
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2011; 41:551–577
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.1030

Constraint-based human resource allocation in software projects

Dongwon Kang1,∗,†, Jinhwan Jung2 and Doo-Hwan Bae1

1Department of Computer Science, College of Information Science and Technology, Korea Advanced Institute
of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon, Korea

2Defense Agency for Technology and Quality, Cheongnyang PO Box 276, Dongdaemun-gu, Seoul 130-650, Korea

SUMMARY

Resource allocation in a software project is crucial for successful software development. Among various
types of resources, human resource is the most important as software development is a human-intensive
activity. Human resource allocation is very complex owing to the human characteristics of developers.
The human characteristics affecting allocation can be grouped into individual-level characteristics and
team-level characteristics. At the individual level, familiarity with tasks needs to be taken into account
as it affects the performance of developers. In addition, developers have different levels of productivity,
depending on their capability and experience; the productivity of developers also varies according to tasks.
At the team level, characteristics such as team cohesion, communication overhead, and collaboration
and management also affect human resource allocation. As these characteristics affect the efficiency of
project execution, we treat them as constraints of human resource allocation in our approach. We identify
individual-level constraints and team-level constraints based on the literature and interviews with experts in
the industry. With these constraints, our approach optimizes the scheduling of human resource allocations,
resulting in more realistic and efficient allocations. We also provide a guideline supporting various factors,
with respect to roles and module characteristics, to estimate the productivity of developers based on
COCOMO II. As productivity data are hard to obtain and manage, our guideline can provide a useful
direction for human resource allocation in case of software projects. To validate our proposed approach,
we document a case study using real project data. Copyright q 2011 John Wiley & Sons, Ltd.

Received 14 August 2009; Revised 7 July 2010; Accepted 27 September 2010

KEY WORDS: human resource allocation; constraints; productivity estimation; task allocation

1. INTRODUCTION

The failure of software development projects is often a result of inadequate planning and allocation
of human resources [1]. The main objective of human resource allocation is to determine what task
is to be performed by whom. Without this, the efficiency of a software project cannot be achieved
because developers may be involved in tasks in which their capabilities are not maximized.

Resource allocation has been researched in various areas, such as operations research
and management science, including load distribution, production planning, and computer
scheduling [2]. Compared to these areas, human resource allocation in software projects is espe-
cially complex because the human characteristics of developers affect the allocation. We identified
the following characteristics related to developers and categorized them into individual-level
characteristics and team-level characteristics.

∗Correspondence to: Dongwon Kang, Department of Computer Science, College of IT, KAIST, Korea.
†E-mail: dwkang@se.kaist.ac.kr

Copyright q 2011 John Wiley & Sons, Ltd.

552 D. KANG, J. JUNG AND D.-H. BAE

• Individual-level characteristics

◦ Learning curve: When a developer performs a task, the performance gradually improves
along the learning curve [3]. Thus, it would be efficient to allocate developers to tasks with
which they are familiar.
◦ Different productivity levels: Unlike machines which may have identical productivity, devel-
opers have different levels of productivity, which vary according to their capability and
experience. Moreover, the productivity of a developer varies according to the types of tasks
assigned.

• Team-level characteristics

◦ Need for team cohesion: A software development team needs to act as one cohesive unit
to increase the efficiency of development [4]. Thus, team members should work closely
together and support one another for effective development.
◦ Overhead in communication: When developers work together, communication between
developers lowers the efficiency of a project [5–8]. Moreover, communication overhead is
higher when communication occurs between teams [9].
◦ Need for collaboration and management: As software development is performed in teams,
collaboration is required among developers, and the performance of a developer may be
affected by other developers. In particular, a manager in a software development team
ensures that developers do the correct work and get the tasks done in the most efficient
and least problematic way [10]. Thus, it is important to allocate capable developers to each
team to lead the development and guide other developers.

As these developer-related characteristics affect the efficiency of project execution, we accommo-
date them as constraints of human resource allocation in our approach. We identify five constraints
based on the literature and interviews with experts in the industry. These constraints are categorized
at the individual and team levels following the characteristics mentioned above. They are described
as follows:

• Individual-level constraints

◦ Constraint on phase-level continuity: As mentioned above, familiarity with tasks affects the
performance of developers. Thus, this needs to be accounted for in phase-level allocation.
Allocating a developer to different modules in each phase may lower productivity as the
developer would need to spend a considerable amount of effort in understanding and
analyzing the results from the previous phases. Thus, we encourage maintaining phase-level
continuity in the allocation.
◦ Constraint on increment-level continuity: In incremental software development, if devel-
opers participate in developing modules in which they were not involved during the previous
increment, it may lower productivity as the developer would need to spend additional
effort in understanding and analyzing the results from the previous increments. Thus, we
encourage maintaining increment-level continuity in the allocation.

• Team-level constraints
◦ Constraint on sharing developers: According to the need for team cohesion, team members
need to be unified into a working group acting as a unit [4]. In addition, the communication
cost between teams is high [9]. Hence, developers are basically not shared between teams in
practice, except for some tasks such as acceptance testing that need cooperation. Sharing of
developers between teams lowers efficiency because those developers are under the control
of different teams. This causes difficulty in scheduling teams and balancing workload
for shared developers, and leads to commitment problems when each team requires high
commitment from the shared developers. For this reason, sharing of developers between
teams is discouraged.
◦ Constraint on the number of developers: If too many developers participate in developing
a module, the productivity is lowered because of the increase in communication overhead.
Thus, our approach restrains excessive participation of developers in a module.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 553

◦ Constraint on novice teams: If a team consists of only novice developers, the quality of
product cannot be guaranteed and a considerable amount of rework may be required. Thus,
our approach restrains the team composition with novices only.

With these constraints, our approach optimizes the scheduling of human resource allocations,
using accelerated simulated annealing (ASA) [11], which is a variation of simulated annealing
(SA) [12]. As the constraints impose additional overhead on the project duration, they are
handled as soft constraints which lead to penalty on the duration when violated. In the optimiza-
tion, we use different levels of productivity with respect to roles and module characteristics in
addition to applying the constraints. Thus, our approach can provide more realistic and efficient
allocation results.

In addition, we provide a guideline to estimate productivity. Although many human resource
allocation approaches have been proposed, it is not appropriate to use them if developers’ produc-
tivity data are not available. Because it is difficult to establish a productivity scheme and accumulate
a large historical dataset, especially for low-maturity organizations, we provide a guideline to
estimate productivity by using the existing effort estimation model COCOMO II [13]. As manual
productivity estimation is time-consuming and prone to bias, this guideline can be helpful when
using human resource allocation approaches for software projects.

One of the limitations of existing approaches is that they are not validated with real project data.
As these approaches generally use artificial data in experiments, their applicability is questionable.
In this paper, we describe a case study using real project data to show the usefulness of our
approach.

The remaining sections are organized as follows. Section 2 introduces the basics of SA and
ASA algorithms. Section 3 describes the meta-models for human resource allocation in a software
project. Section 4 presents the constraints used in this paper in detail, illustrating them with
examples. In Section 5, we explain the constraint-based human resource allocation method. As
productivity information is used as input for human resource allocation, a guideline to estimate
productivity is also described in this section. Section 6 describes a case study to show the usefulness
of our approach. In Section 7, we introduce the related approaches and compare them with our
approach. Finally, we conclude in Section 8 with a summary and discussion of the future direction.

2. BACKGROUND: SIMULATED ANNEALING

The SA algorithm is based on the analogy between the simulation of the annealing of solids and
the problem of solving large combinatorial optimization problems [14]. It works by emulating the
physical process whereby a solid is slowly cooled so that when eventually its structure is frozen,
this happens at a minimum energy configuration [15]. It was introduced first in its original form
[16] as a numerical minimization method and then modified [12] to incorporate a cooling schedule.

SA finds a new solution by changing an existing one and determines its quality using a cost
function. One of the most important characteristics of SA is that it can avoid premature convergence
to local optimum by accepting non-improving moves.

So far, many variations of SA have been proposed to improve the efficiency. Among them, we
used the ASA [11] in our approach. The algorithm of ASA is presented as Algorithm 1.

In the INITIALIZE function, the initial temperature (T), the initial solution (X), and the
number of internal loops (L) are decided. The ASA algorithm has two loops. In the internal loop,
the ASA algorithm creates a new solution (Y) nearby the current solution X using the PERTURB
function. If the cost of Y given by the COST function is lower than the current solution X , then
the new solution is accepted as the current solution. When the cost of Y is higher than X , Y
is accepted with a certain probability to prevent an accepted solution from remaining in a local
optimum. In this case, the probability of accepting Y is decided based on the costs of X and Y
and T using an exponential function (exp). The lower the T , the lower the probability of accepting
Y . Then, if the cost of the accepted solution is lower than that of the best solution (X best), the
new solution is stored as the best solution.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

554 D. KANG, J. JUNG AND D.-H. BAE

Algorithm 1 Algorithm ASA
1: INITIALIZE (X ,T ,L);
2: X best← X ;
3: Counter1←0;
4: Counter2←0;
5: repeat
6: Costold←COST(X);
7: Check←0;
8: for i←1 to L do
9: Y← PERTURB(X);
10: if (COST(Y) < COST(X)) or (exp((COST(X) − COST(Y))/T)>random(0,1)) then
11: X←Y ; {accept the movement}
12: if COST(X) < COST(X best) then
13: X best← X ;
14: Counter2←0;
15: Check←1;
16: else
17: Counter2←Counter2+1;
18: Costnew← COST(X);
19: if Check=1 or Costnew<Costold then
20: T =�T ;
21: if Costnew=Costold then
22: Counter1←Counter1+1;
23: else
24: Counter1←0;
25: until Counter1>M or Counter2>N

In SA algorithms, a temperature is lowered when the system reaches a steady state (quasi equi-
librium) by accepting at least some fixed number of solutions at the temperature [12, 17]. Thus, if
ASA finds a better solution in the internal loop, then ASA cools down the temperature as it implies
that a high-quality solution has been found in the current temperature and ASA can take the next
step in the lower temperature. Otherwise, ASA executes the internal loop with the same temper-
ature. In this manner, the number of internal loops (L) can be set to a small number, and ASA
can thus prevent executing the internal loop too many times with a large L value. Commonly, T
is cooled down using a cooling factor � as Tk=�Tk−1. Alpha is set to a value close to 1; a typical
value is 0.95 [18].

