computational and storage resources, and monitoring data. The

fog action control performs actions according to the provision-
ing plan produced by the fog orchestration control node, e.g.,

to deploy and start a particular service (see Section III-C).

Fog cells access the distributed storage to share data, e.g.,

service implementations, in a colony. This component allows

faster data access compared to data storage in the cloud. The

compute unit provides the actual computational resources for
the deployment and execution of services.

Fog cells expose REST APIs for data transfer and control

actions: The Data API allows basic CRUD operations over

the data stored within a fog cell, and the Deploy API al-
lows performing control actions for the services running in

the fog cell, i.e., instantiating, deploying, starting, stopping,

undeploying, and deleting the service. To become part of a

fog colony, a fog cell needs to use the Data and Deploy APIs

of the corresponding fog orchestration control node, and at the

same time expose its own Data API and Deploy API.
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C. Fog Orchestration Control Nodes

A fog orchestration control node’s main task is to support
a fog colony by orchestrating the involved fog cells. Each

fog colony features exactly one head fog orchestration control

node. The fog orchestration control node is itself a (powerful)

fog cell, which manages the resources offered by subordinated

fog cells and performs resource provisioning to execute task

requests. Also, the control node is able to propagate task

requests to the cloud-fog control middleware or to other fog

colonies (via their fog orchestration control nodes), if task

requests cannot be handled by the current fog colony. For this,

a resource management mechanism for vertical scalability is

necessary to identify how task requests can be delegated in the

entire fog landscape. Apart from resource provisioning, fog

orchestration control nodes (i) perform infrastructural changes

in the fog colony, (ii) analyze resource utilization within the

colony, (iii) create a provisioning plan to allocate resources

for task requests, and (iv) monitor IoT devices and fog cells.

An approach to optimize task request distribution and resource

allocation is described in Section IV.

As previously mentioned, fog orchestration control nodes

are extended fog cells. On the left-hand side of Figure 2, the

extensions needed for control nodes are depicted. The reasoner
component produces a provisioning plan for the colony’s

resources to execute received task requests. The provisioning

plan determines which services should be used to fulfill task

requests, and where these services should be deployed, i.e.,

what fog cell to use.

The reasoner also gets the information about the system

state, i.e., available fog colony resources, and controls the

connected fog cells, i.e., plans infrastructural changes in the

fog colony, if necessary. The database additionally stores the
resource provisioning plan produced by the reasoner. After the

reasoner produces a provisioning plan, the fog action control
performs the orchestration of fog cells according to the plan. If

there are no sufficient resources in the considered fog cell, or

further processing is needed, such task requests are separated

and propagated to the other fog colonies by the propagation
component via the control node. The watchdog component

features means to receive up-to-date information about the

utilization of the connected fog cells. It observes monitoring

data in the database and compares it to the expected Quality

of Service (QoS) level, i.e., measures the consumption of the

cell’s computational resources as well as QoS parameters, e.g.,

the execution time. This information influences the decision-

making in the reasoner component. The service registry com-
ponent hosts service implementations and enables the fog

action control to search for services and deploy them on the

fog cell compute units. As storing service implementations

is resource-consuming, the service registry is located in the

storage unit of the control node.

It should be noted that an alternative approach would be

a decentralized orchestration of fog cells in a fog colony,

i.e., without a centralized fog orchestration control node.

While this leads to higher fault tolerance, it also involves

extensive coordination and voting between the involved fog

cells. Therefore, we opt for a more centralized approach in this

work. However, we still foresee that another fog cell becomes

the fog orchestration control node in a fog colony, if necessary,

e.g., in case the original fog orchestration control node fails.

IV. FOG RESOURCE PROVISIONING

As discussed in Section III, it is necessary to provide the

fog orchestration control node (more precisely: the reasoner

component) as well as the cloud-fog control middleware with

means to allocate resources for task requests. For this, the

fog orchestration control node needs a complete overview of

the system state of a fog colony. With this system state as

input, the reasoner is able to compute a resource provisioning

plan and to schedule task requests onto services running in

fog cells. As stated above, we assume that a fog colony is

autonomous, i.e., the cloud-fog control middleware is only

involved if a fog colony needs additional cloud resources.

