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Abstract—This paper examines moving target detection in
distributed multi-input multi-output radar with sensors placed
on moving platforms. Unlike previous works which were focused
on stationary platforms, we consider explicitly the effects of
platform motion, which exacerbate the location-induced clutter
non-homogeneity inherent in such systems and thus make the
problem significantly more challenging. Two new detectors are
proposed. The first is a sparsity based detector which, by exploit-
ing a sparse representation of the clutter in the Doppler domain,
adaptively estimates from the test signal the clutter subspace,
which is in general distinct for different transmit/receive pairs
and, moreover, may spread over the entire Doppler bandwidth.
The second is a fully adaptive parametric detector which employs
a parametric autoregressive clutter model and offers joint model
order selection, clutter estimation/mitigation, and target detection
in an integrated and fully adaptive process. Both detectors are
developed within the generalized likelihood ratio test (GLRT)
framework, obviating the need for training signals that are
indispensable for conventional detectors but are difficult to obtain
in practice due to clutter non-homogeneity. Numerical results
indicate that the proposed training-free detectors offer improved
detection performance over covariance matrix based detectors
when the latter have a moderate amount of training signals.

Index Terms—Moving target detection, distributed multi-input
multi-output (MIMO) radar, moving platforms, sparsity, para-
metric methods.

I. INTRODUCTION

Radars on multiple airborne or ground based moving plat-
forms are of increasing interest in recent years, since they
can be deployed in close proximity to the event under in-
vestigation and thus offer remarkable sensing opportunities
[1]. For example, unmanned aerial vehicles (UAVs) based
radars are expected to play an important role in disaster relief
efforts by quickly flying to the impacted area and providing
the most accurate and updated information [2]. In urban
sensing environments, potential targets may be obscured by
buildings and other man-made structures; with sensors on
moving platforms, the subject area can be probed from more
favorable positions to yield enhanced detectability [3]. Other

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

H. Li and Z. Wang are with the Department of Electrical and Computer
Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA (e-
mails: Hongbin.Li@stevens.edu, zwang23@stevens.edu).

J. Liu was with the Department of Electrical and Computer Engineering,
Stevens Institute of Technology. He is now with the National Laboratory of
Radar Signal Processing, Xidian University, Xi’an, 710071, China (e-mail:
jun liu math@hotmail.com).

B. Himed is with AFRL/RYMD, Dayton, OH 45433 USA (e-mail: bra-
ham.himed@us.af.mil).

applications of radar on moving platforms for military and
civilian sensing operations can be found in, e.g., [4]–[6].

With multiple sensors, the system can be implemented
as a multi-input multi-output (MIMO) radar with multiple
transmit/receive (TX/RX) antennas using multiple waveforms,
which offers several advantages over traditional array radar
systems (e.g., [7]–[10]). There are two general configurations,
namely co-located MIMO radars [8], where antennas within
the TX or RX array are closed to each other relative to the
target, and distributed MMO radar [10], where the antennas
are widely separated to allow statistically independent observa-
tions of the target from multiple aspects (geometric diversity).

Here, we consider the moving target detection (MTD) prob-
lem in distributed MIMO radar. The problem has been studied
in a number of studies leading to a sample covariance matrix
(SCM) based detector [10], [11], a robust extension of the
SCM based detector [12], [13], a subspace based detector [14],
a parametric MTD detector [15], among others. However, all
these studies were restricted to the case when radar platforms
are non-moving. One major challenge of the MTD problem
in distributed MIMO radar is clutter non-homogeneity. The
covariance matrix based detectors in [10], [11], [16] can
provide good performance only when adequate homogeneous
training data is available, a condition that is difficult to meet
in practice. As shown in Section II, the clutter in distributed
MIMO radar is strongly location dependent, viz., it depends
on the location of the test cell relative to the geometry of
the transmit/receive (TX/RX) platforms as well as platform
motion. As a result, the clutter covariance matrix varies sig-
nificantly across resolution cells and dynamically changes over
time. This non-homogeneity becomes even more severe when
the moving platforms operate in complex environments such
as urban areas or mountainous terrains. Due to the location-
dependent characteristics, the clutter observed by each TX/RX
pair in the same resolution cell may also have very different
non-homogeneous covariance structure than other pairs.

To handle such clutter non-homogeneity, a subspace MIMO
detector is proposed in [14], which uses only the test sig-
nal for detection and does not require any range training
data. However, the subspace clutter model is based on the
assumption that the clutter Doppler frequencies are centered
around zero. This assumption is valid only when the platforms
are non-moving, in which case the clutter Doppler effect is
caused by natural phenomena such as wind, rain, and cur-
rent flow/wave in rivers/oceans, etc. With moving platforms,
the clutter Doppler frequency may spread over the entire
Doppler bandwidth, which disqualifies the subspace detector.
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Meanwhile, a parametric MIMO detector is introduced in
[15]. The detector circumvents the need for range training
data by utilizing low-order autoregressive (AR) processes for
clutter modeling and estimation. While this offers an effective
approach to mitigate clutter non-homogeneity, the limitation
of [15] is that the model orders of the AR processes are
assumed to be available a priori. The assumption is justified
only with non-moving radar platforms, in which case the
clutter is stationary or slowly changing over time, and the
clutter model order can be estimated in advance. In [12], [13],
a compound Gaussian model is used to describe the non-
homogeneity of clutter. This leads to a modified covariance
matrix based detector with improved performance than those
of [10], [11], [16] in non-homogenous clutter environments.
Nevertheless, the detector still requires a substantial amount
of training data for covariance matrix estimation.