ASA algorithm stops when the cost is not changed in M external loops or the best cost is not
changed in N internal loops. Using the number of non-improving moves in both loops as the
stopping criterion, ASA can reduce the time wasted in non-improving loops at low temperatures.

Because of these characteristics of ASA, it was empirically validated that ASA required much
less computation time than the conventional SA while their solutions had the same level of
quality [11].

3. SPECIFICATION OF META-MODELS FOR HUMAN RESOURCE ALLOCATION
IN SOFTWARE PROJECTS

This section describes the meta-models for the human resource allocation problem in software
projects. The overview of the meta-model structure is presented in Figure 1.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 555

Figure 1. The meta-models for human resource allocation.

3.1. Module meta-model

A module is mainly described with workload and a module profile. As a module may be developed
in several increments, each of which consists of several development phases, workload given at
the phase level is the basic unit of allocation in this paper. Therefore, workload is described as
wload(m, i, p), where m, i , and p represent a module, an increment, and a phase, respectively.
wload presents the amount of effort required when development is performed by developers with
average productivity. In other words, it is the estimated effort without considering the developers’
productivity.

A module profile specifies the characteristics of a module and is represented as a combination
of characteristics that differentiates the productivity of developers regarding the module. These
characteristics can be development languages, types of functionality or technologies used in devel-
opment. The characteristics can be defined by experts according to project environments. For
example, suppose that Modules A and B are to be developed in C++ and provide visualization
functionality, while Module C is to be developed in Java and provides data-processing functionality.
In this case, languages and functionality can be the characteristics in a module profile because
a developer may have different levels of productivity according to them. In this case, a module
profile for A is represented as mpf (C++,Visualization).

Note that our approach uses a phase in developing a module as the unit for allocation. There
can be other phases such as acceptance testing which are applied to whole modules. In this case,
the effect of optimization is not significant because choosing the best developers for these phases
is enough. Hence, our approach only deals with phases related to modules, similar to [19].

As developers collaborate as a team, they can be first grouped into teams before performing
individual-level allocation. For team-level allocation, we propose the concept of a module group.
It is defined as a set of modules which becomes a unit of team allocation. The composition of a
module group can be conducted by experts considering module profiles, functional relationship of
modules, or size of modules.

3.2. Developer meta-model

A developer mainly has two types of information: productivity profiles and slots. A productivity
profile is used to support various productivity levels of a developer according to a role and a module

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

556 D. KANG, J. JUNG AND D.-H. BAE

profile. As there can be various combinations of characteristics for module profiles and several
roles can be used in a software project, a developer has a set of productivity profiles. A productivity
profile can be described as prod(d,r,mpf), where d , r , and mpf represent a developer, a role,
and a module profile, respectively. In this paper, it is assumed that a role of a software project
is given for each development phase. Given these inputs, prod presents a productivity value.
Generally, productivity is measured as the ratio of size over effort. As size metrics vary according
to each software development organization, we simply use a normalized productivity value for
the productivity measure to describe the differences in the capability of developers, as used by
Ngo-The et al. [19]. For example, if a developer d has an average capability for a given module
profile mpf and a role r , then prod(d,r,mpf)=1.0.

In addition to productivity profiles, a developer has slots to support partial allocation, because
s/he may be allocated to multiple modules [7, 20, 21]. A slot is described as slot (d, i, p,k), where
d , i , p, and k represent a developer, a phase, an increment, and a slot number, respectively. Given
these inputs, slot represents a participation rate, which specifies the degree of participation of a
slot. The sum of participation rates of slots in a phase should be maintained at 100%.

3.3. Allocation meta-model

Modules are allocated to the slots of developers in each phase in the allocation procedure. Thus,
allocation is described as allo(d,m, i, p,k), where d , m, i , p, and k represent a developer, a
module, an increment, a phase, and a slot number, respectively. It takes a value of 1 if and only
if d is allocated to m in the kth slot of p in i . Otherwise, it takes 0.

When the allocation is performed for all developers and modules, the estimated duration for a
project can be obtained using productivity profiles, workload, and module profiles. First, given a
set of developers D and a role r which is related to p, the estimated duration of a phase p in
developing a module m in an increment i can be obtained by the following equation:

Duration(m, i, p)

= wload(m, i, p)∑|D|
j=1

∑S(j,i,p)
k=1 allo(D(j),m, i, p,k)×slot (D(j), i, p,k)× prod(D(j),r,mpf)

,

where mpf and S(j, i, p) represent the module profile of m and the number of slots of D(j) in
p of i , respectively.
Then, given a set of phases P , the duration of a module m in an increment i is obtained by

summing up the phase duration as follows:

Duration(m, i)=
|P|∑
j=1

Duration(m, i, P(j)).

Given a set of modules M , the duration of the project in an increment i is calculated by the
following equation:

Duration(i)=Max(Duration(M(1), i), . . . ,Duration(M(n), i)) where n=|M |.
The total duration of a project is obtained by summing up the estimated duration for all

increments.
In the equation for Duration(i), it is assumed that modules are developed in parallel. This is

based on the interview results with experts in the industry that the dependency of modules does
not much influence the sequence of development by establishing interfaces among modules.

The goal of this paper is to provide an optimized human resource allocation for software
projects in the schedule perspective. Thus, we try to minimize the total duration of a project based
on the equations above. However, productivity and workload may not be enough to produce a
feasible allocation because there exist human-related constraints related to software projects. In
the following section, these constraints are explained in detail.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 557

4. HUMAN RESOURCE ALLOCATION CONSTRAINTS IN SOFTWARE PROJECTS

To achieve a reasonable human resource allocation in software projects, characteristics related to
developers need to be considered. As these characteristics affect the efficiency of project execution,
we consider them as allocation constraints in our approach.

We have identified the constraints from two sources: literature and interviews with experts in the
industry. The interviews were performed with three experts in two software development companies
who had more than 10 years of experience in the industry. In the interviews, we examined the
allocation information of real project data with the experts. As the allocation is performed according
to experts’ experience rather than fixed rules, we extracted potential rules based on the project
data, and the experts confirmed that they generally hold in software projects.

The constraints are categorized as individual-level constraints and team-level constraints. Each
constraint is explained below with an illustrative example, which has been made up to compare
different allocation policies regarding the constraint. For simplicity of describing examples in this
section, we assumed that all developers have equal productivity for all module profiles and roles,
unless additionally specified.

4.1. Individual-level constraints

As software development is a human-intensive activity, effort is required to understand tasks. Thus,
it is important to maintain the continuity of allocation in order to minimize the effort needed
to understand the result of the previous development. For this reason, we considered allocation
continuity at the phase level and increment level in this approach.

• Constraint on phase-level continuity

According to the effect of learning curve [3], it is required to allocate developers to tasks with
which they are familiar to increase the efficiency of performing tasks. Development of a module
consists of several development phases, such as requirement analysis, design, implementation, and
testing. If a developer is allocated to different modules in each phase, the developer should spend
a considerable amount of time to understand and analyze the results from previous phases. This
situation may occur when we only focus on minimizing the duration of each phase. We compare
allocation policies regarding phase-level allocation with an example in Table I. Productivity of
developers in this example is described in Table II.

As mentioned in Section 3, the duration for a phase is calculated by dividing the workload
with the sum of productivity of participating developers, and the total duration is decided as the
maximum duration among modules.

Table I. Comparison of allocation policies regarding phase-level continuity.

Allocation 1 Allocation 2

Phases (Workload) Developers Duration Developers Duration

Module 1 Req. analysis (1.5) A 1.0 A 1.00
Design (1.0) A 0.67 B 1.00
Implementation (2.5) A, D 1.0 A, C 0.83
Testing (2.0) A, D 0.8 B, D 1.00
Subtotal 3.47 3.83

Module 2 Req. analysis (1.0) B 1.0 B 1.00
Design (1.2) B 1.2 A 0.80
Implementation (2.0) B, C 0.8 B, C 0.80
Testing (2.5) B, C 1.0 C, D 1.00
Subtotal 4.0 3.60

Total 4.0 3.83

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

558 D. KANG, J. JUNG AND D.-H. BAE

Table II. Productivity matrix for Table I.

Developer Req. analysis Design Implementation Testing

A 1.5 1.5 1.5 1.5
B 1 1 1 1
C — — 1.5 1.5
D — — 1 1

Table III. Comparison of allocation policies regarding increment-level continuity.

Allocation 1 Allocation 2 Allocation 3

Module (Workload) Developers Duration Developers Duration Developers Duration

Inc. 1 Module 1 (4) A,B 1.54 A,B 1.54 A,B 1.54
Module 2 (7) C,D,E,F 1.75 C,D,E,F 1.75 C,D,E,F 1.75
Subtotal 1.75 1.75 1.75

Inc. 2 Module 1 (7) A,B 2.69 A,B,E 1.94 C,D,E,F 1.54
Module 2 (5) C,D,E,F 1.25 C,D,F 1.67 A,B 1.92
Subtotal 2.69 1.94 1.92

Total 4.44 3.69 3.67

In the example, two developers are involved from the beginning, and two additional developers
are allocated from the implementation phase according to the different staffing levels required for
each phase.

