
Resource Optimization in
Fog Enabled IoT Deployments

Visali Mushunuri, Ajay Kattepur, Hemant Kumar Rath & Anantha Simha

Embedded Systems and Robotics, Tata Consultancy Services (TCS) Research, Bangalore, India.
Email: visali.m | ajay.kattepur | hemant.rath | anantha.simha @tcs.com

Abstract—Internet of Things (IoT) devices are typ-
ically deployed in resource (energy, computational ca-
pacity) constrained environments. Connecting such de-
vices to the cloud is not practical due to variable
network behavior as well as high latency overheads. Fog
computing refers to a scalable, distributed computing
architecture which moves computational tasks closer
to Edge devices or smart gateways. As an example of
mobile IoT scenarios, in robotic deployments, compu-
tationally intensive tasks such as run time mapping
may be performed on peer robots or smart gateways.
Most of these computational tasks involve running
optimization algorithms inside compute nodes at run
time and taking rapid decisions based on results. In
this paper, we incorporate optimization libraries within
the Robot Operating System (ROS) deployed on robotic
sensor–actuators. Using the ROS based simulation en-
vironment Gazebo, we demonstrate case-study scenar-
ios for runtime optimization. The use of optimized dis-
tributed computations are shown to provide significant
improvement in latency and battery saving for large
computational loads. The possibility to perform run
time optimization opens up a wide range of use-cases
in mobile IoT deployments.

Index Terms—Fog Computing, Offloading, Optimiza-
tion, IoT, Robotics, ROS.

I. Introduction

Mobile Internet of Things (IoT) [1] devices that typi-
cally operate on the sense-compute-actuate framework [2],
suffer from common restrictions:

1) Low computational capacities on sensing devices.
2) Low energy and battery capacities.
3) Limited on-board memory and storage capacities.
4) Low-latency turnaround times needed between sens-

ing and actuation.
5) Variability in network connectivity due to mobility

patterns of sensor/actuating devices.
In order to overcome these challenges in IoT devices,
cloud based architectures [3] have been proposed. Cloud
computing [4] offers scalable hardware resources on de-
mand for storing and computing data. This minimizes the
computational load on network devices and increases their
battery lifetime. However the communication latency and
power consumed for communication with the cloud turn
down its advantages for delay constrained applications.

Mobile
Robotic

Sensor/Actuator
(Edge Node)

Mobile
Robotic

Sensor/Actuator
(Edge Node)

Mobile
Robotic Peer
(Edge Node)

Mobile
Robotic Peer
(Edge Node)

Mobile
Robotic Peer
(Edge Node)

Mobile
Robotic Peer
(Edge Node)

Fog VMFog VM

Request
Resources

Assign Tasks
To Compute
Nodes

Network
Variability /
High Latency

Cloud VMsCloud VMs

Run-time Optimizer
(Computation Capacity,

Energy Depletion)

Fog Compute
Node

Fig. 1. Mobile IoT Deployments with Runtime Optimization.

For low latency requirements, Fog Computing has been
proposed, which brings the merits of cloud computing to
the Edge of network [5], [6]. In Fog Computing, Fog nodes1

(such as smart gateways) that have high computational
capacities, storage power and network access are used to
perform computational tasks. As a result, computational
capacities of both Edge nodes (low end peripheral nodes)
and Fog nodes may be exploited for distributed computa-
tions. Typically, latency overheads and limited reliability
of centralized cloud access is also mitigated, as a result of
this distributed computation.

Fig. 1 shows the general model of our approach, with a
Fog node and multiple mobile IoT sensor/actuator nodes.
Directly offloading computations to cloud based VMs is
not viable due to network variations and latency overheads
[7]. Furthermore, the Edge nodes are low end nodes that
have limited battery and computational resources for car-
rying out high computational tasks. Hence, distributing
a heavy task among the Edge/Fog nodes reduces com-
putational burden on a single node and improves overall
battery lifetime. In this paper, we leverage the advantages
of Fog computing for performing high computational tasks
on mobile robotic sensor/actuators. We optimally divide

1Fog nodes, smart gateways and Edge nodes are referred inter-
changeably in this paper

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

978-1-5386-2859-1/17/$31.00 ©2017 IEEE 6

the computational load among varied Edge/Fog nodes
to reduce battery usage and computational latency. For
performing this compute division, the Fog node (server
node) is used to divide the computational data over peer
robots in an optimal fashion, dependent on run time con-
straints such as mobility, location, current battery capac-
ities and available computation power. Such optimization
constraints are common in most mobile IoT deployments
and require run time solutions.