In this paper, we address the MTD problem with explicit
consideration of platform motion. We first analyze target and
clutter responses in a multistatic setup and highlight the effects
of platform motion, which exacerbate the non-homogeneous
clutter problem. Based on the analysis, we develop new
detection algorithms by integrating and extending recent devel-
opments in sparse signal recovery and previous MTD solutions
[14], [15]. Specifically, two detectors are developed, namely a
sparsity based detector and a fully adaptive parametric detec-
tor. The former exploits a sparse representation of the clutter.
Unlike [14] where the clutter subspace is assumed known,
identical for all TX/RX pairs, and covering only a small
fractional of the Doppler bandwidth around zero frequency, the
sparsity based detector is able to adaptively estimate the clutter
subspace including its rank from a dictionary matrix that spans
the Doppler bandwidth, and the clutter subspace is generally
distinct for different TX/RX pairs and may spread over the
entire frequency domain. Meanwhile, the fully adaptive para-
metric detector extends [15] by incorporating adaptive model
order selection in the detection process to cope with platform
motion. Both detectors are developed within the generalized
likelihood ratio test (GLRT) framework, through which the
clutter can be estimated from only the test signal under the
null and alternative hypothesis, respectively, without using
any range training signals. It should be noted that the range
training-free feature stems from the sparsity/parametric based
models employed by these detectors. The estimation results
are then contrasted with each other and the one not matched
to the real hypothesis is rejected through GLRT. Computer
simulation show that these training-free detectors significantly
outperform the covariance matrix based detectors when the
latter are provided with a moderate amount of range training
in the considered MTD environment with moving platforms.

The remainder is organized as follows. In Section II, we
present the geometry of the distributed MIMO radar with
moving platforms, examine the target/clutter responses, and
formulate the MTD problem. In Section III, we briefly review
several existing MTD detectors and discuss their related prob-
lems. The proposed detectors are developed in Section IV.
Numerical results and comparisons are presented in Section
V, followed by concluding remarks in Section VI.
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Fig. 1. Bistatic geometry involving one TX, one RX, and one object (target
or clutter scatterer).

II. DATA MODEL AND PROBLEM FORMULATION

A. Bistatic Geometry and Doppler Frequency

In this subsection, we examine the bistatic geometry of a
single transmitter (TX) and receiver (RX) on moving platforms
and the resulting Doppler frequency of a moving object
observed by the TX-RX pair. The result is used to develop a
data model for the MIMO case in Section II-B. Fig. 1 shows
the bistatic geometry of an object that forms a bistatic angle β
with the TX-RX pair. For simplicity, we assume the TX, RX
and the object are located on a two-dimensional (2-D) plane.
The object may refer to a moving target with speed v and
moving direction δ with respect to (w.r.t.) the bisector of β;
or it may refer to a clutter scatterer in which case v = 0. The
moving angles of the TX and RX are denoted by δtx and δrx,
while their look angles are θtx and θrx, respectively, all defined
w.r.t. the North direction. The transmit range (TX-to-object)
is denoted by RT, while the receive range (object-to-RX) by
RR. Note that all angles in Fig. 1 have signs, with clockwise
being positive and counter-clockwise being negative.

Based on the above bistatic radar geometry, the bistatic
Doppler frequency of the moving object is the time rate of
change of the total TX-RX path length [17]:

f =
1

λ

[
dRT

dt
+

dRR

dt

]
, (1)

where λ denotes the wavelength, dRT
dt and dRR

dt are the relative
velocities for the TX and RX, respectively. They can be treated
as the projections of vtx and vrx onto RT and RR:

dRT

dt
= vtx cos(δtx − θtx) + v cos(δ − β

2
), (2)

dRR

dt
= vrx cos(δrx − θrx) + v cos(δ +

β

2
). (3)

Taking (2) and (3) back into (1), we have

f =
1

λ

[
2v cos δ cos

β

2
+ vtx cos(δtx − θtx) + vrx cos(δrx − θrx)

]
,

(4)
which reveals that f consists of three parts due to the motion
of the object, and the motion of the TX/RX. Several cases of
practical interest are worth discussing.
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Fig. 2. Bistatic geometry and isorange.

1) Moving object and stationary platforms: With vtx =
vrx = 0, (4) reduces to

f =
1

λ

(
2v cos δ cos

β

2

)
. (5)

This is the case examined in [11], [14]. It can be seen from
(5) that the Doppler frequency is only dependent on the object
motion and the bistatic angle β ∈ [0◦, 180◦]. From fixed target
motion, the Doppler frequency becomes larger as β decreases.
Note that (5) also holds with moving platforms when their
moving angles are perpendicular to their look angles, i.e., δtx−
θtx = ±90◦ and δrx − θrx = ±90◦.

2) Stationary object and moving platforms: When the ob-
ject is stationary (v = 0), for fixed target motion, the Doppler
frequency is caused by the motion of the platforms:

f =
1

λ
[vtx cos(δtx − θtx) + vrx cos(δrx − θrx)] . (6)

The above equation is useful for determining the Doppler
frequency of a clutter scatterer.

3) Moving object on the baseline: When the target is on
the baseline (β = 180◦), (4) reduces to (6) as well, and the
Doppler frequency is contributed only by the platform motion.
In such cases the target cannot be detected by the radar.

4) Monostatic Radar: For monostatic radar, we have β =
0◦, vtx = vrx, δtx = δrx and θtx = θrx. The Doppler frequency
reduces to

f =
2

λ

[
v cos δ + vtx cos(δtx − θtx)

]
, (7)

which, in comparison with (4), shows that for the same
target/platform motion, the Doppler frequency of a monostatic
radar is always lager than that of a bistatic radar.

B. Target and Clutter Model

Consider a distributed MIMO radar system with M TXs and
N RXs, possibly moving, which forms a total of MN bistatic
pairs. As in standard radar operation, the radar scene is divided
into multiple resolution cells, the cell size is determined by the
bandwidth and beamwidth of the radar system, and detection

is performed on each cell one by one to look for moving
targets of interest [18], [19]. For a given resolution cell under
investigation (called test cell), let RT and RR be the associated
transmit and, respectively, receive range. The range sum RT+
RR defines an isorange of the bistatic triangle, which is an
ellipse with foci at the TX and RX [17], as shown in Fig. 2.

