
Accepted Manuscript

Title: FPGA based hardware implementation of Bat Algorithm

Authors: Mohamed Sadok Ben Ameur, Anis Sakly

PII: S1568-4946(17)30187-4
DOI: http://dx.doi.org/doi:10.1016/j.asoc.2017.04.015
Reference: ASOC 4148

To appear in: Applied Soft Computing

Received date: 4-5-2016
Revised date: 8-3-2017
Accepted date: 10-4-2017

Please cite this article as: Mohamed Sadok Ben Ameur, Anis Sakly, FPGA
based hardware implementation of Bat Algorithm, Applied Soft Computing
Journalhttp://dx.doi.org/10.1016/j.asoc.2017.04.015

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.asoc.2017.04.015
http://dx.doi.org/10.1016/j.asoc.2017.04.015

FPGA based hardware implementation of Bat Algorithm

Graphical abstract

Mohamed Sadok BEN AMEUR(1,2), Anis SAKLY(2),

1: Laboratory of Electronic and Microelectronic, University of Monastir, Tunisia.

Mohamed sadok ben ameur, msba2014@gmail.com

2: Research unit ESIER, National Engineering School of Monastir, University of Monastir, Tunisia.

Anis sakly, Sakly_anis@yahoo.fr,

Highlights
 New hardware architecture of bat algorithm based on Finite State Machine

(FSM) is implemented into FPGA.

 New approach for global engineering optimization using different search

strategies to diversify the bat population.

 A modification for the local search of BA is executed to improve the bats’

movement.

 A parallel bat algorithm was developed to solve the well-known benchmarks

function using Field-Programmable Gate Arrays (FPGAs) which give better

solutions compared to other algorithms in terms of execution time and material

resources.

Abstract— Several meta-heuristics algorithms are used mainly for research of global

optimal solutions for real and non-convex problems. Some of them are the Genetic

Algorithms (GA), Cuckoo Search algorithms (CS), Particle Swarm Optimization (PSO).

Some algorithms have achieved satisfactory results but not all of them. Therefore, new

algorithms give better optimization to solve many problems having continuous search

space like Bat Algorithm (BA). That’s why we proposed a new hardware

implementation on Field Programmable Gate Array (FPGA) of bat algorithm, it is a

new proposed meta-heuristic for global optimization. The work presented in this article

is designed to use new digital dedicated hardware solutions such as FPGAs that are

available to generate a better implementation of bat algorithm. This circuit is well

adapted to many applications because its material structure is molded with the

requirements of calculations. Moreover the inherent parallelism of these new hardware

solutions and their large computing capabilities makes the computing time negligible

despite the complexity of these algorithms.

Keywords: BAT algorithm; Finite state machine; FPGA; Parallele programming; optimisation

I. Introduction

 Over the last decade, several researches of meta-heuristic algorithms are proposed to solve

hard and complex problems in optimization. There are two main concepts in computation: first

one the evolutionary algorithms like genetic algorithm (GA) [1][2], these algorithms based on

Darwin’s principle of survivor and they are distinguished by their representation of solutions.

Although they were developed in the last few years, the two algorithms share some

characteristics like crossover operators and selection operators. The second concept is swarm

intelligence algorithms like particle swarm optimization (PSO) [3][4], artificial bee colony and

bat algorithm. Bat algorithm is a new meta-heuristic algorithms based on echolocation which is

an important feature of bat behavior. The ability and the simplicity to solve complex problems

make the studies active in this area compared with many others optimization techniques. The

effectiveness of this algorithm give satisfactory to solve the most difficult problems for many

algorithms related to real optimization problems. The first implementations of digital bat

algorithms were performed using microcontrollers, microprocessors and DSPs. These solutions

did not give a good optimization at execution time. That’s why the implementation of Bat

Algorithm (BA) cannot be prepared by conventional design techniques, but requires high-level

synthesis tools to Control a Dynamic Approach (CAD). Therefore, some digital solutions such

as Field-Programmable Gate Arrays (FPGAs) were needed to solve many complex problems in

computing and are used as numerical targets for the implementation of bat algorithm. The

basic steps of bat algorithm are given in the section one. Next, we will show the capacity to

produce competitive results to find the maximum or minimum of an objective function. So, in

this article we will propose a novel hardware implementation of a bat algorithm into FPGA

circuit.