For implementing our model, we utilize the open source
ROS (Robot Operating System) [8] to spawn robotic
sensors, actuators and computation nodes. ROS is a widely
used software development framework with packaging
tools and communication infrastructure for robotic scenar-
ios. ROS can also be easily deployed on virtual machines
running on Android devices, smart mobile gateway devices
as well as robotic hardware [8]. We link the open-source
optimization library NLopt [9], which is a widely used
optimization library, with ROS, for running optimization
algorithms. The NLopt library has implementations for
different types of optimization algorithms (global opti-
mization, local derivative-free and local gradient based
algorithms). Using this library, we present several use case
scenarios and optimize the compute division with different
constraints. This may be extended to multiple resource
constrained mobile IoT environments.

The main contributions of this paper are:
1) Motivate the need for Fog/Edge compute nodes for

distributing computations when cloud connectivity
is infeasible.

2) Use Fog Computing for co-operative communication
between mobile IoT for a task accomplishment.

3) Integration of an external library NLopt, into ROS,
for running optimization algorithms at runtime for
robotic deployments.

4) Implement a ROS Service based model for our com-
munication framework.

5) Demonstrate, over multiple case studies, the im-
provements in energy/latency provided by runtime
optimization.

The rest of the paper is organized as follows. In section
II, we explain our system model along with associated
communication and battery depletion models. Then we
briefly discuss different case studies deployed in our robotic
scenario in section III. ROS based implementation de-
tails are covered in section IV. The results for optimal
deployment and energy/latency improvements are shown
in section V. In section VI, we discuss the literature related
to our work. We conclude this paper with section VII.

II. Mobile System Model

In this section, we provide a brief overview of the Fog
based runtime optimization model, battery depletion and
communication path loss models.

A. Fog based Optimal Computations
IoT devices typically operate on the sense–compute–
actuate paradigm [2]. In order to demonstrate the utility
of optimization over such devices, we make use of robotic
deployments. These involve i) constrained devices (energy,
actuation latency, computation) ii) mobile devices that af-
fect communication transmission and path loss iii) limited
connectivity to the cloud due to constraints (i,ii).

In most cases, the connectivity of robots to the cloud
may not be available or not reliable or with high commu-
nication latency [7] as shown in Fig. 1. In such cases, a Fog
node is used for performing large computations. A node
intending to perform a large computation cannot directly
deploy this to cloud; instead it requests for resources from
a nearby Fog node. A Fog node, in addition to the capabil-
ity to provide cloud connectivity, has its own resources for
performing high end computations. A runtime optimizer
(running on the Fog node) is implemented in order to
divide the computational load to peer nodes depending
on their communication path loss, computational power
and battery power constraints. This is then assigned to
both Fog and Edge peer nodes in an optimal fashion
(total energy usage, latency, computational capacities).
In general, we work with large computational tasks that
need to be divided or parallelized among nodes for faster
completion. We assume these tasks (sorting, searching,
indexing) are embarrassingly parallel.

B. Power Depletion Model
In order to optimally utilize battery resources, the bat-
tery depletion rate is updated on a regular basis to
the optimizing server by the computational nodes. This
power is computed by finding the power required for data
transmission, reception and to perform computations on
data. The relation between total battery capacity Bp,
actual discharge current in amperes Ip and time taken to
discharge current t is given by well known Peukert’s law
[10]:

Bp = Iα · t (1)

where the parameter α is dependent on the battery type
(lead-acid, lithium-ion).