Suppose each TX sends a succession of K periodic pulses,
i.e., K repetitions of an orthogonal waveform over a coherent
processing interval (CPI) [10], [11]. Each RX employs a bank
of M matched filters corresponding to the M TX waveforms.
The matched filter outputs are sampled at the pulse rate with
suitable delays according to the range sum of the test cell. Let
xmn denote the vector formed by the K × 1 samples of the
matched filter output in one CPI at the n-th RX matched to
the m-th TX waveform. xmn is the test signal, which includes
contributions from the target (if present) and clutter scatterers
located on the isorange associated with the test cell, i.e., the
ellipse shown in Fig. 2.

1) Target response: The target response in the test signal
xmn can be written as αmnsmn, where αmn denotes the
unknown complex-valued target amplitude and smn the target
steering vector [11], [18]:

smn(v, δ) = [1 e−j2πTpfmn ... e−j2π(K−1)Tpfmn ]T, (8)

where Tp is the pulse repetition interval (PRI), and fmn is
the target Doppler frequency that is a function of the target
speed v and the moving direction δ [cf. Fig. 1 and (4)], and is
assumed to remain fixed within a CPI. The target amplitude is
determined by a number of factors such as the transmit power,
antenna gain pattern, and the radar cross section (RCS) of the
target [17], [19]. Specifically, consider Fig. 2 which depicts a
target being illuminated by a transmit beam with look angle
φtx and observed by a receive beam with look angle φrx. The
target amplitude can be expressed as1

αmn ∝ ρ

RTRR

√
PGtx(θtx,T − φtx)Grx(θrx,T − φrx), (9)

where ρ is a complex-valued parameter determined by the
radar RCS and channel-induced phase shift, P denotes the
radar transmit power, Gtx(θtx,T − φtx) and Grx(θrx,T − φrx) are
the TX and RX gain patterns which depend on the target
locations angles θtx,T and θrx,T, relative to TX/RX look angles
φtx and φrx, as shown in Fig. 2.

2) Clutter response: The clutter response in the test signal
xmn is the sum of reflections from all clutter scatterers on the
bistatic isorange as shown in Fig. 2. Assuming there are Lmn
dominant clutter scattering points on the isorange, the clutter
response can be approximated as [18, Section 2.6]:

cmn =

Lmn∑
i=1

γmn,ih(fmn,i), (10)

1It should be noted that many quantities involved here depend on m, n,
or both. For example, the transmission power P may be expressed as Pm as
it relates to the m-th TX, the receive beam pattern Grx(·, ·) may be written
as Grx,n(·, ·) as it is associated with the n-th RX, and the target RCS ρ
also depends on the (m,n)-th pair, etc. Since it is clear from the context,
the dependence is suppressed for notational brevity. Meanwhile, we keep the
subscript mn for αmn and other similar quantities since they are used in
later sections.
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where γmn,i denotes the clutter amplitude associated with
the i-th scatterer, and h(fmn,i) is the corresponding clutter
Doppler steering vector given by

h(fmn,i) = [1 e−j2πTpfmn,i ... e−j2π(K−1)Tpfmn,i ]T,
(11)

where fmn,i denotes the Doppler frequency associated with
the i-th clutter scatterer, which is assumed to be fixed during
a CPI. From (6), the Doppler frequency is determined by the
platform motion as well as the location of the clutter scatterer
relative to the platforms. Similar to the target amplitude (9),
the clutter amplitude γmn,i has a dependence on the transmit
power, antenna gain, and transmit/receive range associated
with the clutter scatterer (cf. Fig. 2):

γmn,i ∝ ρ

RTRR

√
PGtx(θtx,c,i − φtx)Grx(θrx,c,i − φrx), (12)

where θtx,c,i and θrx,c,i denote the location angles of the i-th
clutter scatterer.

C. Detection Problem

Given the discussions in previous sub-sections, the moving
target detection problem using M TXs and N RXs can be
formulated as the following composite hypothesis test:

H0 : xmn = cmn + nmn,

H1 : xmn = αmnsmn(v, δ) + cmn + nmn, (13)

m = 1, 2, · · · ,M ; n = 1, 2, · · · , N,

where xmn denotes the test signal observed from the (m,n)-
th TX-RX pair; smn(v, δ) is the target steering vector which
depends on the unknown target speed v and direction δ as in
(8), αmn is the unknown target amplitude, cmn is the clutter
given by (10) which involves unknown parameters includ-
ing the number of clutter points {Lmn}, clutter amplitudes
{γmn,i} and Doppler frequencies {fmn,i}; finally, nmn is the
noise, which is modeled as uncorrelated Gaussian with zero
mean and variance σ2

mn. The problem of interest is to detect
the presence/absence of the moving target using the observed
signals {xmn}.

III. COVARIANCE MATRIX BASED DETECTORS

Let

dmn = cmn + nmn, (14)

which is often referred to as the disturbance signal. A standard
approach is to model the disturbance as Gaussian with zero
mean and covariance matrix Rmn = Rc,mn + σ2

mnI, where
Rc,mn denotes the clutter covariance matrix. If Rmn is known,
then from the perspective of maximizing the output signal-to-
clutter-plus-noise ratio (SCNR), the optimum detector is the
matched filter (MF) [18]:

TMF =

M∑
m=1

N∑
n=1

|sH
mnR

−1
mnx0,mn|2

sH
mnR

−1
mnsmn

. (15)

In practice, the covariance matrix Rmn is unknown and
needs to be estimated. A popular choice is the sample covari-
ance matrix:

R̂mn =
1

T

T∑
t=1

xmn,tx
H
mn,t, (16)

where xmn,t denotes the training signals associated with the
test signal xmn. Replacing Rmn by the R̂mn leads to the the
SCM based detector [10], [11]:

TSCM = max
v,δ

M∑
m=1

N∑
n=1

|sH
mn(v, δ)R̂

−1
mnx0,mn|2

sH
mn(v, δ)R̂

−1
mnsmn(v, δ)

. (17)

To ensure that R̂mn has full rank, T > K training data are
required for each TX-RX pair. In general, T ≥ 2K training
data are needed for an acceptable performance [18]. Therefore,
the SCM detector in (17) requires roughly 2KMN training
data in total.