 The organization of this paper is described as follow: In the first section, the mechanism of

bat algorithm is introduced. Particularly, a brief introduction of generating the initial

population of bats and their move. Section 2 presents the proposed novel implementation of bat

algorithm. The objective of this section is to describe the general steps performing the BA.

Next section, illustrates the experimental results of some benchmarks functions applied into the

bat algorithm. Finally, section 4 concludes the work and makes some implications and

directions for future studies

II. Bat algorithm

 Bat algorithm is one of new heuristic optimization algorithm was recently proposed by Yang

[5][6]. The latest addition of bat algorithm is the Bat Inspired Search (BIS). The new algorithm

use echolocation behavior of bats in searching for an optimum solution. Indeed, bats use

several methods to detect theirs preys or other shapes around them and even in the dark places.

Actually they achieve the prey by emitting a sound pulse to the air and they listen for the

echoes reflect back from them. Generally echolocation calls are presented by three important

features; the pulse emission rate, the frequency and the loudness. After that the information are

collected and calculated in the brain to make a virtual image of their surroundings.

The bat algorithm give satisfactory results in solving many dispatch problems related to

biology medical, finance, 3d graphics, image processing and others.

The bats and some other animals use echolocation; it is an advanced search based on

navigation system to detect any objects in their surroundings by emitting a sound to the

environment and returns to them as an echo. The direction and intensity of the returned signal

enables them to locate direction and distance of potential prey. In addition, they have a

surprising ability to quickly differentiate between an obstacle and a prey.

 At first, the bat flies blindness around the search space while emitting sound wave of certain

amplitude (intensity) and pulse rate. Between the pulse rates, it receives feedback signals (its

own signal and possibly signals from other bats swarm) by echolocation and interprets these

sound waves. If the received signals have a low intensity and / or a strong rate then it is very

likely that prey is detected and the bat should run toward it. Gradually, as the bats approach to

the prey, its increase the amount of pulses (pulse rate) and at the same time decreases the

intensity of these pulses (loudness). But if the received signals are very low levels, it continues

its flight blindly, without changing the intensity of the emitted sound wave.

The emitted sound travels in zones which has the same atmospheric air pressure and in a

constant speed to follow time delay of the returning echoes. Moreover, bats use the loudness of

the received signals each time to identify the direction of the shapes. These informations allow

the bats to make a virtual image of their environment.

A. Position vector

 Generally, the objective of swarming of bats is to indicate by their positions the distance to

the best prey. Indeed, each bat is associated with a point in the search space and the position of

each bat is depending on the intensity and frequency of the emitted sound wave (by itself and

by its companions).

To simplify the design of our BA, the algorithm focused on the main characteristics of bats to

accelerate finding the prey [7]. In fact, the artificial bats use three vectors; the first vector is the

position the second one is the velocity vector and the third one is the frequency vector. All

vectors are updated throughout the race of iterations by the following equations (1) and (2):

(1) () (1)i i ix t x t v t (1)

(1) () (())i i i iv t v t x t Gbest f (2)

Where (1)ix t is the position of bats at iteration “ 1t ” and ()ix t at iterations “t”, “Gbest” is

the best value reached and it is obtained via the optimization process which represents our

global best solution found. if is the ith bat frequency and ()iv t is the velocity of bat.

Considering that bats move by flying and that the solutions of the search space “S” are

positions in space. At each time t, each of the “N” bats in the population has a position in space

“S”, and a velocity iv . (In the tested benchmark functions “N” is fixed with 20 bats).