C. Communication Power Path-loss Model
The communication path loss is modeled using Friis trans-
mission equation with Pt as transmission power at sender
and Pr as received power at the receiver: [11]

Pt
Pr

= 1
GtGr

·
(

4πdi
λ

)γ
(2)

where, di is the distance between sender and receivers, γ
is the path loss exponent which takes values in the range
of 2 to 5, Gt and Gr are gains of transmit and receipt
antenna and λ is the wavelength. We have assumed that
the transfer of data occurs wireless using IEEE 802.11n
[12] with maximum throughput of 54 Mbps.

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

7

 Server R s

Client 1 R1
c Client 2

Client 3 R3
c

R2
c

Fig. 2. Robots spawned into ROS Gazebo.

III. Robotic Case Study Deployment
To demonstrate our approach on mobile sensor-

actuators, we spawn four Husky robots [13] into the
ROS-Gazebo simulator as shown in Fig. 2. ROS (Robot
Operating System) is a widely used software development
framework with packaging tools, simulators and commu-
nication infrastructure for robotic scenarios. The robots
are equipped with odometry sensors that may be used
to actuate velocity and angular movement for localization
and path planning. Robots are defined as nodes in ROS
and all these nodes communicate with each other using
ROS Communication framework. We make use of ROS
Services [14] for communication between server and client
robots and ROS topics for position updates.

One robot acts as a master (server) node with the
other three robots as client nodes. The server node (Fog
node) is denoted as Rs and the three Edge client nodes
as Rc1, Rc2 and Rc3. In our model, the client node Rc1
moves around and collect location information to perform
some computations (like constructing a global map or
finding the nearest location to server). Whenever there is
some data available for computation, the robot Rc1 share
its computation load among peers in order to extend its
battery lifetime. The Edge client robot having some data
for computation offloads its entire data to Fog server robot
Rs for computational data division. Rs then divides the
whole computation among peer robots depending on their
communication path loss and power availability. It then
sends the divided computational data to corresponding
client node for carrying out computations. We formulate
this computational data division by Rs as a constrained
optimization problem with battery capacity, communica-
tion path loss and computational capacity of the client
robot acting as main constraints. Note that robotic nodes
may be replaced with higher capacity devices, representing
Fog nodes, such as smart gateway devices.

Since the communication between server and client
robots is one-to-one, we use the ROS Service Call
method. ROS services allow nodes to communicate via
Request/Response messages. The server node offers differ-
ent services to client nodes for communication. The client
nodes call the corresponding Service whenever they need
to communicate with the server node. The implementation
details of the Client-Service model are given in Section IV.

The power calculations are performed using the param-

TABLE I
Husky Data Sheet Specifications

Parameter Values
Dimensions 39 x 26.4 x 14.6 in
Weight 50 kg

Maximum Speed 1.0 m/s
Battery Sealed Lead Acid, 24 V, 20 Ah
Runtime 8 hours (standby), 3 Hours (usage)
Sensors Odometry, Battery levels

Actuators Wheel Velocity, Torque

eters available from Husky Data sheet and given in Table
I. The battery power calculations uses this data to find the
power consumed when robot is in movement or performing
computation.

A. Sensing Implementation
One robot Rc1 senses the location coordinates and sends
it to Fog server robot Rs. The goal is to find the min-
imum location distance from server among the collected
coordinate information. The Fog server robot then runs an
optimization algorithm in ROS and finds out the optimal
allocation factors. The allocated ratio of computational
data is sent to the respective client nodes by Rs. All
the three Edge robots perform computations, in our case
sorting the location coordinates using Bubble Sort and
finding the minimum location distance from server. The
computed minimum distances are returned back to the
server, which then finds global minimum among the three
distances and returns the result to Robot Rc1. All the three
robots then update their remaining battery power and
location to server.

B. Optimization Formulation
In order to divide the computation load among the three
Edge client robots in an efficient manner, the optimiza-
tion algorithm is formulated with runtime communication
path loss, remaining battery capacity and computational
capacity as constraints. In order to prevent overloading
one Edge robot with most of the computational load,
another constraint is added which restricts the allocation
to a fraction q(t) of the total available computation load to
each robot. The fraction q(t) is the maximum fraction of
computation that a robot shares with other peer’s compu-
tational load so that its own computational requirements
are not affected. It depends on the amount of battery
available and hence is a temporal value.