In Allocation 1, developers are continuously involved in each module. Thus, the effort required to
understand previous phases is minimized. On the other hand, Allocation 2 is performed regardless
of the module worked on in previous phases. Although the productivity-based calculation indicates
Allocation 2 to have a shorter estimated duration, this type of allocation is discouraged in practice as
it requires effort to understand previous phases. To prevent this situation, we propose the constraint
on phase-level continuity. Given a developer d , a module m, an increment i , this constraint can be
formally described as the following condition:

◦ if allo(d,m, i, Pd(j))=1, then allo(d,m, i, Pd(j−1))=1,
where Pd is the set of phases in which d participates and 1< j≤|Pd |.

In the equation above, allo(d,m, i, p)=1 if there exists any slot k such that allo(d,m, i, p,k)=1.
Else, allo(d,m, i, p)=0. It is also used in describing other constraints below.

• Constraint on increment-level continuity

Incremental software development is gaining wide acceptance as an approach to handling delivering
parts of the software product early [13]. Thus, we consider the characteristics of incremental
development in this approach. Similar to what we explained previously, developers need to be
continuously involved in modules over increments.

However, there could be an allowable exception. As features of a module to be developed
for each increment are determined by business decisions, workload of a module may vary per
increment. In this case, it may be required to allocate some developers of the previous increment
to other modules that require more developers in later increments. We describe this situation in the
following example in Table III and compare the allocation policies to deal with this situation. In
the example, productivity of Developers A and B is set to 1.3, and productivity for other developers
is set to 1.0.

Allocation 1 does not allow for changes between increments. In this case, the efficiency of the
project is reduced because the change in the module workload cannot be addressed in Increment 2.

The result from Allocation 2 is preferable because allocation in Increment 2 is adjusted according
to the change in the workload while preserving the allocation of the previous increment as much

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 559

Table IV. Comparison of allocation policies regarding sharing developers.

Allocation 1 Allocation 2

Module (Workload) Developers Duration Developers Duration

Module 1 (7) A (40%), B (50%), C (100%) 3.64 A (60%), B (60%), E (50%) 3.58
Module 2 (5) A (60%), B (50%) 3.62 A (40%), B (40%), C (40%) 3.78
Module 3 (8) D (30%), E (100%), F (50%) 4.23 D (60%), E (50%), F (60%) 4.10
Module 4 (6) D (70%), F (50%) 3.97 C (60%), D (40%), F (40%) 4.05

Total 4.23 4.10

as possible. Thus, Increment 2 can be performed efficiently with minimal additional effort required
to understand the previous result.

In the case of Allocation 3, allocation is performed to minimize the estimated duration of each
increment and has the shortest estimated duration of the three cases. However, it is impractical to
remove developers of the previous increment and to add new developers simultaneously because
it increases the overhead costs involved in understanding the results of the previous increment. In
addition, it is difficult to transfer knowledge from the previous developers to the new developers.
These can be overhead to the project and may increase the project duration. To prevent this
situation, we propose the constraint on increment-level continuity. Given a set of developers D, a
module m, a set of increments I , and a phase p, this constraint can be more formally described
as follows:

◦ if there exists d1∈D such that allo(d1,m, I (j−1), p)=� and allo(d1,m, I (j), p)=�,
there exists no d2∈D such that allo(d2,m, I (j-1), p)=� and allo(d2,m, I (j), p)=�,
where 1< j≤|I |, �+�=1, and �=0 or 1.

4.2. Team-level constraints

In most software development organizations, there is seldom a one-to-one mapping between
developers and development tasks [7]. It means that software development is performed at a
team level. To deal with characteristics related to team composition, we identified the following
constraints:

• Constraint on sharing developers

Software development is performed by a set of teams. Each team is managed independently by
a supervisor, and the members need to be unified into a working group acting as a unit [4]. In
addition, the communication cost between teams is high [9]. Hence, developers are basically not
shared between teams in practice, except for some tasks such as acceptance testing that need
cooperation.

We describe the situation of team composition in the example in Table IV and compare the
allocation policies for dealing with this situation. In Table IV, a percentage in parentheses represents
the participation rate of a developer. In the example, Modules 1 and 2 are to be developed in
C++ and provide visualization functionality. In other words, Modules 1 and 2 have the same
module profile. On the other hand, Modules 3 and 4 are to be developed in Java and provide
data processing functionality. We assumed that the number of developers is limited, thus some
developers are allocated to two modules by providing two slots for each developer for all phases.
Productivity of developers in this example is described in Table V.

In Allocation 1, Modules 1 and 2 share developers, and one additional developer is involved
according to the workload difference. This situation is acceptable because sharing is limited to
Modules 1 and 2, and the two modules have similar characteristics with the same module profile.
Thus, they can be regarded as one team which develops similar modules. This is also applied to
Modules 3 and 4.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

560 D. KANG, J. JUNG AND D.-H. BAE

Table V. Productivity matrix for Table IV.

Developer C++ and visualization Java and data processing

A 1.3 1.0
B 1.2 1.1
C 0.8 0.8
D 0.9 1.3
E 0.9 0.9
F 1.0 1.2

Table VI. Comparison of allocation policies regarding the number of developers.

Allocation 1 Allocation 2

Module (Workload) Developers Duration Developers Duration

Module 1 (8) A (100%), B (100%) 3.07 A (50%), B (50%) 3.47
C (50%), D (50%)

Module 2 (11) C (100%), D (100%) 3.66 A (50%), B (50%), C (50%) 3.33
E (100%) D (50%), E (100%)

Total 3.66 3.47

In contrast, Developers C and E are shared between the two teams in Allocation 2. In this type of
allocation, team scheduling is harder to manage because each team has to consider developers who
are under the control of other teams. For example, if additional requirements are given, it is harder
to adjust the workload of developers because other teams may need to deal with the unexpected
workload of the shared developers. In addition, commitment problems may occur when each team
requires high commitment from the shared developers. Thus, these can be overhead to the project
and may increase the project duration. To prevent this situation, we propose the constraint on
sharing developers. Given a developer d , an increment i , and a phase p, this constraint is described
as follows:

◦ there exist no modules m1 and m2 such that allo(d,m1, i, p)=1 and allo(d,m2, i, p)=1,
where m1 and m2 are not in the same module group.

• Constraint on the number of developers

As the number of developers increases, the efficiency of development gets lowered according to
the communication cost [5–8]. To prevent this situation, an appropriate number of developers must
be allocated to each module.

Generally, approaches using optimization algorithms can allocate an appropriate number of
developers to each module when one developer is allowed to be allocated to one module only.
However, if we allow allocating a developer to more than one module, some counterexamples can
be shown. Consider the example in Table VI in which productivity of Developers A and B is set
to 1.3 and productivity for other developers is set to 1.0.

Modules have at most three developers in Allocation 1, whereas modules have four to five
developers in Allocation 2. Although Allocation 2 has a shorter estimated duration, as shown in
Table VI, it may not be optimal as it increases the communication cost. Thus, the number of
developers for each module needs be controlled in the human resource allocation procedure. To
prevent the situation in Allocation 2, we propose the constraint on the number of developers. Given
a set of developers D, a module m, an increment i , and a phase p, this constraint is described as
follows:

◦
|D|∑
k=1

allo(D(k),m, i, p)≤ App Num(m, i, p),

where App Num(m, i, p) is the appropriate number of developers for m in p of i .

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 561

Table VII. Comparison of allocation policies regarding novice teams.

Allocation 1 Allocation 2

Team Module (Workload) Developers Duration Developers Duration

Team 1 Module 1 (10) A, C, D 3.70 A, B, C 3.03
Module 2 (5) E, F 3.57 D, E 3.57

Subtotal 3.70 3.57

Team 2 Module 3 (7) B, G 3.50 F, G, H 3.33
Module 4 (5) H, I, J 2.38 I, J 3.57

Subtotal 3.50 3.57

Total 3.70 3.57

The appropriate number of developers for a module is decided according to the project environment.
A guideline for setting the number is explained in Section 5, which describes the implementation
of our allocation approach.

• Constraint on novice teams

A major role of a manager in a software development team is to make developers do the correct
work and get the tasks done in the most efficient and least problematic way [10]. Thus, it is
important to allocate an expert developer to each team to lead the development and guide other
developers. If a team consists of novice developers only, the quality of the product cannot be
guaranteed and the total duration of the project may increase because of a considerable amount
of rework. We describe the situation related to allocating experts in Table VII and compare the
allocation policies to deal with this situation. In this example, Developers A and B are experts and
have a productivity of 1.3. Others are novices and have a productivity of 0.7.

In Allocation 1, each team has one expert who leads the development. In contrast, Team 2 in
Allocation 2 consists of novices only. Although Allocation 2 requires a shorter estimated duration
from the calculation, modules developed by Team 2 may have low quality and cause a considerable
amount of rework. These can be overhead to the project and may increase the project duration.
Thus, we propose the constraint on novice teams to prevent this situation. Given a module group
mg, an increment i , and a phase p, this constraint is described as follows:

◦ Exp Num(mg, i, p)≥1, where Exp Num(mg, i, p) is the number of expert developers allo-
cated to any module of mg in p of i .

For the use of this constraint, our approach additionally manages the rank information of
developers. For simplicity, our approach deals with two levels of ranks: novice and expert. The
details are explained further in the following section.

5. CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION APPROACH

In this section, we describe the constraint-based human resource allocation approach. The entire
procedure is illustrated in Figure 2.

As inputs, developers and modules are used according to the structure proposed in Section 3.
By the constraint on sharing developers, modules are subject to be grouped into module groups
to compose teams, as explained in the previous section. In addition, rank information is given to
developers to handle the constraint on novice teams.

Based on these inputs, our approach optimizes the allocation with the proposed constraints
in the schedule perspective using ASA. As our approach supports incremental development, the
allocation is performed for each increment, and the allocation result from a previous increment is
given to the next increment as input.