Another detector for MTD with distributed MIMO radar is
the robust SCM detector [12], [13]

Trobust-SCM = max
v,δ

∏
mn

[
1−

|sH
mn(v, δ)M̂

−1
mnxmn|2(

sH
mn(v, δ)M̂

−1
mnsmn(v, δ)

)(
xH
mnM̂

−1
mnxmn

)
]−K

, (18)

where M̂mn is a fixed point estimate (FPE) of the covariance
matrix by solving [20]–[22]

M̂mn =
K

T

T∑
t=1

xmn,tx
H
mn,t

xH
mn,tM̂

−1
mnxmn,t

. (19)

The above robust SCM detector is based on a compound-
Gaussian model for the test signals across TX-RX pairs. It
requires training signals which follow the same compound-
Gaussian model. The FPE (19) can be obtained using an
iterative approach [20]–[22].

The above solutions assume the availability of some training
signals, which are often collected in the neighboring resolution
cells close to the test cell [18], [19]. This causes some prob-
lems. In particular, from Section II-B it is clear that the clutter
response vector (both the amplitude and Doppler frequency)
is location dependent, i.e., the clutter at different resolution
cells or TX-RX pairs exhibits different clutter characteristics.
The location-dependent clutter characteristics lead to two types
of non-homogeneities. First, for the same resolution cell, the
clutter observed by different TX-RX pair is non-homogeneous,
i.e., Rmn �= Rm′n′ , if m �= m′ and/or n �= n′. Second,
for different resolution cells, the covariance matrix is also
different. Hence, drawing training data from the neighboring
range cells for covariance matrix estimation, as done by the
conventional detectors, may suffer significant performance
degradation due to the non-homogeneous nature of the clutter
in distributed MIMO radar. It is therefore imperative to seek
alternative detectors with reduced training signals.
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IV. PROPOSED APPROACHES

In this section, we propose two detectors which do not
require range training data. The first detector as introduced in
Section IV-A exploits a sparsity based model to mitigate the
principal clutter responses, while the second one in Section
IV-B is based on a parametric clutter modeling approach.
In the development of these detectors, we assume the target
velocity is known for simplicity and drop the dependence of
the target steering vectors {smn} on {v, δ}. It is standard in
radar detection to divide the uncertainty region of the target
velocity into small cells and each is tested for the presence of
the target [18]. The problem of estimating the target velocity
parameters {v, δ} is addressed in Section IV-C.

A. Sparsity Based Detector

Herein, we present a detector which aims to reject the clutter
response from the dominant clutter scatterers in the test cell. In
practice, the dominant clutter scatterers which have the most
impact must be effectively rejected to expose the target for
detection. The clutter from the dominant scatterers in the test
cell can be considered as residing in a subspace which can be
expanded by the columns of a matrix Hmn ∈ CK×Lmn [18]

Hmn = [h(f1),h(f2), · · · ,h(fLmn)] , (20)

where

h(fi) =
[
1, e−j2πTpfi , · · · , e−j2π(K−1)Tpfi

]T
, (21)

with fi representing the Doppler frequency of the i-th clutter
scattering point. Then, the clutter response vector for the
(m,n)-th TX-RX pair in (10) can be rewritten in matrix form

cmn =

Lmn∑
i=1

γmn,ih(fi) = Hmnγmn, (22)

where Hmn represents the subspace of the clutter observed
at the (m,n)-th TX-RX pair and γmn is an Lmn × 1 vector
containing the unknown complex clutter coefficients.

Substituting (22) into (13), the hypothesis testing problem
is rewritten as follows

H0 : xmn = Hmnγmn + nmn,

H1 : xmn = αmnsmn +Hmnγmn + nmn, (23)

where nmn is additive white Gaussian noise with zero mean
and variance σ2

mn. The likelihood functions pi (i = 1 for H1

and i = 0 for H0) are given by

H0 : p0
(
xmn;Hmn,γmn, σ

2
mn

)
=

exp
(
− 1
σ2
mn

‖xmn −Hmnγmn‖2
)

(πσ2
mn)

K
, (24)

H1 : p1
(
xmn;αmn,Hmn,γmn, σ

2
mn

)
=

exp
(
− 1
σ2
mn

‖xmn − αmnsmn −Hmnγmn‖2
)

(πσ2
mn)

K
.

(25)

We consider a generalized likelihood ratio test (GLRT) ap-
proach for target detection. The test variable of the GLRT is

given by the ratio of the likelihood function with unknowns
replaced by their maximum likelihood estimates (MLEs) [23]

T ′
S-GLRT =

∏
mn

max
αmn,Hmn,γmn,σ

2
mn

p1
(
αmn,Hmn,γmn, σ

2
mn

)
∏
mn

max
Hmn,γmn,σ

2
mn

p0 (Hmn,γmn, σ
2
mn)

.

(26)
Next, we discuss how to obtain the parameter estimates under
both the H1 and H0 hypotheses, respectively.

1) Parameter Estimation under H1: From (25), the MLE
of the target amplitude αmn conditioned on Hmn and γmn is

α̂mn =
sH
mn (xmn −Hmnγmn)

sH
mnsmn

. (27)

Substituting (27) into (25) and maximizing the resulting like-
lihood function w.r.t. σ2

mn, we obtain the MLE for the noise
variance σ2

mn conditioned on Hmn, γmn and α̂mn, which is

σ̂2
mn:1 =

‖ymn −P⊥
mnHmnγmn‖2
K

, (28)

where

P⊥
mn = I− smns

H
mn

sH
mnsmn

, (29)

ymn = P⊥
mnxmn. (30)

By substituting (27) and (28) into (25), the maximization of
the likelihood function w.r.t. the clutter parameters reduces to

{Ĥmn, γ̂mn} = arg min
Hmn,γmn

‖ymn −P⊥
mnHmnγmn‖2.