B. Velocity vector

 Each artificial bat has velocity vector which is updated during the course of iterations: At

initialization, the bats are uniformly distributed in the search space. The initial velocity is zero

in general. Each bat flies using an equation of velocity and the movement of bats are reduced

around the prey. The prey is detected when the amplitude and the pulse rate perceived by the

bat are less than the emitted loudness, respectively, higher than the emitted rate.

 The moving of bat obeys a simple rule: either it continues its current path, or it changes its

direction. In the first case, the rule is similar to that of the particle swarm optimization (PSO)

[8][9]. The new speed is obtained by adding the current velocity and external velocity vector.

This external velocity is generally obtained by multiplying the frequency if with the current

position and the position of the best solution.

In the second case, the position is obtained from the current position of a randomly chosen bat.

This position obtained by adding a random perturbation proportional to the average power of

the loudness emitted by all bats.

C. Frequency vector

 The frequency if is generated uniformly in the range [minf , maxf] and it allows controlling the

rhythm of the movement. The new position is obtained by adding the new velocity to the

current position. Thus, the distance to the prey is estimated by the doppler effect by varying the

frequency of the emitted signal wave.

if is the ith frequency bat and it is updated after every iteration using the following equation:

min max min()i if f f f B (3)

“B” is a value chosen randomly from a uniform repartition between [0,1]. It’s clear to see from

the equations (2) and (3) that several frequencies allow artificial bats to have a various

positions to the optimum solution. The three equations allow the diversity of the BA. On the

other hand, if there are no detected preys, a global search used in order to allow the

exploitation of the search space using the following equation:

t

new oldX X eA (4)

In the equation below, “ e ” is the ability to perceive emitted sound by other bats from the

swarm and it is a random value between [-1,1], “ A ” is the amplitude of emitted sound

allowing the bats to perform a global exploration of its space [8]. Note that we fixed “ e = 0,9”

as a good factor.

D. Loudness and pulse rate module

 In most implementations, the loudness is general chosen in the interval [0, 1] that is to say,

min 0A and max 1A . The initial value of the loudness and pulse rate are generally set to a

value close to 0.5. In this case, a bat has a 50% chance to choose a random movement. It is

also possible to initialize iA and ir randomly for each bat.

In fact, bats tend to increase pulse emission rate and to decrease the loudness of emitted sound

when they are closer to its prey. That way is modeled using the two equations (5) and (6) as

follows [10][11]:

(1) ()i iA t A t (5)

 (1) (0) 1 exp()i ir t r t (6)

An approval of what we have said previously, the bat algorithm incorporates a combination

between PSO algorithm and completive local search. So, these techniques are checked by

loudness wave iA and pulse rate ir and they have to be updated from iteration to another. ir

is the pulse emission rate and it is varied once a solution is improved. The bat is moving

towards optimal solution according to this equation. After each iteration, the loudness (iA)

usually decreases when a bat finds its prey. Where, (1)iA t is the updated number of the

loudness for each bats and ()iA t the previous value, “t” is iteration number, (1)ir t is the pulse

emission rate of bats at iteration “ 1t ”, (0)ir is the number of the pulse rate of the first

iteration and finally and are the coefficient parameters [12] of loudness wave and pulse

rate, respectively.

In the simplest case, we can use and in the standard BA we can use = 0.9 to

0.975 in most cases, though we have used˛ = 0.95 in our simulations.

Whereas in equation (6), the pulse rate immediately approaches
maxr in a few iterations and

remains stationary at this value. The following figure present a graphical comparison of

equation (6) by choosing max 1.0r , (0) 0.5ir , 0.95 over an iteration number of 150.

III. Hardware implementation of bat

A. Bat architecture

The essential bloc of the bat is described in figure 8. There are several parameters that should

be initialized before running and must be set:

 The size of the search space.

 The position of the bats in our search space.

 The Velocity of bats.

 The best global fitness achieved of the microbats.

 The position of the microbats to the solution.

 The pulse rate and loudness of each microbats.