Minimize: f(X) =
∑
i

aixi

Such that:
∑
i

xi = C ∀i ∈ N

xi ≤ q(t) · C ∀i ∈ N

(3)

where, ai is the cost assigned to robot Rci depending on
its communication path loss dγi , battery power available
Bp and computational capacity (CPU cores) Hi:

ai = F [Bp, dγi , Hi] (4)

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

8

The cost values are normalized to unity. f(X) is the objec-
tive function and xi are the allocation factors assigned to
each client robot Rci . The first constraint specifies that the
sum of three allocation factors should be equal to the total
available computation load C. The other three constraints
restricts the computation allocated to each robot to a
fraction q(t) of the total available computation C.

Different scenarios are deployed and tested in ROS and
the cost functions vary in the optimization problem. Note
that latency is not added as an explicit constraint in
this formulation, though a trade off between latency and
battery consumption may also be included in this model.
Further details on the optimization formulation can be
found in our previous work [15].

1) Static Robots with Random Deployments: In this sce-
nario, all the three Edge client robots are placed randomly
at unequal distances from the Fog server Rs. Hence, the
optimization problem takes into account constraints on the
battery power and the communication path loss of client
robots.

2) Mobile Robots: In this scenario, we add mobility
to the three Edge client robots Rc1, Rc2 and Rc3. The
optimization problem is similar to the previous case, ex-
cept that the distances of three client robots varies from
one iteration to the other. These distances are updated
after each iteration to the Fog server robot. Hence, the
optimization problem in this scenario takes battery power
and varying communication path loss of client robots into
consideration.

3) Robots having Heterogeneous Computational Capac-
ity: In this case, the three robots are given heterogeneous
computational capacity by assigning different number of
CPU cores to each robot. In our case, we make Rc3 as a
node with higher computational power (such as a smart
gateway Fog node) by assigning two CPU cores (2 and 3)
out of four available cores using the linux taskset command
(taskset -c 2,3). The computational power of each node
is communicated with the Fog server after each iteration.
The optimization function is formulated as a function of
ratio of cores, battery powers and communication path
loss values. In this case, ai is the function of robot’s core
capacity ratio, battery power and its path loss values
from server robot. All these values are normalized to 1
for simulations. The maximum computation allocation
constraint q(t) is increased from forty percent to fifty
percent in this case for better perception in results.

IV. Implementation in ROS

In this section, we provide details about integrating an
optimization library NLopt in ROS and implementation
of the Client-Service model in our simulations.

A. Optimization Implementation using NLopt
We use the NLopt Library [9] for implementing the opti-
mization algorithm in ROS. The external libraries can be

added to ROS by linking the target library to ROS build
system in CMakeLists file as shown below:

FIND_LIBRARY (EXT_LIBRARY extName
library_full_path)

target_link_libraries(executable_name
${catkin_LIBRARIES} ${EXT_LIBRARY})

We link the NLopt library to the server node in the same
way by modifying CMakeLists file. Now we can use the
external library directly from the server node by includ-
ing the NLopt header file (#include<nlopt.hpp>). The
NLopt library has implementations for different gradient-
based and derivative-free optimization algorithms. For our
scenario, we use a simple local derivative-free optimization
algorithm named COBYLA (Constrained Optimization
BY Linear Approximations). This algorithm supports
both nonlinear equality and inequality constraints and
optimizes by constructing successive linear approxima-
tions of objective function and constraint functions. This
algorithm can be called using the following commands
given there are three allocation vectors in the optimization
problem:

nlopt_opt opt;
double lb[3] = {1,1,1};
opt = nlopt_create(NLOPT_LN_COBYLA, 3);
nlopt_set_lower_bounds(opt, lb);

where lb is used to set lower bounds for the three alloca-
tion vectors.
Similarly, the objective function and equality and in-
equality constraints can be defined and added using the
following commands:

nlopt_set_min_objective(opt, myfunc, &costData[0]);
nlopt_add_equality_constraint(opt, eqconstr,

&d1[0], 1e-8);
nlopt_add_inequality_constraint(opt, ineqconstr,

&d2[0], 1e-8);

The detailed version of using this optimization library is
explained in the NLopt tutorial [9].