(31)
Note that (31) is a non-linear estimation problem, which
jointly estimates the clutter subspace Hmn parameterized by
the Doppler frequencies {fi}Lmni=1 and amplitudes γmn. This
non-linear estimation problem can be linearized using an
overcomplete dictionary matrix

H̄ =
[
h(f̄1),h(f̄2), · · · ,h(f̄D)

]
, (32)

with the dimension D � K, where {f̄i} are a set of uniformly
spaced frequency points covering the entire Doppler spectrum.
For sufficiently large D, i.e., the Doppler spectrum is densely
sampled, the clutter response can be written as

Hmnγmn = H̄γ̄mn, (33)

where γ̄mn is a D× 1 sparse vector with only Lmn non-zero
elements (the locations of the non-zero elements are however
unknown). The non-linear joint estimation problem (31) now
reduces to a sparse linear parameter estimation problem, i.e.,
to estimate the linear amplitude vector γ̄mn, under a sparsity
constraint. Therefore (31) is equivalent to

ˆ̄γmn = argmin
γ̄mn

‖ymn −P⊥
mnH̄γ̄mn‖2,

s.t. ‖γ̄mn‖0 = Lmn, (34)

where ‖ · ‖0 denotes the L0-norm of a vector argument which
gives the total number of non-zero elements in the vector.

Finding the exact MLE of γ̄mn is combinatorial. Specif-
ically, we need to minimize the cost function of (34) for
every combination of Lmn columns of H̄ that have non-zero
coefficients, i.e., we have to solve

(
D
Lmn

)
least-squares (LS)
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problems, which is highly complex for large D. Instead of the
exact MLE, we can obtain an approximate estimate of γ̄mn
by resorting to standard sparse signal recovery methods with
small-to-moderate complexities, such as the greedy methods
[24] or convex relaxation based methods [25]. Next, we
discuss how to employ the orthogonal matching pursuit (OMP)
[24] to estimate γ̄mn due to its computational efficiency, and
we also discuss how to address the issue when the sparsity
Lmn, i.e., the dimension of the clutter subspace, is unknown.

To facilitate discussion, let b = ymn, A = P⊥
mnH̄, γ̄mn =

z, and Lmn = L. Then (34) can be rewritten as

ẑ = argmin
z

‖b−Az‖2,
s.t. ‖z‖0 = L. (35)

The idea is to iteratively identify an atom (i.e., a column) of A
at a time that has the largest correlation with the residual vector
until convergence. Specifically, denote by Γ = {1, 2, · · · , D}
the index set of all atoms of A, Λt the correlation index set
containing the indices of the identified atoms of A at the t-
th iteration, and rt the K × 1 residual vector obtained after
subtracting the contribution from the identified atoms at the
t-th iteration. To initialize the iterative process, we set Λ0 = ∅
and r0 = b. At the t-th iteration, a new atom is identified from
the remaining atoms of A that has the largest correlation with
the residual rt−1:

λt = arg max
j∈Γ\Λt−1

|rH
t−1A(:, j)|, (36)

where A(:, j) denotes the j-th column of A. Then, the
correlation index set and residual are updated as follows:

Λt = Λt−1 ∪ {λt}, (37)

rt = b−A(:,Λt)ẑt, (38)

where A(:,Λt) denotes the K × t sub-matrix formed by the
columns of A as indexed by the correlation index set Λt and

ẑt = A(:,Λt)
†b, (39)

where (·)† denotes the matrix pseudo-inverse. The iterative
process stops when the following criterion is met:

max
j∈Γ\Λt−1

|rH
tA(:, j)|
‖AHb‖1 < ε, (40)

where ε is a small positive number which controls the dimen-
sion of the clutter subspace. Note that the left side of (40)
measures the relative correlation between the residual and the
remaining atoms at t-th iteration, and we have found a choice
of ε = 10−3 is effective in suppressing the dominant clutter.

Suppose the iterative process stops at the t-th iteration. We
have estimates of the clutter subspace and coefficients, Ĥmn =
H̄(:,Λt) and ˆ̄γmn(Λt) = ẑt, respectively, which are specified
over the non-zero support Λt, and an estimate of the clutter
rank is L̂mn = t. Substituting these estimates into (27) and
(28), we can obtain estimates for the target amplitude and
noise variance.

2) Parameter Estimation under H0: Using a similar pro-
cess, the MLE of noise variance conditioned on Hmn and
γmn can be obtained from (24) as

σ̂2
mn:0 =

‖xmn −Hmnγmn‖2
K

. (41)

By taking (41) back into (24), the MLE of the clutter subspace
matrix Hmn and amplitudes γmn are given by

{Ĥmn, γ̂mn} = arg min
Hmn,γmn

‖ymn −Hmnγmn‖2, (42)

which can be solved using the similar steps as shown in (35)-
(40).

3) Test Statistic: Using the MLEs obtained above, it is
straightforward to show that the GLRT test statistic reduces
to

TS-GLRT =
∏
mn

(
σ̂2
mn:0

σ̂2
mn:1

)K
. (43)

where σ̂2
mn:0 and σ̂2

mn:1 are the estimates of noise variance
under H0 and H1, respectively.

• Step A: H1 estimation

1) Compute the projected signal ymn from
observations xmn, m = 1, . . . ,M , n = 1, . . . , N ,
by (30).

2) For each ymn, let b = ymn and A = P⊥
mnH̄. Do

the following iterations along with initializations:
r0 = ymn, Λ0 = ∅ and t = 1.

a) Find the correlation index λt using (36), and
update the correlation index set Λt using (37);

b) Compute ẑt from (39), and update the residual
vector rt using (38);

c) Check if the stop criterion (40) is met. If yes,
move to Step A-3; otherwise, let t = t+ 1, and
go back to Step A-2a.

3) Set the sparse clutter coefficient vector γ̄mn as
ˆ̄γ(Λt) = ẑt (over its non-zero support set Λt). Use
it to compute an estimate of the clutter Hmnγmn
as H̄ˆ̄γ and, finally, an estimate of the noise
variance σ̂2

mn:1 from (28).