The allocation approach in an increment consists of two phases: team allocation and individual
allocation. In the team allocation, developers are grouped as a team by allocating them to a module

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

562 D. KANG, J. JUNG AND D.-H. BAE

Figure 2. Overview of the human resource allocation procedure.

group. In the individual allocation, developers are allocated to modules in a module group for each
development phase. In addition, a developer may be allocated to one or more modules using slots.

We propose the two-phase procedure for the following reasons. First, this two-phase procedure
naturally prevents violation of the constraint on sharing developers, because developers are allocated
fully to each team in team allocation. Thus, no developer can be allocated across teams. Second,
the speed of optimization can be accelerated through this two-phase procedure. In team allocation,
the unit of allocation is a module and a developer, rather than a phase and a slot. Thus, the
convergence speed of allocation can be improved upon by reducing the search space for team
level. Detailed allocation is handled in individual allocation, but the size of the problem is now
smaller than that of the original problem. As this type of the allocation is known as NP-hard [22],
partitioning the problem can improve the speed of optimization.

One of the main difficulties in using human resource allocation approaches lies in the lack
of productivity data. To obtain productivity data, we need to establish a scheme to measure
productivity and accumulate a large dataset for the more accurate evaluation of productivity.
However, productivity data may not be always available, as measurement process is immature in
many organizations [23]. When unavailable, productivity data need to be estimated, but estimation
is prone to bias and is time-consuming as the number of developers increases. Thus, we provide
a guideline for estimating productivity using the COCOMO II model. This is explained in the
following subsection. Then we present the constraint-based optimization method.

5.1. A guideline to estimate productivity

To relieve the difficulty of obtaining productivity data, we propose a guideline to estimate produc-
tivity by using an existing estimation model, COCOMO II [13]. As COCOMO II provides various
factors related to developers’ capabilities in its cost drivers, it can be a valuable tool for estimating
the productivity of developers. A number of studies have used the COCOMO II model for produc-
tivity estimation [24–28], but none has provided individual-level productivity estimation. Thus,
we devised an individual-level productivity estimation guideline using COCOMO II. Basically,
the values of the cost drivers in COCOMO II are supposed to be measured at the team level. In
our study, we extended the use of the cost drivers to individual-level productivity estimation by
assuming that the productivity of a team is proportional to the sum of the productivity of the team
members.

As a developer has different capabilities for roles and types of modules, our guideline provides
productivity estimation according to roles and module profiles based on COCOMO II. At first, we
extract cost drivers related to developers’ productivity from COCOMO II and categorize them into

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 563

Table VIII. Description of productivity-related cost drivers of COCOMO II.

Rating levels Very low Low Nominal High Very high

ACAP Descriptors 15th 35th 55th 75th 90th
percentile percentile percentile percentile percentile

Effort multipliers 1.42 1.19 1.00 0.85 0.71

PCAP Descriptors 15th 35th 55th 75th 90th
percentile percentile percentile percentile percentile

Effort multipliers 1.34 1.15 1.00 0.88 0.76

APEX Descriptors ≤2 months 6 months 1 year 3 years 6 years
Effort multipliers 1.22 1.10 1.00 0.88 0.81

PLEX Descriptors ≤2 months 6 months 1 year 3 years 6 years
Effort multipliers 1.19 1.09 1.00 0.91 0.85

LTEX Descriptors ≤2 months 6 months 1 year 3 years 6 years
Effort multipliers 1.20 1.09 1.00 0.91 0.84

role-related factors and module-related factors. Then, productivity according to roles and modules
can be calculated using the values of these factors. The details of productivity estimation are
described as follows.

5.1.1. Extraction and categorization of productivity-related cost drivers of COCOMO II. For
productivity estimation, we have chosen five cost drivers from the personnel factors of COCOMO
II. Each of them is described as follows [13]:
• Analyst capability (ACAP): This measures analyst capability, considering analysis and design
ability, thoroughness, and the ability to communicate and cooperate. This rating should
consider the capability of analysts, rather than experience, which is rated with APEX, LTEX,
and PLEX.
• Programmer capability (PCAP): This measures programmer capability, considering program-
ming ability, efficiency and thoroughness, and the ability to communicate and cooperate. This
rating should consider the capability of programmers, rather than experience, which is rated
with APEX, LTEX, and PLEX.
• Application experience (APEX): This measures the level of applications experience developing
the software system or subsystem. The ratings are defined in terms of the equivalent level of
experience with this type of application.
• Platform experience (PLEX): This measures the productivity influence of platform experience
by recognizing the importance of understanding the use of more powerful platforms, including
more graphic user interface, database, networking, and distributed middleware capabilities.
• Language and tool experience (LTEX): This measures the level of experience regarding
programming language and computer-aided software engineering (CASE) tools used in the
development.

The values related to productivity for these cost drivers are described in Table VIII. A value
(Effort Multiplier) represents the effect of the cost driver on the effort. For example, if the ACAP
value is low, then the effort is estimated to increase by 19%.

To obtain the productivity for each role and module profile, we categorized the cost drivers
of COCOMO II into two groups: role-related factors and module-related factors. Role-related
factors provide the productivity influence of performing phases, such as design and implementation.
Module-related factors provide the productivity influence according to the developers’ experience
about a specific type of module. The categorization is shown in Table IX.

APEX can be used for all phases as it deals with the experience of an application type and its
effect cannot be divided for each phase. LTEX is also used for all phases as it measures CASE
tool experience for all phases as well as language experience. PLEX affects phases from design
because requirement analysis is not affected much by platforms. ACAP is used for requirement

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

564 D. KANG, J. JUNG AND D.-H. BAE

Table IX. Categorization of COCOMO II personnel factors related to developers’ productivity.

Factors Category Affected phases

ACAP Role Requirement analysis, design
PCAP Role Implementation, testing
APEX Module All phases
PLEX Role/module Design, implementation, testing
LTEX Module All phases

analysis and design phases according to its definition. In the case of PCAP, we assume that PCAP
can be used for the testing phase as well as the implementation phase, as COCOMO II does not
provide the effect of allocating testers and programmers are involved in the testing phase in many
organizations.

When using this productivity estimation guideline, the module-related factors form module
profiles. Thus, application types of APEX, platforms of PLEX, and languages and tools of LTEX
can be the characteristics for describing module profiles.

5.1.2. Calculating productivity for roles and module profiles. According to the categorization of
cost drivers in Table IX, we can calculate developers’ productivity to each role and module profile.
Basically, productivity is calculated from an inverse of the product of related effort multipliers
of the cost drivers because productivity is in inverse proportion to the required effort. This is
described in the following equations:

Given a developer d and a module profile p,

prod(d,Analyst, p)=1/(APEX(d, p)×LTEX(d, p)×ACAP(d)),

prod(d,Designer, p)=1/(APEX(d, p)×LTEX(d, p)×PLEX(d, p)×ACAP(d)),

prod(d,Programmer, p)=1/(APEX(d, p)×LTEX(d, p)×PLEX(d, p)×PCAP(d)),

prod(d,Tester, p)=1/(APEX(d, p)×LTEX(d, p)×PLEX(d, p)×PCAP(d)).

The definition of prod is the same as explained in Section 3. As shown in the equations, values
of module-related factors need to be obtained for each developer by the number of module profiles.
For example, if some modules are supposed to be developed using Java, and other modules are
developed in C++, two sets of data need to be gathered for each developer.

In the equations above, values of role-related factors need to be adjusted because effort multipliers
of COCOMO II drivers are supposed to estimate the influence on all phases. For instance, PCAP
measures the capability of programmers which is related to the implementation and testing phases,
but the PCAP values express the influence of programmers on the entire effort. As PCAP values
are applied only to two roles in the equation, the effect of PCAP is decreased by the percentage
of the implementation and testing phases over the entire effort.

To help in a better understanding of this situation, suppose that the entire development requires
100 man-months and the implementation and testing phases require a 50% effort in the entire
development. In estimating the productivity of developers of PCAP value low, if we use the
original value of PCAP, then it would be 0.87 from dividing 1 by 1.15. In this case, the total
duration is calculated to be 107.5 from (100×50%÷0.87+100×(1−50%)). However, this result
conflicts with the calculation using the definition of PCAP because the total duration with low
PCAP is calculated to be 115 by multiplying 100 with 1.15.

Thus, values of these factors need to be adjusted to maintain their effect on the entire develop-
ment by considering effort distribution of phases related to the roles. Given a role-related factor
R, this is described in the following equation:

AdjustedValue(R)= originalValue(R)−(1−∑
related phase distribution(R))∑

related phase distribution(R)
.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 565

In the equation, AdjustedValue(R) is a corrected value of a role-related factor R.
Related phase distribution(R) represents the percentage of effort taken by phases related to R
over the entire effort.

Using the equation above, PCAP values were adjusted from (Very Low 1.34, Low 1.15, Nominal
1.0, High 0.88, Very High 0.76) to (Very Low 1.68, Low 1.30, Nominal 1.0, High 0.76, Very High
0.52) in the previous example. In this case, the total estimated effort was maintained the same: 115
man-months from the calculation (100×50%×1.30+100×(1−50%)). As shown in the example,
we can obtain the influence of role-related cost drivers in estimating individual productivity while
preserving their influence on all phases using the proposed equations.

5.2. Constraint-based optimization using ASA

We propose the two-phase procedure to optimize scheduling of human resource allocation using
ASA while preserving the constraints mentioned above.

There are two styles to deal with constraints using SA or ASA. The first allows perturbation
of solutions only in the feasible solution space. In this case, we can obtain feasible solutions
all the time. However, it makes the perturbing procedure more complex and takes more time in
perturbation as the new solution is generated by considering all constraints. Moreover, this can be
used for hard constraints only, as this removes the possibility of violating constraints.