B. Client-Service Model Implementation
The client server model is implemented using ROS Services
which uses a pair of Request/Response messages as shown
in Fig. 3. This is a one-to one mechanism where the client
robot sends a request message and gets a response message
back from the server. To create a service, we create a
service file (eg: srv − file) and define the Request and
Response fields. A service can be advertised in ROS using
the following commands:

ros::ServiceServer service = n.advertiseService
("service_name", function);

Then, the client to the advertised service can be created
in the client nodes using:

ros::ServiceClient client = n.serviceClient

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

9

Client 2

Client 3

NLopt Optimization Library

Client 1
Server

ser5

ser4

ser3

ser2

ser1

ser2

ser2

ser3

ser5

ser5

ser3

Fig. 3. Services Implemented in ROS.

<package_name::srv_file>
("service_name");

To call the service from client, we create an object to
call the service (eg. srv) and the request data should be
copied using this object. More detailed explanation can be
found in ROS Services tutorial in ROS Wiki [14].

package_name::srv_file srv;
bool isSuccess = client.call(srv);

In our scenario, the server Rs advertises five services to
the client robots (Fig. 3):

ros::ServiceServer ser1 = n.advertiseService
("sendData", add);

ros::ServiceServer ser2 = n.advertiseService
("optimizeAndDivide", optimize);

ros::ServiceServer ser3 = n.advertiseService
("sendSortedResult", sortResult);

ros::ServiceServer ser4 = n.advertiseService
("receiveFinalResult", finalResult);

ros::ServiceServer ser5 = n.advertiseService
("batteryLocationUpdate", updateDB);

The services ser2, ser3 and ser5 are run on the three
client robots whereas the services ser1 and ser4 are run
on the client robot Rc1.
1) ser1 - Rc1 uploads computational data to the server

Rs requesting it to share the computation among
peers.

2) ser2 - Server offloads the ratio of allocated compu-
tation to each client for performing computations.

3) ser3 - Each client robot sends back individually
computed sorted minimum distances to the server.

4) ser4 - The server sends the final result to client Rc1.
5) ser5 - The three client robot update their location

and battery levels to server Rs.
Note that the services are invoked sequentially with the
client waiting for a synchronous response from the server.

The sensing client Rc1 uses first service ser1 to upload
computational data to Fog server Rs as a request message.
The server runs the optimization algorithm to find optimal
allocation factors to all the three robots based on their cost
function. Based on the allocation factor, the corresponding
ratio of computational data is offloaded to each client

Fig. 4. Computation Division and Battery Usage for Static Nodes.

robot in the second service ser2. The robots then call
the third service ser3 to send the individually computed
sorted minimum distances to the server. From the three
sorted coordinates, the server robot finds the final global
minimum value and is offloaded to client Rc1 in the fourth
service ser4. Then all the client robots use the fifth service
ser5 to update their location and battery levels to server
Rs.
The primary advantage of implementing our solution in

ROS is that it can be easily ported to a variety of robots,
drones, android smart phones and smart gateways [8]. As
robotic nodes come equipped with a variety of sensors and
actuators, this platform may be extended to a variety of
IoT deployments with runtime computation capabilities.

V. Results
In this section, the simulation results are presented for
four cases. All three client robots are: (i) placed randomly
and static, (ii) moving around and updating their location
information to server after each iteration, (iii) assigned
with different computational capacity and are static at
equal locations from server robot. We also include a (iv)
Baseline comparison of the distributed computation along
with single robot computation and cloud offloading. The
discussion of above results are also presented.

A. Static Robots
The client robots are assumed to be placed at unequal
distances from server robot – robot Rc1 is placed near
the server Rs. Now, the cost function takes the distance
and battery capacity and optimizes the division of com-
putational data. Since Rc1 is placed nearer to the server,
the ratio allocated to Rc1 is higher for first iterations as
seen in Fig. 4. Later, the battery constraint suppresses
the distance constraint and hence Rc1 is allocated with less
ratio (which is equal to the lower bound) to compensate
battery reduction. Hence, battery depletions are almost
same on all the three robots as shown in Fig. 4.