• Step B: H0 estimation

1) For each xmn, let b = xmn and A = H̄. Do the
following iterations along with initializations:
r0 = xmn, Λ0 = ∅ and t = 1.

2) Follow the same iterations from Step A-2a to Step
A-2c.

3) Calculate the estimates of clutter Hmnγmn as in
Step A-3 and the noise variance σ̂2

mn:0 from (41).

• Step C: Compute the test statistic from (43).

Algorithm 1: The proposed sparsity based detector.

A summary of the proposed sparsity based detector is
included in Algorithm 1.
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B. Fully Adaptive Parametric Detector

In addition to the sparsity based model discussed in Section
IV-A, parametric auto-regressive (AR) processes have proven
useful to model radar clutter in various scenarios [26]–[37].
Examinations of numerous experimentally measured data have
shown that AR processes can be used to accurately and
efficiently approximate radar clutter using a few coefficients
[28], [29], thus significantly reducing the amount of data that
is needed for clutter estimation. For the detection problem at
hand, consider the following Pmn-order AR process

dmn(k) = −
Pmn∑
p=1

amn(p)dmn(k−p)+εmn(k), k = 1, 2, · · · ,K,

(44)
where dmn(k) denotes the k-th slow-time sample of the distur-
bance (clutter and noise) observed at the (m,n)-th TX-RX pair
[cf. (14)], amn(p) denotes the p-th AR coefficient of the AR
process used to model dmn(k), and εmn(k) ∼ CN (0, σ2

mn)
is the driving noise of the AR process with zero-mean and
variance σ2

mn. The above AR model was employed in [15]
for moving target detection when the radar platforms are
stationary. A parametric detector was developed there under
the assumption that the AR model orders {Pmn} are given a
priori. The assumption is justified since with fixed platforms,
the environment is relatively stationary and the AR model
orders {Pmn} can be estimated a priori from previously
collected data. As shown in Section II-B, the clutter response
is location dependent. With moving platforms, the clutter is
highly dynamic and changes rapidly over time, making it
impossible to estimate {Pmn} a priori. As such, for distributed
MIMO radar on moving platforms, it is imperative to extend
the parametric detector to provide joint adaptive model order
estimation on the fly and moving target detection.

Using AR model (44), the likelihood function of the ob-
served signal xmn [see (13)] under hypothesis Hi, i = 0 or
1, is given by [15]

pi
(
amn(1), · · · , amn(Pmn), σ2

mn, αmn
)

=
1

(πσ2
mn)

K−Pmn exp

⎛
⎜⎜⎜⎝−

K∑
k=Pmn+1

|εmn(k)|2

σ2
mn

⎞
⎟⎟⎟⎠ (45)

where αmn = 0 when i = 0, while εmn(k) are white Gaussian
random variables which are related to the observed signal
through the AR model:

H0 : εmn(k) = xmn(k) +

Pmn∑
p=1

amn(p)xmn(k − p), (46)

H1 : εmn(k) = xmn(k)− αmnsmn(k)

+

Pmn∑
p=1

amn(p) [xmn(k − p)− αmnsmn(k − p)] ,

(47)

k = Pmn + 1, Pmn + 2, · · · ,K.

Conditioned on known AR model orders {Pmn}, the MLEs
of the target and disturbance parameters have been derived in

[15]. The maximum logarithmic likelihood functions obtained
by using these MLEs in (45) are [15, Eqs. (18) and (22)]:

H0 : ln p0 ∝ −(K − Pmn) ln
(
x̃H
mnP

⊥
Ymn

x̃mn
)
, (48)

H1 : ln p1 ∝ −(K − Pmn) ln

(
x̃H
mnP

⊥
[P⊥
ψmn

Ymn]
x̃mn

)
,

(49)

where x̃mn is a vector formed from the observations xmn(k):

x̃mn = [xmn(Pmn+1), xmn(Pmn+2), . . . , xmn(K)]T, (50)

P⊥
Ymn

and P⊥
[P⊥
ψmn

Ymn]
are projection matrices given by

P⊥
Ymn

= I−Ymn

(
YH
mnYmn

)−1
YH
mn, (51)

P⊥
[P⊥
ψmn

Ymn]
= I−P⊥

ψmnYmn

× (
YH
mnP

⊥
ψmnYmn

)−1
YH
mnP

⊥
ψmn , (52)

in which

Ymn =

⎡
⎢⎢⎢⎣

xmn(Pmn) · · · xmn(1)
xmn(Pmn + 1) · · · xmn(2)

... · · · ...
xmn(K − 1) · · · xmn(K − Pmn)

⎤
⎥⎥⎥⎦ , (53)

P⊥
ψmn = I− ψmnψ

H
mn

ψH
mnψmn

, (54)

where ψmn =
[
1, ej2πfmn , · · · , ej2π(K−Pmn−1)fmn

]T
is a

(K − Pmn)× 1 Fourier vector.
We reiterate the above estimation results are based on

known AR model orders {Pmn}, which need to be adaptively
estimated from the observations. One naive way is to treat
{Pmn} are unknowns and directly maximize (48) and (49)
w.r.t these parameters. This will inevitably lead to model over
fitting, i.e., the resulting Pmn will always reach the maximum
tested value [38]. There are a multitude of techniques available
for model order estimation. Here, we consider the generalized
Akaike information criterion (GAIC) due to its simplicity
[38]. Specifically, the GAIC combines the negative logarithmic
likelihood function with a penalty term proportional to the
model order:

H0 :P̂mn:0 = arg min
Pmn:0

[
(K − Pmn:0) ln

(
x̃HmnP

⊥
Ymn

x̃mn
)

+ β(2Pmn:0 + 1)
]
, (55)

H1 :P̂mn:1 = arg min
Pmn:1

[
(K − Pmn:1)

× ln
(
x̃HmnP

⊥
[P⊥
ψmn

Ymn]
x̃mn

)
+ β (2Pmn:1 + 2)

]
,

(56)

where β is a user parameter and a suggested choice is
β = 4 ln(lnK) for one-dimensional complex data sequence
in [38]. It is clear that model order estimation from (55)-(56)
is affected by the fitting error and computation complexity
caused by over-large estimates of model orders.