To initialize all parameters (position, velocity and frequency) each bats in the current

generation must be initialized with initial seed using the module of pseudo random number

after that, this seed is compared with the pulse rate ir of each bat and the (rand) is random

function implemented in the bat algorithm and it is a value between 0 and 1.

B. Pseudo-random generator

 The pseudo random generator is an algorithm that generates a sequence of numbers with

certain properties of chance. The numbers are assumed to be sufficiently independent of each

other, generators programs are particularly suitable for implementation, so more easily and

effectively used. Most pseudo random algorithms try to produce outputs that are uniformly

distributed. A common class generator uses a linear congruence. Others are inspired by the

Fibonacci sequence by adding the two previous values. Most popular and fast algorithms were

created in 1948 D. H. Lehmer introduced linear generators congruentiels and will eventually

become extremely popular. In the bat algorithm the pseudo random generator [13] are used at

the initial position of bats and in the velocity, loudness and frequency vector. The frequently

used pseudo-random generator in this algorithm called the linear congruent of Lehmer:

1 ()modn nF AF B C (7)

Where:

 1nF : is the random number obtained from the function nF

 nF : is the previous number obtained

 A and B : are multiplicative and additive value, respectively

 C : the modulo number

In general, the seed must be a prime number. The period of the generator is equal to "C ", that

is to say, " C " is generally chosen to be equal of word length (here C =16).

So, if (
irand r) then, a new local bat is created by flying randomly to another position in the

search space. If not, another bat is created through random flying when we adjust its frequency

and update its position and velocity. From the following architecture, it’s plain to see that BA

[14, 15] shares a lot of common factor with PSO algorithm. In fact, the two algorithms begin

with a random generation using the module of random generator; both of them evaluate the

population using a fitness module. Also the two algorithms update the position of population

using the position module to search for an optimum solution. They exploit the random

generator to update themselves using the internal module of velocity. The PSO and bat

algorithm use bloc memory which is very important.

C. The finite state machine

 In this work a parallel BA implemented to be applied into large optimization problem. This

algorithm increases the convergence to a local minimum and to increase the performance of

this algorithm a Finite State Machine (FSM) is used to exploit the maximum of parallelism.

The dynamical process of the proposed bat’s architecture is presented as follow:

 Indeed, every state may have at every time a position of many possible finite states. In the

beginning, a number of fixed states are proposed; every transition may have one or more

around their state. In this way, states which have only one state and have no other possible

move we named it the final states. The basic of BA was programed in order to updates the

optimum remembered microbats, the fitness module and their correlated positions and

velocities. The algorithm performs updating the optimum fitness number after the evaluations

of all the bats. Here, when their positions, velocity and loudness are updated, it is possible to

obtain a good convergence rates after evaluating each microbats. In a dynamic parallel

computing, the main factor of performance is the communication latency after each transition

between states. The goal of parallel dynamic computing is to produce optimal results even

when we use multiple processors to reduce the running time. In this architecture a pair memory

modules are used to compound the bandwidth and thus, the capabilities of the algorithm can be

effective that’s why it’s recommended to use dual channel bloc RAM. In that way, it is

possible to access to the data memory in two modes: write or read at the same frequency.

There are problems with the dual RAM. In fact, the reading time of the content of memory is

delayed by one clock comparative to the last reading. Luckily, new advances in processor

technology are capable and available to compute a complex program and use low cost power

beyond clusters of mid-range performance computers. So, the dynamic process implemented in

the bat could be separated in many operations which update the position, velocity and loudness

of microbats using dynamic process giving the same results. So many states are used with the

aim to reduce the executing time. In this paper, the soul of the parallel processing was used to

generate a dynamic bat algorithm [16] and the aim of using parallel computing to the bat

algorithm, is to speed up the algorithm processing using a uniform distribution method to

achieve optimum solutions with a significant execution time. Figure 9 presents the finite state

machine of the global control module; especially presents step by step the code of the BA to