B. Mobile Robots
All three client robots are moving around the server robot,
updating their locations and remaining battery capacity
after each iteration. Hence, distance of three robots from

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

10

Fig. 5. Computation Division and Battery Usage for Mobile Nodes.

Fig. 6. Computation Division and Battery Usage for Heterogeneous
Nodes.

the server robot varies dynamically after each iteration.
Fig. 5 shows the battery capacity remaining after each
iteration for the three robots and the ratio divided after
each iteration for the three client robots. Even though
the battery for client robot Rc1 is always less, dynamic
distances of three robots is a factor and hence ratio
allocated to each robot varies dynamically.

C. Robots with Heterogeneous Computational Capacities
In this case, the three robots are assigned with hetero-
geneous cores and since client robot Rc3 is assigned with
more core capacity (similar to a Fog node), the ratio of
computational data assigned to Rc3 is more. The maximum
allocation is restricted to fifty percent because of the
allocation factor q(t). Fig. 6 demonstrates that assignment
to robots Rc2 and Rc3 is far greater than that given to Rc1.
Note that despite the increased computational assignment,
as a result of higher cores assigned to Rc3, the battery
depletion on this robot is lower than Rc2.

D. Baseline Comparison
The computation done locally on a single robot Rc1 is
compared with optimized distributed computation and the
cloud computing case (where all the computational load is
offloaded to cloud). We assume that the cloud is a virtual
machine with 4 core CPU, 4 GB memory and a WiFi link
with a maximum data rate of 54 Mbps.

1) In single robot scenario, the whole computation
is performed by the robot itself using single core

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

Computation Load (KB)

R
e
s
p
o
n
s
e
 T

im
e
 (

S
)

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

110

Computation Load (KB)

B
a
tt
e
ry

 R
e
m

a
in

in
g
 %

Distributed Computing

Single Robot Computing

Cloud Computing

Distributed Computing

Single Robot Computing

Cloud Computing

Fig. 7. Baseline Comparison with Single Node Computation.

machine. The time taken to complete the given com-
putational task is relatively high as can be observed
from Fig. 7. The corresponding battery depletion is
also high for carrying out entire computations by
itself.

2) In the cloud computing scenario, the data has to be
offloaded to a remote cloud based server. In spite
of the improved computational cloud capacity, the
communication latency is nearly twice that of the
local processing. Hence, the response time recorded
is higher than the optimized distributed computing
scenario. The power depletion considered in this case
is due to the communication power required for of-
floading the entire data to the cloud. Hence, battery
power depletion is relatively low. Even though a reli-
able network has been considered for the cloud based
offloading, this cannot be guaranteed in all cases. In
addition, Edge and Fog nodes are severely under-
utilized in this scenario, as all the computations are
performed on the cloud.

3) In case of distributed scenario, both the response
time and battery depletion are relatively low. This is
due to parallelization of data between three robots
and exploiting parallel processing of computations.
As can be observed from Fig. 7, the battery power in
case of distributed scenario lasts longer compared to
the single robot computation (190% improvement at
0.2 MB). Also, the total execution time is also very
high for the singular case, demonstrating the efficacy
of distributed computations (93% improvement at
0.2 MB). The improvement in latency against cloud
offloading is 58% at 0.2 MB.

E. Discussion of Results
While these results have been applied to mobile robotic
sensors (gyroscope, accelerometer), compute nodes (co-
ordinate sorting, mapping) and actuators (robot velocity,
turn angles), these can be applied to other cases requiring
runtime optimization. For the case of mobile IoT devices,
location of sensors, energy levels, unused CPU cycles
and so on are important metrics needing optimization.
Reiterating, these results demonstrate:

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

11

1) Application of runtime optimization in varied sce-
narios by integrating optimization libraries within
sensor-actuator IoT devices.

2) Demonstrating the utility of data and computational
offloading, in conjunction with Fog computing.

3) Integrating our solution for ROS based deployment,
that can be easily ported to mobile robotic nodes,
android smart-phones and smart gateways.