As in the field of cloud resource optimization, manifold

goals for resource provisioning are possible, e.g., time, cost,

or energy efficiency optimization [6], [10], [12]. In the fol-

lowing, the goal of our resource provisioning approach is the

optimization with regard to the utilization of the fog cells and

minimization of delays. First, this means that the computa-

tional resources offered by the fog cells should be utilized

as much as possible, because using cloud resources instead

leads to higher overall cost (for details, see Section V-C).

Second, the data needed and sourced within a particular fog

colony should be handled by that particular colony, if possible.

This is done in order to avoid an increase of delays by

propagating data to the cloud. Together, these goals form

the foundation for a multiple-criteria optimization problem,

as will be presented in the upcoming subsections. Based on

the solutions to this optimization problem, a fog orchestration

control node instantiates services on particular fog cells and

schedules task requests on these cells.

A. System Model

The basic entity for optimization in our system model is a

fog colony with a fog orchestration control node F . F has n
subordinate children fog cells f j , i.e., fog cells are part of the

same fog colony and controlled by F : ∀f j ∈ FC , j ∈ {1..n}.
The CPU utilization of a control node is indicated by UF , for

a children fog cell by U j . Analogously, for RAM utilization,

the parameters MF and M j are used. There are different

types of fog cells (TF for control nodes, T j for children

fog cells), which indicate the sets of services that can be

run on this particular cell, i.e., indicate different IoT devices.

The bandwidth and link delay between a control node and a

particular children fog cell j are indicated by bj and dj .

The fog colony controlled by F receives m task requests.

Each request ri, ∀ri ∈ R, i ∈ {1..m} is characterized by two
time points: ts and tf , where ts is the time when a task request
enters the system and tf is the time when the task request is
fulfilled. Each ri is characterized by its CPU μCPUi and RAM
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μRAMi demand, and the type of service μTYPi needed to fulfill

the task request.

The current system state is indicated by the period τ and its
starting point of time tτ . The fog cell produces the resource
provisioning plan S for the period τ + 1 with a starting point
of time tτ+1 calculated by adding a certain period of time ε:
tτ+1 = tτ + ε.
We define the cardinality function, i.e., length, of the whole

resource provisioning plan S which consists of a sequence

of assignments for children fog cells S(FC), for the control
node S(F ), and for not assigned task requests S(0), for all
i ∈ {1..m}, i.e., S = S(FC)

⋃
S(F )

⋃
S(0).

We assume for a fog cell f j the assigned task requests rjk,
∀rjk ∈ Rj , k ∈ {

1..pj
}
, for the control node rFq , ∀rFq ∈ RF ,

q ∈ {
1..uF

}
. If for some task requests there are no resources

in the fog colony, or the task request needs further resources

which cannot be offered by the colony itself, the resource

provisioning plan S is still produced, but not assigned task

requests R \ (⋃n
j=1

⋃pj

k=1(r
j
k)
) \⋃uF

q=1(r
F
q ) are propagated to

a higher layer in the fog colony. This higher layer could either

be another fog orchestration control node (in the case of nested

fog colonies) or the cloud-fog control middleware.

The objective of (1), our overall goal function, is to maxi-

mize the number of possible assignments while decreasing

the propagation of task requests to the higher layer as much

as possible.

|S(FC)
⋃

S(F )| → max (1)

The binary variable xj
i decides whether a task request ri is

assigned to f j as defined in (2). For control nodes, xF
i is

defined analogously.

xj
i =

{
1, if ri is assigned tof

j ,

0, if ri is not assigned tof j ,
(2)

Based on this, the goal function can be rewritten as (3).

m∑
i=1

( n∑
j=1

(xj
i ) + xF

i

)
→ max (3)

As a first constraint, we assume that each fog cell of a

specific type T j can execute certain types of task requests,

i.e., the type of a task request must be checked. If the task

request is assigned to a fog cell, meaning xj
i = 1, then the

type of a task request must conform to the type of the fog

cell, i.e., μTYPi ∈ T j . And, correspondingly, if the task request

is assigned to the control node, i.e., xF
i = 1, then μTYPi ∈ TF .

Second, each task request ri can be assigned only to one
specific fog cell f j or F :

n∑
j=1

(xj
i ) + xF

i ≤ 1 ,∀i ∈ {1..m} (4)

Next, we choose a fog cell with minimum estimated delay

between the fog cell and the control node. For that, the set of

all fog cells is sorted according to the value dj . This allows the

assignment of task requests prioritizing fog cells with lesser

delay.