keep the algorithm more practical. From its bat-inspired algorithm Yang had demonstrate that

the choice of upper and lower bounds for echolocation parameters might have some significant

influence on convergence characteristics of the bat algorithm. In this paper, the bounds minf ,

maxf , minr and maxA are initialized to the following value: minf = 0; maxf = 1; minr = 0,5 and

maxA = 1. Here every bat includes some parameters: = (if , ir , iA), in which contains the

pulse rate (ir), the frequency (if) and the amplitude parameter (iA). All parameters are

positive dynamic values with the following value interval:

minr < ir < maxr , minf < if < maxf , minA < iA < maxA (8)

Where minr is the lower bound and maxr is the upper bound of the pulse rate (ir), minf presents

the lower bound and maxf is the upper bound for the frequency parameter (if) and minA and

maxA are the limited lower and upper bound of the intensity parameter (iA). In this algorithm,

the initial frequency value (0)if is fixed randomly between minf and maxf even the setting of

initial loudness (0)iA is fixed initially to its maximum number maxA = 1 and the initial pulse

rate (0)ir is fixed to its minimum value minr = 0.5 for each bat.

IV. Experimental results

 Most researchers use a number of population size between 10 to 50 for the performance

comparison between algorithms. In this work, the population is fixed at 20 bats for the bat

algorithm and the same for PSO algorithm and each bat is coded in 16 bits to represent each

variable in binary. It should be noticed that the last bit is reserved for the sign of each

functions’ variable. So, 15 bits only are used. For some example, we search to minimize the

desired function. So, from iteration to another, the bats that are near to the optimal solution are

selected to be a possible solution of that function. To test the proposed architecture of bat

algorithm and to compare its performance with other algorithm like PSO algorithm [17][18]

and genetic algorithm, some standard benchmark functions are used which are described as

below:

A. Sphere function

1

1

1

()
n

i

i

f x x

 (9)

1
2 2

2

1

(,) ()
n

i i

i

f x y x y

 (10)

 Sphere function is useful to evaluate the characteristics of our optimization algorithms,

such as the robustness and velocity of convergence. This function has a local minimum and it

is unimodal and continuous. The interval of search space is between [-1,1]. Figure 10 and

figure 11 present the results of simulation using “modelsim” of the sphere function and it

describes the changed code of global best from iteration to another by updating the position

and the velocity equations. It should be noticed that these benchmark presents a good function

to test the convergence of the bat algorithm. Moreover this algorithm achieves significant

improvement in all the remaining unimodal benchmark functions compared to other

algorithms. The detailed result of simulation show that our solution converges to zero from

iteration to another.

 These microbats work together in a parallel dynamic state to get the best solution of any

function, they update positions, frequencies and velocity even if the algorithm has a lot of

microbats and this cannot make a hard impact on the global execution time speed. Indeed, the

number of microbats in this algorithm is limted by the size of embded features of FPGA.

Table 1-3 present the number of device utilization of each benchmark function used in the bat

algorithm. after configuration of the directives for bat algorithm, the kit spartran 3 estimate the

device utilization and the performance of the architecture and their configuration. Here, the

column number 1 presents the used logic LUT (Look Up Table), the number of bloc RAM

(BRAM), the number of input/output block (IOBs), the number of multiplcator unit (MULT)

the number of global clocks (GCLKs) and all the materials resource used in this function and

the column 2 presents the available logic in the device xc3s200.

B. Rastrigin function

The function is described as follows:

2

4

1

() 10 (10cos(2))
n

i i

i

f x n x x

 (11)

The Rastrigin function contains several local minima. But it has just one global minimum and

it is highly multimodal and the locations of the minima are regularly distributed. The

following table summarizes the material resource used in this function.