VI. Related Work
The basic architecture of IoT is proposed in [1] and

its technology aspects and applications are discussed in
most of the literature [16], [17]. The generic architecture
of IoT is broadly divided into 3-layers: perception layer,
network layer and application layer [16]. Various versions
of IoT architectures are proposed namely IoT-A [18],
SPITFIRE [19], which are specific to the project domain
and requirements. In [20], the heterogeneity of various
architectures proposed in literature is addressed and the
developments in designing a common IoT architectural
framework being carried out in Europe are presented.

Towards expanding the integration of IoT with cloud
computing, the authors in [21] present smart gateway
based communication with Fog computing which helps in
reducing burden on cloud and also reduces the latency
in cloud based communication. The absolute latency pro-
vided by WiFi networks varies widely with time when
compared to a cellular network [7]. The importance and
benefits provided by Fog computing in IoT are stressed in
[5] and [6] and have proposed a hierarchical architecture
from network to Fog. In [15], the utility of Fog based of-
floading in resource constrained environments is analyzed.

In [3], the authors propose a cloud based architecture
for networked robots with low computation power and
memory and discussed the potential benefits of this ar-
chitecture. The authors in [22] have considered the trade-
off between the computation energy for mobile execution
and communication energy for cloud execution. Using
constraint optimization, they determine the optimal con-
dition for offloading the data to cloud and prove that
cloud execution is energy efficient as compared to mobile
execution. Hartanto et. al. in [23] propose a cloud based
publish/subscribe mechanism for a reliable communication
in distributed robotic scenarios.

The authors in [24] propose a femtocloud architecture
that uses mobile devices to provide cloud service at the
Edge and optimizes the task assignment based on the time
taken to transmit, execute and return the results back.
This architecture leverages the available computation ca-
pacity of devices and also reduces the latency of trans-
mission to the cloud. In [25], a survey of computational
offloading in mobile systems is done, which reveals the
improvements in performance and energy depletion rates
due to computational offloading.

KalaKrishnan et. al. in [26] present an algorithm for
motion planning using stochastic trajectory optimization

framework. The authors in [27] develop a C++ framework
for graph optimization which addresses robotics and com-
puter vision problems like Simultaneous Localization and
Mapping (SLAM) and Bundle Adjustment for integration
into ROS [28].

In this paper, we integrate optimization libraries in tan-
dem with resource constrained offloading. This is valuable
in the case of latency/energy constrained deployments,
such as robotic devices. With the advent of Fog and Edge
computing paradigms, multiple offloading points may be
optimally exploited by using our technique. As we have
demonstrated this over ROS, it may be deployed on
physical robots, Raspberry-pi and Android devices.

VII. Conclusion
IoT deployments with limited computation and energy

resources require runtime optimization over multiple pa-
rameters. To overcome the limitations of IoT devices in
terms of computation power, we use Fog computing, in
which computationally intensive tasks are offloaded to
Edge/Fog nodes with high computational capacities. In
this paper, we have developed a Fog computing architec-
ture for IoT scenarios for cooperative communication be-
tween peer nodes. We use ROS to demonstrate our model
and integrate NLopt optimization libraries within ROS
for deploying optimization algorithms during runtime. We
believe that the developed framework, with integration of
optimization within ROS, can be used to address wide
range of application problems in the IoT world. Significant
improvements in latency and battery usage are shown over
non-optimal deployment of computations.

In this work, we have performed computations such as
Bubble Sorting coordinate data to test our deployment.
However, our future work involves extending this work to
GMapping and creating a distributed global map in an
optimal fashion.

References
[1] L. Tan and N. Wang, “Future internet: The internet of things,”

in 3rd Intl. Conf. on Advanced Computer Theory and Engineer-
ing(ICACTE), vol. 5, Aug 2010, pp. V5–376–V5–380.

[2] C. Perera, P. P. Jayaraman, A. Zaslavsky, D. Georgakopoulos,
and P. Christen, “Sensor discovery and configuration framework
for the internet of things paradigm,” in Internet of Things (WF-
IoT), March 2014, pp. 94–99.

[3] G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: architecture,
challenges and applications,” IEEE Network, vol. 26, no. 3, pp.
21–28, 2012.