The other style allows infeasible solutions in perturbation and uses some methods to filter
these out. In this case, solutions can be generated in a relatively short time, and the possibility of
staying in a local optimum can be reduced. Therefore, many studies have allowed searching in the
infeasible solution space and have offered penalties when constraints are violated [17].

In human resource allocation of software projects, violation of the constraints causes addi-
tional development overhead, rather than prohibition of development. Thus, one may sacrifice the
constraints to some extent for reducing the estimated duration. With this in mind, our approach
allows some violations of the constraints in perturbation and gives penalties in the cost function
when the constraints are violated.

We devised penalty functions from discussions with experts. As experts do not use those penalty
functions in practice, we have tried to extract reasonable penalty functions based on the constraints
and confirmed with the experts that they are acceptable in practice.

To apply SA or ASA to real-world problems, we need to adjust its generic functions to the specific
problem domain. This section explains the design of three main functions—initialize, perturb, and
cost functions—and how constraints are applied in the SA-based optimization approach for team
allocation and individual allocation.

5.2.1. Team allocation. In the team allocation, developers are grouped into teams by allocating
them to each module group, which is a unit of team allocation. To group developers in a team, all
slots of a developer are allocated to one module group. This needs to be reflected in the perturb
function. For the cost function, we need to revise the definition of cost according to the module
groups. In addition, the penalty for violating constraints is to be considered in the cost function.

In the following, we describe the design of these two functions as well as the initialize function.

• Initialize function for team allocation

The initialize function decides the parameters of ASA algorithm and an initial solution. Param-
eters such as the number of loops, the cooling factor, and the initial temperature are usually
determined by repeating execution of the algorithm. When these parameters are set to high values,
the quality of solutions improves, but generating solutions takes more time. Thus, we need to
choose reasonable values for the parameters from the initial experiments.

An initial solution should be carefully decided upon because it largely affects the quality of
solutions and convergence time [29]. Thus, we devised a greedy heuristic for deciding the initial
allocation. Basically, the heuristic sorts the developers and module groups according to average
productivity and workload, respectively, and allocates the developer with the highest productivity

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

566 D. KANG, J. JUNG AND D.-H. BAE

to the module group with the highest workload to minimize the total cost. In addition, it is guided
to conform to the constraints in the allocation procedure.

The heuristic consists of two parts to deal with the constraint on increment-level continuity. At
first, we present the allocation heuristic for the first increment in the team allocation. It consists
of three steps:

◦ Step 1: Repeat allocating the expert with the highest productivity to the module group with
the highest workload until every module group has an expert.
◦ Step 2: Repeat allocating the remaining expert with the highest productivity to the module
group of the longest duration.
◦ Step 3: Repeat allocating the remaining novice with the highest productivity to the module
group of the longest duration.

According to the constraint on novice teams, experts are allocated first. In Step 1, each module
group is guaranteed to have an expert. In our approach, it is assumed that the number of experts
is equal to or higher than the number of module groups to satisfy the constraint on novice teams.
After allocating one expert to each module group, the remaining experts are allocated according
to the duration of module groups in Step 2. In each allocation of a remaining expert, the duration
for each module group is updated, and the total cost is reduced by allocating more developers to
the module group with the longest duration. Finally, novice developers are allocated in the same
way as in Step 2.

Next, the allocation heuristic for the second or later increments in the team allocation consists
of six steps:

◦ Step 1: Repeat allocating developers to module groups to which they were allocated in the
previous increment.
◦ Step 2: Repeat allocating the remaining expert with the highest productivity to the module
group with the highest workload which has no expert yet. This is repeated until every module
group has an expert or there is no expert available.
◦ Step 3: If there is any module group which does not have any expert yet, move one expert
from a module group which already has more than one expert to the module group having
no expert. This is repeated until every module group has at least one expert.
◦ Step 4: If there are remaining experts after conducting Step 2, repeat allocating the remaining
expert with the highest productivity to the module group of the longest duration.
◦ Step 5: Repeat allocating the remaining novice with the highest productivity to the module
group of the longest duration.
◦ Step 6: Improve the cost of allocation by adjusting allocated developers.

According to the constraint on increment-level continuity, allocation in the previous increment is
reflected in Step 1. There may exist new module groups introduced in this increment, or there may
exist developers allocated to the module groups which are completed in the previous increment.
Those developers and module groups are handled from Steps 2 to 5. After allocating all the
developers, the duration of a module group may be considerably different from that of other module
groups according to the workload difference of module groups over increments. For example,
suppose that a module group has high workload in Increment 1 and low workload in Increment 2.
Then, a large number of developers will be allocated to the module group in Increment 1 and also
Increment 2 by Step 1. Thus, the algorithm tries to make the distribution of duration of module
groups as uniform as possible to reduce the entire cost in Step 6. For this purpose, the module
group with the minimal effect of removing a developer sends one developer to the module group
with the longest duration, unless that increases the total cost. Step 6 is repeated until no further
improvement is possible.

• Perturb function for team allocation

For team allocation, two kinds of perturbing operations are used here with equal probability:
exchange and move.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 567

Exchange operation exchanges developers between module groups. In the procedure, two devel-
opers are chosen randomly. If module groups of the two developers are different, then the developers
are exchanged between the two module groups.

Move operation sends a developer to another module group. At first, a developer is chosen
randomly. Then a new module group to be allocated is chosen randomly. If the module group
which currently has the developer and the new module group are different, then the developer is
allocated to the new module group.

• Cost function for team allocation

The cost function for team allocation is defined as the maximum duration among all module
groups. The duration of a module group is estimated as the sum of duration of all the modules in
the module group and penalty from violating the constraints. Given a set of module groups MG
and an increment i , the following equations describe the cost function in the team allocation:

Cost(i)=Max(Duration(MG(1), i), . . . ,Duration(MG(n), i)) where n=|MG|,

Duration(MG(j), i)=
|M |∑
k=1

Duration(M(k), i)+Penalty(MG(j), i) where M(k)∈MG(j).

Duration of a module is the same as defined in Section 3, and penalty of a module group is
decided as the sum of penalty for the constraints applied in the team allocation.

When calculating the duration of a module group, we assume that all slots of the developers
in the module group are allocated to each module. In other words, we handle the workload of all
modules in the module group as a whole for each phase.

For team allocation, the constraints on increment-level continuity and novice teams are consid-
ered. The constraint on phase-level continuity is not violated in this phase because each developer
is fully allocated to all modules in a module group, and the constraint on sharing developers is
handled by two-level optimization itself. In the case of the constraint on the number of developers,
it is naturally conformed to by the team allocation because the appropriate number of developers
is assigned to each module group by optimization. In other words, if too many developers are
allocated to one module group, the estimated duration for other module groups may increase
because it implies that less developers are allocated to other module groups.

Note that the team allocation result is not the final result but the input of individual allocation.
Thus, the penalty in team allocation is not used for the final results, as they are considered again
in detail in individual allocation.

The usages of penalty for the two constraints are explained as follows:

◦ Constraint on increment-level continuity

When this constraint is violated in a module groupmg in an increment i , a penalty is given in propor-
tion to the duration of the module group and the minimum number of added (#O f AddedDevs)
and removed (#O f RemovedDevs) developers. This is described as

Increment Penalty(mg, i)=Duration(mg, i)×Increment Penalty Constant

×Min(#O f RemovedDevs(mg, i),#O f AddedDevs(mg, i))

#O f Developers(mg, i)
.

The Increment Penalty Constant is determined according to the organizational policy or the
project environment.

◦ Constraint on novice teams

When this constraint is violated in a module group mg in an increment i , a penalty is given in
proportion to the estimated duration for the module group. This is described in the following
equation:

Novice Penalty(mg, i)=Duration(mg, i)×Novice Penalty Constant.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

568 D. KANG, J. JUNG AND D.-H. BAE

The Novice Penalty Constant is determined according to the organizational policy or the project
environment. Note that the equation above is calculated only if violation occurs. Otherwise, it is
set to zero. The same rule is applied to other constraints.

5.2.2. Individual allocation. Using the allocation result from the team-level allocation, developers
of a team are allocated to modules in the module group for each development phase. Thus,
individual allocation is conducted for each module group. In this allocation, developers may be
allocated to multiple modules using slots, and participation rates for slots should be controlled for
optimization. In addition, the constraints on phase-level continuity and the number of developers
need to be considered. This section describes the design of perturb and cost functions supporting
these characteristics of the individual allocation as well as the initialize function.

• Initialize function for the individual allocation

In deciding an initial solution for the individual allocation, most parts of the heuristic algorithm
is the same as that of the team allocation. The main difference is in dealing with the constraint on
novice teams. As this constraint is applied in team allocation only, our approach does not consider
ranks of developers in individual allocation. In addition, if the number of developers in a team is
not enough to allocate each of them to only one module, each developer is allocated to multiple
modules using slots, and the equal participation rates are given to slots for each phase.

• Perturb function for individual allocation

For individual allocation, three kinds of perturbing operations are used here with equal probability:
exchange, move, and change participation rate. Exchange and move operations in individual
allocation are similar to those in team allocation, but they are applied to slots of developers. Thus,
these operations additionally choose a phase and slots in the phase randomly as well as developers
and modules in the individual allocation.

In addition to exchange and move operations, we additionally devised the change participation
rate operation for the individual allocation. This operation chooses two slots of a developer in a
phase, then adjusts the participation rates between the slots randomly while maintaining the sum
of participation rates to 100%. For example, if a developer has two slots in a phase which have
50% participation rate each, then they can be adjusted to 60 and 40%, or 30 and 70%.

If the participation rate for a slot is too small, it would not be practical. For example, if a
developer is allocated to a module with a participation rate of 1%, it may only cause communication
overhead. Therefore, our approach sets the lower bound of participation rates to prevent this
situation. This value needs to be determined according to the organizational policy or the project
environment.