As defined in (5) and (6), assigned task requests must not

exceed the resources of a fog cell. The equations allow for an

assumed percentage γ of system needs that must be free to

maintain a corresponding fog cell.

m∑
i=1

(μCPUi · xj
i ) ≤ U j · (1− γ

100
) , ∀j ∈ {1..n} (5)

m∑
i=1

(μRAMi · xj
i ) ≤ M j · (1− γ

100
) , ∀j ∈ {1..n} (6)

V. EVALUATION

In the following evaluation, we show the efficiency of

our resource provisioning approach, compared to a baseline

approach and to the execution in the cloud. For this, we

extend the well-known CloudSim modeling and simulation

framework [19] with the means to simulate fog landscapes.

A. Evaluation Environment

In order to cope with fog landscapes, CloudSim needs to

handle fog colony hierarchies as introduced in Section III. For

this, the original Datacenter class of CloudSim is extended

by FogDatacenter that features specific methods of a fog

colony, i.e., linking different fog cells to a fog orchestration

control node. CloudSim’s DatacenterBroker class is extended
by FogBroker that mirrors the behavior of the fog orchestration
control nodes or cloud-fog control middleware depending on

the simulated environment, and implements the system model

presented in Section IV. CloudSim’s class responsible for task

requests, Cloudlet, is extended by FogCloudlet to include

the issuer parameter. This is necessary to track the origin

of task requests. To calculate delays (see Section V-C), a

class DelayEntity is added. This class transforms data from
CloudSim’s class NetworkTopology, and is used for metric

calculations. The main class of the simulation creates the

fog landscape and cloud environment, sets up the services,

generates task requests in the fog cells, and finally runs the

simulation.

B. Experimental Setup

As a fog landscape, we consider a fog colony of 100

fog cells (each running on a separate IoT device) and a fog

orchestration control node. The fog colony is linked to a public

cloud in the case that cloud resources are necessary for the

fulfillment of task requests. Of these 100 fog cells, 10 are

simultaneously issuing 1,000 task requests to the fog colony

(more precisely: to the control node) assuming these fog cells

do not have enough own resources for processing. This leaves

90 fog cells to provide computational resources to handle

the 1,000 task requests. If these fog cells are not sufficient,

cloud-based computational resources are used to fulfill the task

requests. Each fog cell executes different services according

to the available computational power. For the simulation, we

do not restrict the service types to be hosted by the single fog

cells, i.e., each cell is able to respond to every task request.

CloudSim calculates the execution time of a service needed

to fulfill a particular task request by taking into account the
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number of instructions necessary to execute the task request

and the number of instructions a compute unit is able to

process per second. Within our evaluation, a task request needs

0.04 million of instructions per second (mips), and has 300

MB of incoming and 300 MB of outgoing data. Fog cells

possess compute units which are able to handle 250 mips.

For modeling the fog network capacities, i.e., the network

topology, the BRITE internet topology generator [20] is used.

The one-way delays between fog cells and the control node

were generated by BRITE according to the physical distance

between generated nodes, and belong to the interval (0, 1]
seconds. The cloud-based computational resources are set to

be twice as powerful as fog cells’ compute units, i.e., VMs

are able to handle 500 mips. The cost per processing in the

cloud is set to $ 0.30 per Billing Time Unit (BTU), i.e., one

hour. The delay between the control node and the cloud was

set to 2 seconds. The bandwidth between the control node and

fog cells is set to 6 Mbit/s, and between the cloud-fog control

middleware and the control node to 10 Mbit/s.

For evaluating the efficiency of the fog landscape, we apply

the resource provisioning policies offered by CloudSim [19]

(called the “Baseline” scenario) and our system model (intro-

duced in Section IV) combined with those policies (called the

“Optimization” scenario) in the fog landscape. Furthermore,

we perform an execution of all task requests in the cloud-

fog control middleware for the case the fog landscape is not

available (called the “Cloud” scenario).