C. Rosenbrock function

 Rosenbrock function is a non-convex function of two variables used as a test for

mathematical optimization problems. It was introduced by Howard H. Rosenbrock in 1960. It

is also known as the banana function name. In this function the global minimum of search

algorithms converge easily. The function is defined as follow:

1
2 2 2

3

1

(,) (1) 100()
n

i i i

i

f x y x y x

 (12)

The global minimum is obtained at point (,) (1,1)x y , for which the function is 0. A different

coefficient is sometimes given in the second term, but that does not affect the position of the

global minima.

To increase the performance of bat algorithm a bloc memory is added to save the local best of

bats and in this case the operating speed of the algorithm is increased. The results illustrate

this.

D. Zakharov function

The next benchmark problem is the zakharov function whose global minimum occurs at (

0x). It has no local minima except the global one. It is two-dimensional form.

2 2 4

5() (0.5) (0.5)i i if x x ix ix (13)

E. Implementation test

 The kit of Spartan-3 FPGA is from Xilinx. The Spartan-3 is one of the best low cost

generation of FPGAs and the board can offers a choice of many platforms which deliver a

unique cost optimization balanced between programmable logic, connectivity and devoted

hard IP for many hardware applications. It creates a PROM file and this latter can be written to

the non volatile memory.

The kit of Spartan-3 contain a lot of I/O signals, logic cell, 12 of hardware multipliers, 200k

gate the following, 4 Digital extern clock and other features. (Figure 12):

The implementation of bat algorithm in kit xc3s200 is done with a specific Digilent cable

which is straight compatible with the Xilinx iMPACT software and it loads the bit-stream into

the prom of FPGA. During the experimental test of bat algorithm of example 1f a photo was

taken as shown in Figure 13. This photo presents two modes of displays for the tested

algorithm; the first one is four seven segments module to display the iteration number used in

the algorithm when optimal solution tends to “0” and in the second display, there are diodes

LEDs used for the code of global best which composed from 16 bits.

F. Comparison with other algorithms

 To make a comparison of this new algorithm to deliver better solution in a significant time

especially its robustness and speed, this algorithm was tested against other meta-heuristic

algorithms, like particle swarm optimization and genetic algorithms. For GA, the basic model

with elitism method is used and the probability of mutation equal 5%. In the PSO algorithm an

optimized version made by myself in another paper are used with modified parameters. The

simulations have been carried out using spartran-3 of Xilinx with 50MHz. The population is

fixed with N = 20 for all simulations.

In the following table, the system easily finds the optimum point (sphere function) after 178

iterations when f(x) =0.

The results are favorable and proved that bat algorithm can be effective for many problems

related to any algorithms used. The experiment results was carried out at minimum 5 % which

allow judging whether the results of the bat are acceptable and optimized in execution time

compared to the best results of other algorithms like PSO or GA. In fact, tests were done with

the example of sphere function and the three algorithms are implemented on same kit of FPGA

(spartran3 xc3s200). The results clearly shows that the genetic algorithm took (380) iterations

to achieve the solution “0” while PSO algorithm need a little more iterations (420) but the bat

algorithm need only (178) iteration to achieve the solution. In the three algorithms, the time

allocated to execute one iteration differs from algorithm to another. In bat algorithm, it takes

(1590) clock cycle for the processing time of one iteration and it is acceptable compared to

PSO algorithm. So the execution time depends on the number of iterations allocated to achieve

the solution. Here in this example, the bat algorithm need only (5,66 ms) to get the optimal

solution while (9,91 ms) for PSO algorithm and (74,02 ms) for genetic algorithm.

Figure 13 presents an example of tested function using seven segments module to display the

number of iterations when we achieve the optimal solution. Eight diodes DEL are used to

show the global best coded in 16 bits. The 8 most significant bits are displayed first and then

an action on the pushbutton allow us to display the 8 low significant bits of this global best.

We can go further with this work using another kit to ameliorate and fix the problem of display

like virtex 6 which has a good clock speeds.