[4] Q. Hassan, “Demystifying cloud computing,” The Journal of
Defense Software Engineering CrossTalk, pp. 16–21, 2011.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in MCC workshop on
Mobile cloud computing. ACM, 2012, pp. 13–16.

[6] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog comput-
ing: A platform for internet of things and analytics,” in Big Data
and Internet of Things: A Roadmap for Smart Environments.
Springer, 2014, pp. 169–186.

[7] J. Sommers and P. Barford, “Cell vs. wifi: On the performance of
metro area mobile connections,” in Proceedings of the 2012 ACM
Conference on Internet Measurement Conference, ser. IMC
’12. New York, NY, USA: ACM, 2012, pp. 301–314. [Online].
Available: http://doi.acm.org/10.1145/2398776.2398808

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

12

[8] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Oper-
ating System,” in ICRA Workshop on Open Source Software,
2009.

[9] S. G. Johnson, “The NLopt nonlinear-optimization package,”
http://ab-initio.mit.edu/wiki/index.php/NLopt, 2014.

[10] D. Linden and T. Reddy, “Handbook of Batteries,” McGraw-
Hill, vol. 3, 2001.

[11] T. S. Rappaport, Wireless communications : principles and
practice. Prentice Hall, 2002.

[12] D. Halperin, B. Greenstein, A. Sheth, and D. Wetherall, “De-
mystifying 802.11 n power consumption,” in Power aware com-
puting and systems, 2010, p. 1.

[13] “Husky UGV,” https://www.clearpathrobotics.com/husky-
unmanned-ground-vehicle-robot/, accessed: 2016-08-22.

[14] “ROS Services,” http://wiki.ros.org/Services, accessed: 2010-
09-30.

[15] A. Kattepur, H. Dohare, V. Mushunuri, H. K. Rath, and
A. Simha, “Resource Constrained Offloading in Fog Comput-
ing,” in ACM Middleware Workshops, 2016.

[16] M. Yun and B. Yuxin, “Research on the architecture and key
technology of internet of things (iot) applied on smart grid,” in
Advances in Energy Engineering, June 2010, pp. 69–72.

[17] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet:
The internet of things architecture, possible applications and
key challenges,” in Frontiers of Information Technology (FIT),
Dec 2012, pp. 257–260.

[18] “EU FP7 Internet of Things Architecture project,”
http://www.iot-a.eu/public, accessed: 2016-11-03.

[19] “Semantic-Service Provisioning for the Internet of Things
using Future Internet Research by Experimentation, FP7,”
http://spitfire-project.eu/, accessed: 2016-11-03.

[20] S. Krčo, B. Pokrić, and F. Carrez, “Designing iot architecture(s):
A european perspective,” in Internet of Things (WF-IoT),
March 2014, pp. 79–84.

[21] M. Aazam and E. N. Huh, “Fog computing and smart gateway
based communication for cloud of things,” in Future Internet of
Things and Cloud (FiCloud), Aug 2014, pp. 464–470.

[22] Y. Wen, W. Zhang, K. Guan, D. Kilper, and H. Luo, “Energy-
optimal execution policy for a cloud-assisted mobile application
platform,” Nanyang Technol. Univ., Singapore, Tech. Rep, 2011.

[23] R. Hartanto and M. Eich, “Reliable, cloud-based communi-
cation for multi-robot systems,” in Technologies for Practical
Robot Applications (TePRA). IEEE, 2014, pp. 1–8.

[24] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto
clouds: Leveraging mobile devices to provide cloud service at
the edge,” in 2015 IEEE 8th International Conference on Cloud
Computing, June 2015, pp. 9–16.

[25] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A Survey of
Computation Offloading for Mobile Systems,” in Mobile Net-
work Applications. Springer, 2012, pp. 1–12.

[26] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and
S. Schaal, “Stomp: Stochastic trajectory optimization for mo-
tion planning,” in Robotics and Automation (ICRA). IEEE,
2011, pp. 4569–4574.

[27] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and
W. Burgard, “g 2 o: A general framework for graph optimiza-
tion,” in ICRA. IEEE, 2011, pp. 3607–3613.

[28] “libg2o,” http://wiki.ros.org/libg2o, accessed: 2010-09-30.

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

13