Once we have model order estimates, the test statistic of the
parametric GLRT is given by the ratio of likelihood functions
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(48) and (49):

TP-GLRT =
∏
mn

(
x̃H
mnP̂

⊥
Ymn

x̃mn

)K−P̂mn:0

(
x̃HmnP̂

⊥
[P⊥
ψmn

Ymn]
x̃mn

)K−P̂mn:1

(57)

where P̂⊥
Ymn

and P̂⊥
[P⊥
ψmn

Ymn]
are given by (51)-(52), respec-

tively, by using the model order estimate obtained from (55)-
(56). The proposed parametric MIMO detector is summarized
in Algorithm 2.

• Step A: H1 estimation

1) Calculate P̂mn:1 from (56) for m = 1, . . . ,M and
n = 1, . . . , N .

2) Use P̂mn:1 to form the (K − P̂mn:1)× 1
observational data x̃mn, and the projection matrix
P̂⊥
[P⊥
ψmn

Ymn]
according to (52).

• Step B: H0 estimation

1) Calculate P̂mn:0 from (55) for m = 1, . . . ,M and
n = 1, . . . , N .

2) Use P̂mn:0 to form the (K − P̂mn:0)× 1
observational data x̃mn, and the projection matrix
P̂⊥

Ymn
according to (51).

• Step C: Compute the test statistic from (57).

Algorithm 2: The proposed parametric detector.

It is worth noting that both the proposed sparsity based
and the parametric MIMO detectors in (43) and (57) require
no range training signals. Hence, they are immune to the
range/location-dependent clutter problem suffered by conven-
tional detectors which rely on range training. Furthermore,
they also do not require a priori knowledge of disturbance
structure (i.e., sparsity or model orders), which implies that
both proposed detectors are fully adaptive and all the unknown
parameters which describe the clutter characteristics are esti-
mated from the test signal. Finally, by using the the asymptotic
result for GLRT (see [23, p. 205] and also [15, Section III.D],
it is easy to show that the test variables for both S-GLRT and
P-GLRT are asymptotically central Chi-square distributed with
2MN degrees of freedom under H0. Hence, both detectors
achieve asymptotically constant false alarm rate (CFAR).

C. Target Velocity Estimation

In previous discussions of both the proposed S-GLRT and
P-GLRT detectors, the target velocity parameters {v, δ} are
assumed known. We consider herein the case when the target
velocity is unknown and discuss how to estimate the associated
parameters for both detectors.

1) Velocity Estimation for the S-GLRT: By substituting the
estimates in (27), (28) and (31) into the likelihood function
(25), it is easy to show that the target velocity parameters
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Fig. 3. A 2× 2 multistatic radar scene.

TABLE I
LOCATION AND MOVING PARAMETERS OF THE TARGET AND SENSOR

PLATFORMS

speed (m/s) moving angle (◦) locations (km)
Target 30 randomly chosen (0, 0)
TX-1 250 65 (-2.85, 6.68)
TX-2 150 257 (6.03, -6.98)
RX-1 250 35 (4.65, 5.78)
RX-2 150 49 (-8.98, -4.93)

{v, δ} can be estimated by

{v̂, δ̂} = arg min
{v,δ}

∏
mn

∥∥∥P⊥
mn(xmn − Ĥmnγ̂mn)

∥∥∥2, (58)

where P⊥
mn is defined in (29), which depends on the steering

vector smn(v, δ). Note that the clutter parameters estimates
{Ĥmn, γ̂mn} in (31) depend on smn(v, δ) and hence are
functions of the target velocity parameters. As such, (58)
involves a 2-D search on {v, δ}.

2) Velocity Estimation for the P-GLRT: Following the like-
lihood function in (49), it is readily shown that the MLEs of
target velocity parameters are given by

{v̂, δ̂} = arg min
{v,δ}

∑
mn

(K − P̂mn:1) ln(x̃
H
mnP

⊥
[P⊥
ψmn

Ymn]
x̃mn)

(59)
where x̃mn, Ymn, P⊥

ψmn
and P̂mn:1 are defined in (50), (53),

(54), and (56), respectively. Note that P⊥
ψmn

is a function of
the target Doppler frequency observed by the (m,n)-th TX-
RX pair and hence depends on the target velocity parameters
{v, δ}. Therefore, (59) also involves a 2-D search.

V. SIMULATION RESULTS

In this section, we demonstrate the performance of the
proposed sparsity based GLRT (S-GLRT) and fully adap-
tive parametric GLRT (P-GLRT) which are compared with
several existing detectors through computer simulations. The
distributed MIMO radar system consists of M = N = 2
TX and RX antennas covering a radar scene of 20 km ×
20 km, as shown in Fig. 3. The position/moving parameters
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of the radar platforms and target are shown in Table I. For
simplicity, the radar and the target are assumed to be located
on a 2-dimensional plane. This allows Doppler effects of
the target/clutter and location/motion induced clutter non-
homogeneity and target Doppler to be adequately simulated
without getting into a full-blown, high-fidelity 3-dimensional
simulation, which is time consuming and beyond the scope of
the current effort. As indicated in Table I, the target moves
in a random direction which changes from one simulation
to another, so that the average detection performance of the
detectors can be obtained and used for comparison.

The moving target is located at the center of the radar
scene. The target, along with the 2 × 2 TXs/RXs, specify
four isoranges (ellipses) that, as shown in Fig. 3, intercept at
the target location. Each isorange corresponds to one TX/RX
pair. For clutter simulation, 500 clutter scatterers randomly
distributed within the area are generated, and those which
are located on any of the isoranges contribute to the clutter
associated with that TX/RX pair as in (10). To determine
if, say, the i-th clutter scatterer is located on the (m,n)-th
isorange, we compare the bistatic range Rmn of the target
associated with the (m,n)-th isorange and the bistatic range
Rimn of the clutter scatterer [39]

|Rimn −Rmn| ≤ c

2B
, (60)

where c denotes the speed of light and B the bandwidth of
the radar. In our simulation, we have B = 3 MHz, the carrier
frequency fc = 1 GHz, the pulse repetition frequency (PRF)
= 4000 Hz, and the number of pulses K = 128. This leads
to clutter ranks Lmn = {12, 13, 11, 14} with the Doppler
frequencies shown in Table II. It is seen that due to platform
motion, the clutter Doppler frequencies are spread over the
entire Doppler bandwidth.