V. Conclusion

 Our work contributes the implementation on FPGA a novel optimization algorithm called

BA experimented in many benchmark functions. In fact, this article develops a dynamic

process of the Bat Algorithm and presents its hardware architectures' implementation in a

Xilinx spartran3. In this algorithm, a finite state machine is used to exploit all the parallelisms

that make the program converge very quickly. The bat algorithm has superior features,

including quality of solution, good computational efficiency and stable convergence

characteristics. The comparison shows that bat algorithm performs better than the mentioned

methods. The proposed architecture of bat algorithm proves that it has a favorable convergence

speed compared to the most of other meta-heuristic techniques depends on the size of design

space; it means the number of bats allocated and the complexity of the problem. So, the BA’s

robustness is attached to its enhanced ability to achieve a satisfaction between two

requirements, the size of memory and the processing time of algorithm to solve complex

problems. Therefore, bat optimization is a promising technique for solving complicated

problems in the real world applications.

For future studies, it is recommended to apply the BA to different practical applications. we

can also ameliorate the processing time of our algorithm using another kit from Xilinx like

virtex 6 in which it consists of several memories with very fast operating speed, then the

processing time of the algorithm will be reduced. The effects of different transfer functions on

the performance of BA are also worth investigating. It supports the usage of the BA in further

experiments and in further real world applications.

VI. References

[1] Ben Ameur M.S; Sakly A.; Mtibaa A, implementation of real coded Genetic Algorithms using FPGA

technology. 10th International Multi-Conference on Systems, Signals and Devices (SSD) 2013.

[2] Holland JH. Adaptation in natural and artificial systems. Arbor, MI: The University of Michigan Press; 1975.

[3] Ben Ameur M.S; Sakly A.; Mtibaa A. Implementation of real coded PSO algorithms using FPGA

technology; 15th international Conference on Sciences and Techniques of Automatic Control and Computer

Engineering (STA), 2014

[4] Hardware/software co-design for particle swarm optimization algorithm Shih-An Li, Chen-Chien Hsu b,

Ching-Chang Wong, Chia-Jun Yu, Information Sciences 181, Elsevier (2011) 4582–4596

[5] Yang X-S; Gonzalez JR. A new meta-heuristic bat Inspired algorithm. In: Nature inspired cooperative

strategies for optimization (NISCO 2010) Studies in computational intelligence. Berlin: springer; 2010.

[6] Yang X-S. Bat algorithm for multiobjective optimization. Int J Bio-Inspired Comput 2011;3:267–74.

[7] Seyedali M; Xin-She Yang. Binary bat algorithm. Neural Comput & Applic (2014) 25:663–681

[8] J. Peña, A. Upegui, A population-oriented architecture for particle swarms, in: Second NASA/ESA

Conference on Adaptive Hardware and Systems, (AHS 2007), pp. 563–570

[9] Tewolde G.S.; Hanna D.M., Haskell R.E. Multi-swarm parallel PSO: hardware implementation in:

Proceedings of the 2009 IEEE Symposium on swarm intelligence

[10] Yang X-S; Gandomi AH. Bat algorithm: a novel approach for global engineering optimization. Eng Comput

2012;29:464–83.

[11] Xin-She Y. A New Metaheuristic Bat-Inspired Algorithm. Nature Inspired Cooperative Strategies for

Optimization (NICSO). Studies in Computational Intelligence, 284:65-74, 2010.

[12] Serdar C; Oguzhan H. Optimum Design of Steel Space Frames via Bat-Inspired Algorithm, 10th World

Congress on Structural and Multidisciplinary Optimization May 19 -24, 2013, Orlando, Florida, USA

[13] Lehmer D.H. Mathematical methods in large-scale computing units, Ann. Computing Lab. Harvard Univ.

141-146, 1951

[14] Gandomi AH, Yang X-S, Alavi AH, Talatahari S. Bat algorithm for constrained optimization tasks. Neural

Comput Appl 2012. http://dx.doi.org/10.1007/s00521-012-1028-9.