Basically, CloudSim allows time-shared and space-shared
provisioning policies for both computational resources and

services running on those resources. Time-shared provisioning

means that the shared resource is simultaneously divided

among assigned entities, i.e., the entities run in parallel. The

space-shared provisioning means that the computational power

of the resource is shared, and the resource is provisioned to

an entity sequentially, i.e., the next entity starts running only

when the previous entity is finished. Applied to fog computing

as discussed in this paper, we distinguish four basic policies,

as depicted in Figure 3: (1-a) time-shared provisioning of fog

cells for services and time-shared provisioning inside services

for task requests; (1-b) time-shared provisioning of fog cells

for services and space-shared provisioning inside services for

task requests; (2-a) space-shared provisioning of fog cells

for services and time-shared provisioning inside services for

task requests; (2-b) space-shared provisioning of fog cells for

services and space-shared provisioning inside services for task

requests.

C. Metrics

To assess the efficiency of the fog landscape in the Baseline,

Optimization, and Cloud scenarios, we calculate the average

round-trip time per each task request (7)–(8), total delays

for the execution of all task requests (9)–(10), and the total

makespan, i.e., the time period between the entering of the

first task request into the fog landscape and the fulfillment of

all task requests. Additionally, for the execution in the cloud

we calculate the total cost (11).
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Fig. 3. Provisioning Policies

The round-trip time ti is the time a task request spends in the
fog landscape from the moment of issuing until getting back

the results of the processing. In Table I, we show the average

round-trip time per task request along with the standard

deviation of the results. The round-trip time of each task

request is calculated as the sum of the duration of uploading

data to the control node’s host and to the destination fog cell’s

host for execution along with according delays, the execution

time, and downloading data back to the issuer of the task

request:

ti = t
{srcri ,F}
up + d{srcri ,F} + t

{F,destri}
up + d{F,destri}+

+ tiexec + t
{destri ,F}
down + d{destri ,F} + t

{F,srcri}
down + d{F,srcri}

(7)

Uploading and downloading times are calculated according

to CloudSim’s basic methods, i.e., dividing an incoming and

outgoing storage capacities of task requests by a corresponding

bandwidth of the used network link:

t{start, end}
up =

sizeriup

b{start, end} ; t
{start, end}
down =

sizeridown

b{start, end} (8)

We assume that the execution time includes the actual task

request execution time in a service, and processing times

needed by the control node and the destination fog cell.

Taking into account the number of assigned task requests

from (3), the delay d{srcri ,F} between the issuer of the task
request and F , the delay dj between F and each fog cell, and

the delay dC between F and the cloud, we calculate the total

delay in the fog:

delayfog = 2 ·
m∑
i=1

d{srcri ,F} + 2 ·
m∑
i=1

n∑
j=1

(xj
i · dj)+

+ 2 ·
(

m −
m∑
i=1

( n∑
j=1

(xj
i ) + xF

i

))
· dC

(9)

In the case of execution of task requests in the cloud, the delay

to the destination equals to dC for all m task requests, and

the total delay equals to:

delaycloud = 2 ·
m∑
i=1

d{srcri ,F} + 2 · m · dC (10)
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Fig. 4. Round-trip Times for Task Requests in the Optimized Fog Landscape

In our experimental setup, the task requests are issued simul-

taneously, but have different start times of execution according

to the policy applied. The total makespan is calculated as the

maximum value of an array of summed values of start time

of the execution with the round-trip time of the corresponding

task request.

We assume ownership of the fog and that these resources

are available anyway, as discussed in Section I. Therefore,

the fog cost can be neglected. The cost is calculated for the

cloud execution according to (11), where ccloud is the cost per

processing second in the cloud and v is the amount of seconds
in 1 BTU:

costcloud =

∑m
i=1 tiexec · ccloud

v
(11)

D. Results

Even though the provisioning inside a service for task

requests has no influence on the delay minimization between

fog cells (see Figure 3), it still influences the start and finish

times of task request executions, and consequently affects the

round-trip time per task request. The purpose of Figure 4 is

to demonstrate visually which policy shows better round-trip

times according to the Optimization scenario. According to

Figure 4, the policy 1-b shows the least round-trip times for

each task request in the simulated fog landscape, which is also

supported by the results shown in Table I.