TABLE II
CLUTTER DOPPLER FREQUENCIES

TX1-RX1(Hz) TX1-RX2(Hz) TX2-RX1(Hz) TX2-RX2(Hz)

1389 144 -1287 -330
-762 347 -1007 -27
-1169 333 654 -24
-1438 -808 497 -811
1281 -792 301 -26
-1177 96 1301 54
-1093 -804 -274 -806
-1615 355 1319 -439
1326 341 -598 76
-1229 284 -834 -182
1362 -1306 826 -19
-1630 -1333 -58

193 -486
-768

A. Detection Performance

We consider the proposed S-GLRT (43), P-GLRT (57),
the SCM detector (17) and the robust SCM detector (18).
For all these detectors, we consider two cases involving the
target velocity (speed and direction) which is assumed known
and, respectively, unknown. The latter case is to examine the
effect of target velocity estimation on detection performance,

in correspondence with the discussion in Section IV-C. For
both cases, H̄ is a 128×256 over-complete Fourier dictionary
for the S-GLRT usage.

First, we consider a non-fluctuating target model where
the target amplitudes αmn are assumed fixed from trial to
trial. The clutter coefficients γmn,i [cf. (12)] are compound-
Gaussian that is K-distributed clutter with a scaling factor of
5 and a shape factor of 0.2. The signal-to-clutter-plus-noise
ratio (SCNR) is defined as

SCNR =
M∑
m=1

N∑
n=1

|αmn|2sH
mnR

−1
mnsmn, (61)

while the clutter-to-noise ratio (CNR) is defined as

CNR =

∑
m,n

tr {Rc,mn}
KMNσ2

mn

. (62)

The target moving direction is randomly chosen according
to a uniform distribution over the range [0◦, 360◦] in every
simulation trial.

The receiver operation characteristics (ROC) curves of the
detectors are shown in Fig. 4(a) for the known target velocity
case and Fig. 4(b) for the unknown target velocity case.
As a benchmark, the clairvoyant MF detector (15) is also
included in the comparison. The proposed detectors do not
use any training, but for the SCM and the robust SCM
detectors, T = 144 training signals are used to estimate
each covariance matrix Rmn and the total training size is
4 × 144 = 576. The results in Fig. 4 show that the proposed
detectors significantly outperform the covariance matrix based
detectors. Comparisons between Fig. 4(a) and Fig. 4(b) reveal
that all considered detectors experience some loss in detection
performance when the target velocity is unknown.

Fig. 6 shows the detection performance of proposed and
other detectors under different SCNR, assuming unknown
target velocity and non-fluctuating target amplitude. Both the
S-GLRT and P-GLRT detectors do not use any training data
and outperform the SCM-based detectors which use T = 144
training data, and the advantage is more significant at higher
SCNR.

Next, we consider a fluctuating target model where the
target amplitudes αmn are changing from one trial to another,
following a complex Gaussian distribution with zero mean and
variance σ2

αmn = 1 for each TX-RX pair. In this case, the
SCNR is defined as

SCNR =

M∑
m=1

N∑
n=1

σ2
α,mns

H
mnR

−1
mnsmn. (63)

Fig. 5 plots the performance curves of the proposed, MF, SCM,
and robust SCM detectors, where all simulation parameters
except αmn are the same as those in Fig. 4. It is also shown
that the proposed detectors have better performance than the
covariance matrix based detectors.

B. Model Order Selection

To illustrate the effect of model order selection on the
proposed P-GLRT detector, Fig. 7 depicts the detection per-
formance of the detector when it is used with several different
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Fig. 4. ROC curves with non-fluctuating target amplitudes in the compound-
Gaussian clutter: (a) known target velocity; (b) unknown target velocity.

sets of model orders, including the one obtained by using
our proposed model order selection method. It is noted that
the set {12, 13, 11, 14} are identical to the true clutter ranks
as discussed earlier and hence treated as the “true” model
order. On the other hand, the model order set {4, 4, 4, 4} cor-
responds to the case when the orders are underestimated, while
{20, 20, 20, 20} is the case when the orders are overestimated.
It can be seen that the proposed fully adaptive P-GLRT which
uses the estimated model orders offers detection performance
close to that using the true orders. In addition, the usage of
the over-/under-estimated model orders in the P-GLRT results
in significant performance losses.

VI. CONCLUSIONS

In this paper, we examined the moving target detection
(MTD) problem in distributed MIMO radar with sensors on
moving platforms. A major issue is to deal with the bistatic ge-
ometry induced, location dependent clutter non-homogeneity,
which is further worsened by platform motion. We examined
the effects of platform motion on the target/clutter responses
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Fig. 5. ROC curves with fluctuating target amplitudes in the compound-
Gaussian clutter: (a) known target velocity; (b) unknown target velocity.
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Fig. 6. Probability of detection versus SCNR with non-fluctuating target
amplitudes and unknown target velocity.
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Fig. 7. ROC curves for the proposed P-GLRT with different sets of AR
model orders.

and, based on our analysis, developed two new detectors by ex-
ploiting suitable sparsity based and, respectively, a parametric
autoregressive (AR) based clutter model. Both detectors were
developed within the GLRT framework and do not require
training signals. Numerical results show that the proposed
detector offer notable improvement over the conventional
covariance matrix based detectors in non-homogeneous clutter
environments. The two proposed detectors are similar to each
other in general. There is no clear picture when one performs
better than the other, and their relation is subject to further
investigation.
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