.[15] D. Bratton, T. Blackwell, Understanding particle swarms through simplification: a study of recombinant

PSO, in: Proceedings of the 9th 1013 Annual Conference on Genetic and, Evolutionary Computation

(GECCO’07), 1014 pp. 2621–2627.

[16] Teke T; Hasançebi O; Pekcan O. A bat-inspired algorithm for structural optimization: Computers and

Structures 128 (2013) 77–90

[17] Mingchang C. Self-adaptive Check and Repair Operator-based Particle Swarm Optimization for the

Multidimensional Knapsack Problem, Applied Soft Computing, Vol. 26, pp.378-389, 2015.

[18] Mingchang C; Chin-Jung L; Maw-Sheng C; Tsung-Yin O. Particle Swarm Optimization with Time-

Varying Acceleration Coefficients for the Multidimensional Knapsack Problem, Applied Mathematical

Modelling, Vol. 38, No. 4, pp.1338-1350, 2014.

Figure 1. Some applications of bat algorithms

application

Solving
engineering

design
optimization

Image
processing

Economic
dispatch
problem

Fuzzy logic
and other

application

Biology and
medical
problem

Nonlinear and
non-convex

mathematical
problem

Figure 2. The direction and intensity of the returned signal

Figure 3. Position of bats in the search space

Figure 4. The velocity vector of bats.

Velocity vector

Figure 5. Frequency vector of the emitted signal

Figure 6. The amplitude of pulse rate

Figure7. Comparison of pulse rate adaptation strategies.

Figure 8. Proposed architecture of Bat Algorithm

Start

Initialize the microbats x, v
and f

Initialize the loudness Ai and

pulse rates ri

If

Rand>ri

Select the best

solutions and generate a

local solution

Generate new solutions

and evaluate fitness

If Rand<Ai &

f(xi)<f(Gbest)

update

ri and Ai

Rank the microbats and

update Global best

Create new population

update (x,v, and f)

If

Iteration <T

Return the Global best

Yes

No

Yes

No

Yes

No

Figure 9. The finate state machine of the proposed algorithm.

Figure 10. Expriment results of function f(x)=x2

Figure 11. Simulation results in modelsim of function f(x)=x2+y2

Figure 12. The block diagram of SPARTAN-3

 Figure 13. Display of the number of iteration of sphere function

Table 1. Device utilisation of material resources

Table 2. Material resources of rastrigin function

 Table 3. Material resources of rosenbrock function

Device utilization summary (estimated values)

Logic utilization Used Available Utilization(%)

Number of slices 602 1920 31%

Number of slice flip flops 568 3840 14%

Number of 4 input LUTs 1010 3840 26%

Number of IOBs 18 173 12%

Number of BRAMs 5 12 41%

Number of MULT18X18s 4 12 33%

Number of GCLKS 7 8 87%

Device utilization summary (estimated values)

Logic utilization Used Available Utilization(%)

Number of slices 1162 1920 60%

Number of slice flip flops 1001 3840 26%

Number of 4 input LUTs 1690 3840 44%

Number of IOBs 18 173 10%

Number of BRAMs 5 12 41%

Number of MULT18X18s 5 12 41%

Number of GCLKS 8 8 100%

Device utilization summary (estimated values)

Logic utilization Used Available Utilization(%)

Number of slices 1152 1920 60%

Number of slice flip flops 1097 3840 28%

Number of 4 input LUTs 1774 3840 46%

Number of IOBs 18 173 10%

Number of BRAMs 7 12 58%

Number of MULT18X18s 7 12 58%

Number of GCLKS 8 8 100%

 Table 4. Comparison between GA, PSO and Bat algorithms of sphere function

algorithm Genetic PSO BAT

clock cycle of

one iteration
9740

1180

1590

Number of

iteration to

achieve “0”

(STD)

380

(42)

420

(38)

178

(24)

Execution

time (ms)

(STD)

74,024

(8,18)

9,912

(0,89)

5,660

(0,76)

0

10

20

30

40

50

60

70

80

execution time(ms)

GA

PSO

BA