• Cost function for individual allocation

In individual allocation, the cost function for a module group is refined as the maximum duration
among all modules. The duration of a module is estimated as the sum of duration and penalty
from violating the constraints for all phases. Given a module group MG, an increment i , and a
set of phases P , the following equations describe the cost function in the individual allocation:

Cost(i)=Max(Cost(MG(1), i), . . . ,Cost(MG(n), i)) where n=|MG|,
Cost(MG(j), i)=Max(Duration(M(1), i), . . . ,Duration(M(m), i))

where M(1), . . . ,M(m)∈MG(j) and m=|MG(j)|,

Duration(M(k), i)=
|P|∑
l=1

(Duration(M(k), i, P(l))+Penalty(M(k), i, P(l))).

Duration for a phase is the same as defined in Section 3. Penalty of a phase in developing a
module is decided as the sum of penalty for the constraints applied in individual allocation.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 569

For individual allocation, all constraints except the constraint on sharing developers are reflected
in the cost function. The constraints applied in individual allocation are described as follows:

◦ Constraint on phase-level continuity

When this constraint is violated in a phase of developing a module, a penalty is given in
proportion to the ratio of violating developers over the number of allocated developers. Given a
module m, an increment i , and a phase p, this is described as follows:

Phase Penalty(m, i, p)=Duration(m, i, p)×Phase Penalty Constant

×#O f V iolatingDevelopers(m, i, p)

#O f Developers(m, i, p)
.

The Phase Penalty Constant is determined according to the organizational policy or the project
environment.

◦ Constraint on increment-level continuity

In applying this constraint in individual allocation, we considered the situation when some devel-
opers are moved to other teams in the second or later increments in team-level allocation. In this
case, other team members may help in the development of the module that the moved developers
were involved in. This is not allowed in the original form of the constraint as developers are added
and removed simultaneously. However, this could be acceptable in practice since team members
work together in developing modules in a module group which have characteristics similar to
each other. Thus, our approach allows moving developers within a team, while preventing moving
developers to other teams and adding developers from outside the team simultaneously. Given a
module m, an increment i , and a phase p, this constraint is applied as follows:

Increment Penalty(m, i, p)

=Duration(m, i, p)×Increment Penalty Constant

×Min(#O f RemovedDevs OT (m, i, p),#O f AddedDevs OT (m, i, p))

#O f Developers(m, i, p)
.

#O f RemovedDevs OT and #O f AddedDevs OT represent the numbers of moved devel-
opers to other teams and added developers from other teams, respectively.

The Increment Penalty Constant is the same as described for team allocation.

◦ Constraint on the number of developers

To determine whether this constraint is violated, the appropriate number of developers first needs
to be determined for each module. In our approach, it is determined in proportion to the ratio of
the workload of the module over the workload of the module group. As the individual allocation
deals with phase level, the appropriate number of developers for a module is decided for each
phase. Given a module m, a module group mg which m belongs to, an increment i , and a phase
p, this is described as follows:

App Num(m, i, p)=
⌈
(1+buffer)× wload(m, i, p)

wload(mg, i, p)
×#of Developers(mg, i, p)

⌉
.

In the equation, App Num represents the appropriate number of developers.
We introduced an adjustment factor buffer in the equation because the number of developers

for a phase could be increased according to the effect of cooperation. For instance, if there are 10
developers and 10 modules with identical workload, a module should only be developed by one
developer without buffer, and cooperation is prohibited. The buffer value is determined according
to the project environment. We suggest that if the number of developers is much larger than the

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

570 D. KANG, J. JUNG AND D.-H. BAE

number of modules, one should set the buffer to zero or a sufficiently small value close to zero
because it is then possible to maintain independent developers for each module.

Based on the appropriate number for a module, we can determine whether this constraint is
violated. If the number of allocated developers to a module is larger than the appropriate number, a
penalty is given to the module. The penalty is in proportion to the number of excessive developers.
Given a module m, an increment i , and a phase p, this is described as follows:

Dev Num Penalty(m, i, p)=Duration(m, i, p)×Dev Num Penalty Constant

×(#of Developers(m, i, p)−App Num(m, i, p)).

The equation above is triggered only if violation occurs. Thus, there is no situation where
the penalty has a negative value. The Dev Num Penalty Constant is determined according to the
organizational policy or the project environment.

◦ Constraint on novice teams

As this constraint is applied at the team level, the penalty value is calculated if and only if it
is violated in team allocation. Given a module m, an increment i , and a phase p, in the case of
violated team allocation, the penalty value is obtained as follows:

Novice Penalty(m, i, p)=Duration(m, i, p)×Novice Penalty Constant.

The Novice Penalty Constant is the same as described for the team allocation.

6. CASE STUDY

We performed two kinds of experiments in this case study. The first experiment was conducted to
show the effect of different penalty settings. If the penalty constants of the constraints are set to
zero, the constraints are to be violated without any restriction. This may show the effect of other
approaches which do not consider the constraints introduced in this paper. If penalty is set very
high, we can observe any possible conflict between the constraints.

The second experiment was conducted to validate the effectiveness of our approach in the
schedule optimization. For the comparison, we used two benchmarks: the actual duration of a
project and the result from the heuristic used in the initialize functions.

6.1. Data collection

For this case study, the project data from the development of a government information system (over
10 000 function points) were used. The system was developed using the incremental development
method, with increments by two. The system consists of 24 modules; 17 modules are assigned to
the first increment while 20 modules are assigned to the second increment. It means that some
modules are completed within an increment, whereas others are incrementally developed. The
modules are grouped into nine module groups by considering the functional relationships, size of
modules, and the actual allocation results in the project. The average number of developers was
39 (29 novices and 10 experts). Java or C++ was used for each module depending on the module
characteristics. Each developer participated in all the development phases of this project.

To gather productivity data, we carried out a survey of the five COCOMO II cost drivers,
and information about 22 of the 39 developers (16 novices and 6 experts) was retrieved. For the
experiments, we randomly replicated the collected information for the remaining 17 developers.

To obtain workload from the effort for each phase, we normalized the effort by the average
productivity of developers. As the effort is estimated by considering developers’ productivity, the
effect of productivity can be applied in a duplicated manner without normalization.

In addition, we gathered the information about planned duration and actual duration of the
project to compare them with the result from our approach in the second experiment.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 571

6.2. Experimental environment

The parameters used in the experiments are described as follows:

• Penalty constants and other parameters: These values are set after discussion with the experts
who participated in the project.

◦ Phase Penalty Constant: a maximum value, as the violation was not permitted due to the
organizational policy
◦ Increment Penalty Constant: 50%
◦ Dev Num Penalty Constant: 10%
◦ Novice Penalty Constant: a maximum value, as the violation was not permitted due to the
organizational policy
◦ The number of slots for each developer: 2 for each phase
◦ The lower bound of a participation rate: 20%
◦ Buffer in determining the appropriate number of developers: 30%

• Parameters of ASA: These values are set after conducting initial experiments.

◦ T (the initial temperature): 100
◦ L(the number of internal loops): 500
◦ M(the external loop control parameter): 8
◦ N (the internal loop control parameter): 2000
◦ �(the cooling factor): 0.95.

The algorithm was implemented in Java, and all computations were made on a Pentium IV
2.66GHz computer.

6.3. Experiment 1: effect on different penalty settings for the constraints

6.3.1. Experimental design. In this experiment, we conducted the allocations with three different
penalty settings: expert-given penalty, no penalty, and maximum penalty. First, we performed
allocation using the penalty constants given by experts. This can produce the feasible allocation
result regarding the project environment.

In the allocation with no penalty, all penalty constants are set to zero. In this case, the allocation
result is produced without considering the overhead of violating constraints because no penalty is
given when the constraints are violated. In addition, we removed the consideration of the constraints
in the initialize functions. Thus, the result of this case represents the allocation approaches which
do not consider the human-related constraints proposed in this paper.

In the allocation with maximum penalty, all penalty constants are set to a maximum value. In
this case, the allocation is guided to conform to the constraints in a very strict manner. Thus, we
can observe the effect when the constraints are used as hard constraints which must be conformed
to. In addition, we can figure out whether there are conflicts between constraints. If any, the result
may become infeasible since the maximum penalty drastically increases the cost.

We obtained 30 allocation results for each penalty setting to prevent extreme case representation.

6.3.2. Results. The average of 30 allocations for each penalty setting is summarized in Table X.
The table shows the estimated duration in months and the percentage of violation for each constraint
from the individual allocation, which produces the final result. In the table, P, I, D, and N in the
second row represent constraints on phase-level continuity, increment-level continuity, the number
of developers, and novice teams, respectively. As previously mentioned, the constraint on sharing
developers is handled by the two-phase approach itself; thus, it is not shown in the table.

For the constraint on phase-level continuity, the percentages are calculated for developers (i.e.
the average percentage of violating phases of all developers). For the constraint on novice teams,
the percentages are calculated at the module group level (i.e. the average percentage of violating
module groups of all module groups) as they are applied in team allocation. For other constraints,
the percentages are calculated at the module level (i.e. the average percentage of violating phases
of all modules).

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

572 D. KANG, J. JUNG AND D.-H. BAE

Table X. Comparison of various penalty settings.

Violation (%)

Condition Inc. Duration (Mth) P I D N

No Inc.1 11.51 28.83 0.0 17.10 21.85
penalty Inc.2 10.66 50.67 61.46 28.25 45.19

Expert Inc.1 11.86 0.0 0.0 0.79 0.0
penalty Inc.2 11.48 0.0 15.83 3.67 0.0

Maximum Inc.1 12.05 0.0 0.0 0.0 0.0
penalty Inc.2 11.75 0.0 0.0 0.0 0.0

P: phase-level continuity/I: increment-level continuity.
D: the number of developers/N: novice teams.

In Table X, violation of the increment-level continuity constraint is zero for the first increment
since the constraint is only applied to the second or later increments.