The default CloudSim time-shared VMs provisioning policy

assigns VMs to data centers in the sequence these data centers

are described in the network topology. According to the system

model (see Section IV), we compare the hosts of fog cells

according to their link delays to the control node, and priori-

tize fog cells with lesser delays. The conducted simulations

confirm that the resource provisioning inside a service has no

influence on the delays. Figure 5 shows the change in delays

for policies 1-a and 1-b, and Figure 6 respectively for 2-a

and 2-b. In the figures, the delays drop down because already

allocated fog cells become free after fulfilling the assigned

task requests, and afterwards other task requests are assigned

to those fog cells due to the lesser link delay constraint.

As seen in Table I, policies 1-a and 1-b decrease the

total delay in the optimized fog landscape by 39% compared

to the Baseline, and policy 1-b has also 82% less average

round-trip time compared to 1-a. The standard deviation for

the average round-trip time for the policies 1-b and 2-b is
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relatively small, because all the task requests are executed

sequentially in the services, and release resources immediately

after the execution. Therefore, the round-trip time is affected

more by the corresponding delays. In contrast, policies 1-a

and 2-a execute task requests in parallel, which make the

execution slower. The system model applied to the policies

2-a and 2-b brings improvements, however they are marginal.

The total makespan periods of all fog landscape scenarios are

relatively the same, however policy 1-b shows better results

as well because of reduced delays.

The cloud scenario shows smaller round-trip time and total

makespan because of higher bandwidth, i.e., the data is up-

loaded quicker, compared to the fog landscape where the data

is transferred between fog cells. However, the delay between

the control node and cloud-fog control middleware was set to

a relatively small value of two seconds (see Section V-B), and

anyway the execution in the cloud shows around 95% higher

delay compared to the Optimization scenario in the fog. In

reality the link delay between the control node and the cloud

depends on the physical distance to the cloud. Additionally,

the cloud scenario has cost for the execution. These results

compensate the benefit from the smaller round-trip time and

makespan.

In total, the evaluation demonstrates that the system model

applied with the time-shared provisioning of fog cells for

services along with space-shared provisioning inside services

for task requests, i.e., Optimization scenario for (1-b), reduces

delays in the fog landscape by 39%. It also shows less average

round-trip time per each task request compared to the other

policies. Lesser round-trip time is crucial if there are any
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TABLE I
METRICS COMPARISON

Policy Average round-trip time (s) Total delay (s) Total makespan (s) Cost ($)
Baseline Optimization Cloud Baseline Optimization Cloud Baseline Optimization Cloud Cloud

(1-a)
1979.69 1979.48 1056.04

530.82 323.68 6454.50 2123.07 2122.82 1129.05 74.13
σ=44.49 σ=51.97 σ=25.96

(1-b)
360.53 360.32 246,46

530.96 323.90 6455.00 2122.61 2122.54 1126.22 6.67
σ=0.20 σ=0.14 σ=1.35

(2-a)
1979.65 1979.65 1056.04

492.78 490.63 6454.50 2129.96 2129.54 1129.05 74.13
σ=51.99 σ=51.92 σ=25.96

(2-b)
360.50 360.49 246.46

493.03 490.91 6455,00 2129.71 2129.28 1126.22 6.67
σ=0.19 σ=0.20 σ=1.35

time constraints for task requests executions, and especially

in delay-sensitive fog scenarios, as discussed before.

VI. CONCLUSIONS

The centralized processing of multiplicative IoT data in

the cloud incurs high delays and accordingly low speed of

data processing which are unfavorable for IoT applications

and services. Fog computing promises to solve this problem

by utilizing available computational, storage, and networking

resources for the enactment of IoT services close to the edge

of the network. Currently, the uptake of fog computing is still

at its very beginning, thus there is a lack of theoretical and

practical foundations for fog resource provisioning.

After having motivated our work, we discussed an architec-

ture for fog computing framework, and derived a system model

for fog resource provisioning. To evaluate the efficiency of the

proposed approach, we simulated the envisioned architecture.

We showed that the system model combined with the time-

shared provisioning of fog cells for services along with space-

shared provisioning inside services for task requests decreased

delays by 39% and yielded shorter round-trip times and

makespans.

In our future work, we aim to implement a real-world test-

bed based on the proposed architecture and to improve the

system model for resource provisioning. The architecture can

be enhanced by fault tolerance mechanisms, and by adding

QoS constraints to the task requests, e.g., deadlines. Another

aspect of our future work is the systematic evaluation of a fog

landscape to obtain real-world network data for evaluations,

e.g., delays and bandwidth.
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