In the result, the allocations with no penalty have the highest degree of violation for all
constraints. Violations occurred more frequently in the second increment as the project has more
modules in this increment. In the schedule perspective, the estimated duration was minimized in
comparison with those of other conditions because of no restrictions on the constraints. Although
the allocations with no penalty show the best schedule among the three conditions, it is hard to
use them in real project environments due to high violation rates for the constraints. In order to
illustrate this point, we applied the penalty constants given by experts to the allocations with the
no penalty condition. As the expert-given penalty constants represent the effect of the constraints
on the schedule of the project used in this case study, the possible effect of giving no penalty
can be shown by applying the expert-given penalty constants. As a result, the allocations were
infeasible in that they violated the constraints on phase-level continuity and novice teams which
were given maximum penalty. When we relaxed these constraints by setting the penalty constants
to 50%, which was the same as Increment Penalty Constant, the schedule for each increment
was increased to 15.5 and 19.45 months on average, respectively. This implies that allocation
approaches may produce impractical allocations if they focus on minimization of the total duration
using productivity-based calculations only.

When penalty constants are given by experts, it is observed that some constraints were sacrificed
for optimization, but the violations occurred less frequently than the allocations with no penalty.
This is quite obvious, because the penalty plays a role to guide the allocations to conform to the
constraints. In the schedule perspective, the allocations have longer estimated duration than the
allocations with no penalty. The difference is bigger in the second increment because the constraint
on increment-level continuity has restrained the diversity of possible allocations. However, since
the allocations were produced by considering the constraints, we can conclude that the allocations
in this condition are more practical than those with no penalty.

In the case that a maximum value is given to all penalty constants, the allocations strictly
conform to all the constraints. This implies that the constraints do not conflict with each other and
the constraints can be used all together as hard constraints. In addition, the required duration is
slightly longer than that of the second condition, but the difference is not very significant: increase
by 0.46 months out of 23.34 months. Thus, when it is difficult to set appropriate penalty constants,
we may use the constraints as hard constraints as the schedule of these allocations is reasonable
in comparison to those with other conditions.

6.4. Experiment 2: effectiveness of the approach in a schedule perspective

6.4.1. Experimental design. In this experiment, we compared the result from the allocations with
the expert-given penalty constants in the first experiment with the actual duration of the project
and the result from the heuristic used in the initialize functions.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 573

Table XI. Comparison of the result from our approach, the result from
the heuristic, and the actual duration.

Our approach

Increment Actual (Mth) Average (Mth) Best (Mth) Heuristic (Mth)

Increment 1 15 11.86 11.46 22.30
Increment 2 13 11.48 10.92 18.37
Total 28 23.34 22.38 40.67

The actual duration is used as a benchmark to judge the effectiveness of our approach in the
real-world environment. The actual duration of the project was the same as the planned duration
in the project.

The heuristic of the initialize function is used in this experiment as another benchmark for
the comparison. As the allocation in planning was performed according to the project manager’s
personal experience, and the planned schedule was forced to be kept, an additional benchmark
is needed to show the performance of the optimization. By comparing the allocation result from
our approach with that from this heuristic, we can observe the degree of improvement in our
approach. In addition, as the heuristic may represent the possible behavior of project managers,
we can anticipate the performance of manual allocation using the heuristic result.

6.4.2. Results. Results are shown in Table XI. Duration for each case is described in months.
In the best case scenario of our approach, it is shown that the duration can be reduced by 5.62

months (out of 28 months) compared to the actual duration. For further analysis, we conducted a
one-sample t-test to show that our approach consistently produced a more efficient schedule than
the actual duration. The null hypothesis is that the average estimated duration of our approach
is longer than the actual duration. At 1% level of significance, the null hypothesis is rejected as
p=0.00. In comparison with the result from the heuristic, it is observed that our approach has
improved the schedule of the heuristic by about 45%. Thus, we can conclude that our approach is
effective in reducing the project duration.

In the case of the heuristic, there was much difference in the estimated duration among modules,
and this caused long duration. This shows the necessity of the optimization method in the allocation
problems.

• Discussion

As the resource allocation problem has high computational complexity, it is important to generate
efficient solutions in reasonable time. One of the goals in devising the two-phase procedure is to
reduce convergence time by partitioning the problem into team and individual allocations. Thus, we
conducted an additional experiment to compare the efficiency of computation. In the experiment,
whole modules were categorized into one group; thus only individual allocation was conducted. As
only one team was considered, the constraints on increment-level continuity, sharing developers,
and novice teams were not applied. While it took 4.36 min on average to generate an allocation
result in the original setting, 16.38 min were spent on average in the allocation with one module
group. This result shows the efficiency of the two-phase procedure of this approach. The average
schedule from the allocation with one module group was not better than that from the original
setting: 23.83 for the two increments.

6.5. Threats to validity

One issue that needs to be addressed for this case study is the replication of developer information
in data collection. As productivity information about all developers is not available, productivity
information collected for 22 developers is randomly duplicated for the remaining 17 developers.
Generally, the degree of optimization increases with an increasing number of developer profiles
because the diversity of solutions in the optimization is increased. Thus, we suggest that our

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

574 D. KANG, J. JUNG AND D.-H. BAE

approach might have produced better solutions in the case study if we could have obtained the
productivity of all the developers.

Another issue concerns the practical feasibility of the proposed solution. As additional constraints
can be found in practice, there could be some argument about the practical usefulness of the
proposed solution. We therefore discussed the practicality of the solutions with the experts partic-
ipating in the project and are in agreement that the proposed solutions are practical.

7. RELATED WORK

Resource allocation is a traditional research area in operations research and management science.
Many optimization techniques have been proposed, such as parallel machine scheduling, flow shop
scheduling, and job shop scheduling, to solve specific resource allocation problems [30]. Among
these techniques, unrelated parallel machine scheduling is the most similar to human resource
allocation in software projects because it can handle developers performing tasks in parallel, with
the productivity of each developer varying according to the task characteristics. Unrelated parallel
machine scheduling is known as NP-hard [22], and a number of approximation approaches and
heuristics have been developed [31–36]. However, directly applying these approaches to software
projects is not feasible because these approaches mainly deal with machine allocation and do not
take human-related characteristics into consideration.

In the field of software engineering, a number of approaches have been proposed to address
human resource allocation in software projects. Chang et al. [20] proposed optimizing human
resource allocation in software projects using genetic algorithm in order to minimize the total time
span, labor costs, and overtime with any given software project task network and developers’ skill
set. This approach does not, however, consider the different productivity levels of developers. In
addition, this approach may produce the case in which a developer’s time is fragmented over too
many tasks in allocation, which decreases the efficiency of project execution [7]. Their recent work
[5] improved the project scheduling by breaking down development tasks into smaller time-sliced
activities and allocating developers according to the time-line. This enables a more fine-grained
optimization of allocation. In addition, productivity according to experience and the effect of
learning in the projects are considered in the approach.

Alba and Chicano [21] proposed a similar approach to [20]. This approach optimizes the duration
and cost of a software project using genetic algorithm, and considers the working overtime of
developers and the skills required to perform tasks of a project. They performed various trade-off
experiments by devising an instance generator. Similar to [20], the limitation of this approach is
that it is not appropriate to deal with the different productivity levels of developers.

Duggan et al. [6] proposed optimizing the estimated duration and quality of software in the
implementation phase of software development by using different productivity factors for each
developer according to the required skills of each package, which is a unit of allocation. In addition,
this approach supports various options for package precedence, full team utilization, and cross-
communication overhead. In spite of these advantages, this approach also has some limitations.
First, it does not cover the entire software development life cycle. This approach may not be
appropriate if developers of previous phases are continuously involved in the implementation
phase because problems related to the continuity of allocation may arise. Second, this method
may produce a solution in which a developer’s time is fragmented over too many packages in
allocation, which increases the required effort.

Ngo-The et al. [19] provided an optimized human resource allocation approach for release
planning. Their approach optimizes the allocation with the two-phase method which combines
the strength of integer linear programming and genetic algorithm, hence the produced solutions
are close to the optimal solution. It also considers the different productivity levels of developers
according to the phases in allocation. However, this approach does not support collaboration as it
assumes that a task is performed by one developer only, with each developer working on one task
at a time. As it is frequently necessary to concurrently allocate developers to multiple tasks and to

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 575

assign more than one individual to work cooperatively on a single task [7], this assumption may
lower the method’s practical usefulness. In addition, the method does not support the different
productivity levels of developers with respect to feature characteristics, which is needed to obtain
efficient solutions because developers’ productivity may vary according to the required skills of
each feature.

Barreto et al. [8] proposed a resource optimization approach which provides various trade-
off analyses for the cost, team size, and completion time by considering the salaries, skills, and
availability of developers. Similar to [19], it does not support collaboration among developers. In
addition, difference in productivity levels according to module characteristics is not considered in
this approach.

Xiao et al. [37] provided an approach to optimize multiple projects. It scores each project
based on the cost and schedule and obtains the optimized allocation for all projects using genetic
algorithm. This approach also does not support the different productivity levels as per the skills
required for each of the projects.

One of the common limitations of these approaches is the lack of consideration of human-related
characteristics in allocation. Some approaches deal with effect of learning [5] and communication
overhead from the number of developers in a team [5, 6, 8], but other characteristics such as
continuity of allocation, communication between different teams, and the role of team leaders
are not considered in the approaches above. Another limitation is that these approaches are not
validated with real project data, which makes demonstrating the effectiveness of optimization
difficult.

There are other approaches for dealing with the human resource allocation problem of software
development. Fenton et al. used Bayesian networks to help in resource decisions in software
projects [38]. Padberg explained the influence of human resource allocation strategies with a system
dynamics model [39], and proposed a probabilistic scheduling model for software projects [40].
Lee et al. suggested a resource management method using simulation modeling for multi-project
resource allocation [41]. Antoniol et al. proposed an approach for estimating the staffing level
for maintenance projects, using queuing theory [42]. For testing resource allocation, a number of
approaches have been proposed to optimize the staffing level in the testing phase [43–47]. These
approaches do not deal with allocation at the individual level, hence they are not appropriate to
determine who performs which tasks.

8. CONCLUSION

Human resource allocation is one of the crucial factors for success of a software project as relevant
allocation of human resources helps to maximize the efficiency of software development. However,
human resource allocation in software projects is very complex and depends on the characteristics
of developers. As these characteristics affect the efficiency of project execution, we consider
them as constraints of human resource allocation in our approach. We identified individual-level
constraints and team-level constraints based on the literature and interviews with experts. With
these constraints, our approach optimized the scheduling of human resource allocation through
a two-phase procedure. We showed that our approach can produce more realistic and efficient
allocation results.

In addition, we developed a guideline to estimate the productivity of developers based on
COCOMO II. This guideline supports various factors with respect to performing roles and module
profiles. As productivity data are hard to obtain and manage, especially for low-maturity organiza-
tions, our guideline can provide help in using human resource allocation approaches for software
projects.

Using real project data, we validated that our approach can effectively reduce the violation of
constraints and produce efficient allocation results. Also, it was shown that our two-phase approach
is efficient in reducing the time required in the optimization. The practicality of the allocation
result was confirmed by the experts participating in the project.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

576 D. KANG, J. JUNG AND D.-H. BAE

Our approach provides the following advantages for software projects: first, more practical
human resource allocation can be provided since we apply software project constraints. Second,
the time to market of software projects can be accelerated through the optimization. Third, efficient
allocation can be obtained in a relatively short time with the two-phase approach.

More constraints related to human resource allocation of software projects can be applied
depending on organization-specific project environments. Hence, in the future research, we will
identify additional constraints and apply these to our allocation approach.

ACKNOWLEDGEMENTS

This research was partially supported by the Defense Acquisition Program Administration and the Agency
for Defense Development under the contract.

REFERENCES

1. Tsai H, Moskowitz H, Lee L. Human resource selection for software development projects using Taguchi’s
parameter design. European Journal of Operational Research 2003; 151:167–180.

2. Ibaraki T, Katoh N. Resource Allocation Problems: Algorithmic Approaches (Foundations of Computing). The
MIT Press: Cambridge, MA, 1988.

3. Jones C. Assessment and Control of Software Risks. Yourdon Press: Upper Saddle River, NJ, U.S.A., 1994.
4. Humphrey WS. Introduction to the Team Software Process. Addison-Wesley: Reading, MA, 1999.
5. Chang CK, Jiang H, Di Y, Zhu D, Ge Y. Time-line based model for software project scheduling with genetic

algorithms. Information and Software Technology 2008; 50:1142–1154.
6. Duggan J, Byrne J, Lyons GJ. A task allocation optimizer for software construction. IEEE Software 2004;

21(3):76–82.
7. Smith RK, Hale JE, Parrish AS. An empirical study using task assignment patterns to improve the accuracy of

software effort estimation. IEEE Transactions on Software Engineering 2001; 27(3):264–271.
8. Barreto A, Barrros MO, Werner CML. Staffing a software project: A constraint satisfaction and optimization-based

approach. Computers and Operations Research 2008; 35:3073–3089.
9. Begel A, Nagappan N. Coordination in large-scale software teams. Proceedings of the 2009 ICSE Workshop on

Cooperative and Human Aspects on Software Engineering, Vancouver, Canada, 2009; 1–7.
10. Stellman A, Greene J. Applied Software Project Management. O’Reilly Media Inc.: Sebastopol, CA, 2006.
11. Yoon BS, Cho GY. Acceleration of simulated annealing and its application for virtual path management. Journal

of the Korean Operations Research and Management Science Society 1996; 21(2):125–140.
12. Kirkpatrick S, Gelatt Jr CD, Vecchi M. Optimization by simulated annealing. Science 1983; 220:671–690.
13. Bohem BW, Abts C, Brown AW, Chulani S, Clark BK, Horowitz E, Madachy R, Reifer D, Steece B. Software

Cost Estimation with COCOMO II. Prentice Hall PTR: Englewood Cliffs, NJ, 2000.
14. Laarhoven P, Aarts E. Simulated Annealing: Theory and Applications. Kluwer Academic Publishers: Dordrecht,

1989.
15. Bertsimas D, Tsitsiklis J. Simulated annealing. Statistical Science 1993; 8(1):10–15.
16. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A. Equations of state calculations by fast computing machines.

Journal of Chemical Physics 1953; 21(6):1087–1092.
17. Aarts E, Korst J. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial

Optimization and Neural Computing. Wiley: New York, 1989.
18. Jiménez A, Rı́os-Insua S, Mateos A. Interactive simulated annealing for solving imprecise discrete multiattribute

problems under risk. Pesquisa Operacional 2002; 22(2):265–280.
19. Ngo-The A, Ruhe G. Optimized resource allocation for software release planning. IEEE Transactions on Software

Engineering 2009; 35(1):109–123.
20. Chang CK, Christensen MJ, Chang T. Genetic algorithms for project management. Annals of Software Engineering

2001; 11:107–139.
21. Alba B, Chicano F. Software project management with GAs. Information Science 2007; 177:2380–2401.
22. Hochbaum DS. Approximation Algorithms for NP-hard Problems. PWS Publishing Company: Boston, MA,

U.S.A., 1997.
23. Berry M, Jeffery R. An instrument for assessing software measurement programs. Empirical Software Engineering

2000; 5:183–200.
24. COPROMO. Available at: http://csse.usc.edu/csse/research/COPROMO/.
25. De Rore L, Snoeck M, Poels G, Dedene G. Cocomo II as productivity measurement: A case study at KBC. FBE

Research Report KBI 0829, 2008; 1–66.
26. De Rore L, Snoeck M, Poels G, Dedene G. Deducing software process improvement areas from a COCOMO

II-based productivity measurement. Proceedings of the Fifth Software Measurement European Forum, Milan,
Italy, 2008; 163–174.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

CONSTRAINT-BASED HUMAN RESOURCE ALLOCATION 577

27. Yun SJ, Simmons DB. Continuous productivity assessment and effort prediction based on Bayesian analysis.
Proceedings of the 28th Annual International Computer Software and Applications Conference, Hong Kong,
2004; 44–49.

28. Choi K, Bae DH. Dynamic project performance estimation by combining static estimation models with system
dynamics. Information and Software Technology 2009; 51:162–172.

29. Johnson DS, Aragon CR, Mcgeoch LA, Schevon C. Optimization by simulated annealing: An experimental
evaluation; Part I. Graph partitioning. Operations Research 1989; 37:865–892.

30. Baker KR. Introduction to Sequencing and Scheduling. Wiley: New York, 1974.
31. Lenstra JK. Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming

1990; 46:259–271.
32. Kim D, Kim K, Jang W, Chen FF. Unrelated parallel machine scheduling with setup times using simulated

annealing. Robotics and Computer Integrated Manufacturing 2002; 18:223–231.
33. Glass CA, Potts CN, Shade P. Unrelated parallel machine scheduling using local search. Mathematical and

Computer Modeling 1994; 20(2):41–52.
34. Lawler EL, Labetoulle J. On preemptive scheduling of unrelated parallel processors by linear programming.

Journal of the ACM 1978; 25(4):612–619.
35. Herrmann J, Proth JM, Sauer N. Heuristics for unrelated machine scheduling with precedence constraints.

European Journal of Operational Research 1997; 102:528–537.
36. Anagnostopoulos GC. A simulated annealing algorithm for the unrelated parallel machine scheduling problem.

Proceedings of the Fifth Biannual World Automation Congress, Orlando, FL, 2002; 115–120.
37. Xiao J, Wang Q, Li M, Yang Q, Xie L. Value-based multiple software projects scheduling with genetic algorithm.

Proceedings of the International Conference on Software Process, Vancouver, Canada, 2009; 50–62.
38. Fenton N, Marsh W, Neil M, Cates P, Forey S, Tailor M. Making resource decisions for software projects.

Proceedings of the 26th International Conference on Software Engineering, Edinburgh, U.K., 2004; 397–406.
39. Padberg F. A study on optimal scheduling for software projects. Software Process Improvement and Practice

2006; 11:77–91.
40. Padberg F. Scheduling software projects to minimize the development time and cost with a given staff. Proceedings

of the Eighth Asia-Pacific Software Engineering Conference, Macau, China, 2001; 187–194.
41. Lee B, Miller J. Multi-project management in software engineering using simulation modelling. Software Quality

Journal 2004; 12:59–82.
42. Antoniol G, Cimitile A, Di Lucca GA, Di Penta M. Assessing staffing needs for a software maintenance project

through queuing simulation. IEEE Transactions on Software Engineering 2004; 30(1):43–58.
43. Ohtera H, Yamada S. Optimal allocation & control problems for software-testing resources. IEEE Transactions

on Reliability 1990; 39(2):171–176.
44. Dai YS, Xie M, Poh KL, Yang B. Optimal testing-resource allocation with genetic algorithm for modular software

systems. Journal of Systems and Software 2003; 66(1):47–55.
45. Yamada ST, Nishiwaki IM. Optimal allocation policies for testing-resource based on a software reliability growth

model. Mathematical and Computer Modelling 1995; 22(10-12):295–301.
46. Hou RH, Kuo SY, Chang YP. Needed resources for software module test using the hyper-geometric software

reliability growth model. IEEE Transactions on Reliability 1996; 45(4):541–549.
47. Leung YW. Dynamic resource-allocation for software-module testing. Journal of Systems and Software 1997;

37(2):129–139.

Copyright q 2011 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:551–577
DOI: 10.1002/spe

