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Bayesian Estimation With Imprecise Likelihoods:
Random Set Approach

Branko Ristic

Abstract—In many practical applications of statistical signal
processing, the likelihood functions are only partially known.
The measurement model in this case is affected by two sources of
uncertainty: stochastic uncertainty and imprecision. Following
the framework of random set theory [1], the paper presents the
optimal Bayesian estimator for this problem. The resulting Bayes
estimator in general has no analytic closed form solution, but can
be approximated, for example, using the Monte Carlo method. A
numerical example is included to illustrate the theory.

Index Terms—Bayesian estimation, Bayesian robustness,
random set theory.

I. INTRODUCTION

B AYESIAN estimation heavily depends on models: the
model of the prior density and the model of the likeli-

hood function [2]. In many practical applications, however,
the specification of a precise mathematical model is difficult
or impossible. For example, in cellular networks, due to the
multipath and shadowing, the path-loss exponent is known
only to be an interval value [3]. The likelihood function of the
received signal strength depends on the path-loss exponent and
as a consequence, its model is imprecise.
Bayesian estimation using imprecise likelihoods have at-

tracted some interest recently. Following Walley [4], some
authors represent imprecise likelihoods, and probability densi-
ties in general, by convex sets of probability densities [5], [6].
Bayesian inference using convex sets of probability densities,
however, is quite involved and still under development. An
alternative approach to Bayesian estimation using imprecise
likelihoods has been recently proposed by Mahler [1] in the
framework of random set theory. This is a very simple and
elegant approach which we further develop and demonstrate in
this paper.

II. PROBLEM DESCRIPTION

Let be the state space and an unknown
random parameter vector which we want to estimate. Prior
knowledge of , before any measurement is processed, is
represented by prior probability density function (PDF) , that
is, initially .
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Suppose independent measurements of are available for
estimation. The measurement space is , while the mea-
surements are denoted , for . The assump-
tion is that each measurement is related to the (hidden) pa-
rameter vector as follows:

(1)

where
• is a known nonlinear mapping ;
• is a known parameter vector of the transforma-
tion ;

• is additive measurement noise of known PDF .
This is a standard problem, for which we can specify imme-
diately the precise likelihood function as follows

.
The problemwe are interested in the paper is when the param-

eter of transformation , that is , is known only partially. Let
us assume that all we know is that , where
denotes an interval (connected subset) of . Following (1) we
can attempt to write in this case

(2)

where are known intervals. The problem
is, however, that is not a function. This is because

defines one-to-many mapping, that is a single value
of the argument, , maps into a subset of the measurement
space . Moreover, this subset is infinite. For this reason (2)
is meaningless.
In a similar manner, one could attempt to express the likeli-

hood function in this case as: ,
bearing in mind that this construct does not have a precise math-
ematical interpretation. One can at best think of it as a represen-
tation of an infinite number of precise likelihoods . We
refer to as to the imprecise likelihood function1.
The imprecise likelihood function expresses the uncertainty

due to two sources [8]: randomness (or stochastic uncertainty)
is the consequence of the measurement error ; imprecision is
the consequence of the partial knowledge of the transformation
parameter, i.e., . There are many practical situations
where model (2) is appropriate; an illustrative example will be
studied in Section IV.
Let the stacked measurement vector be denoted

. Formally, in the Bayesian framework the
problem is to compute the posterior PDF , given

1The term imprecision here is borrowed from the artificial intelligence jargon
[7].
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the prior and the measurement vector modeled
according to the imprecise model (2).
Two remarks are in order here. First, the described problem is

related, but different from the one considered in [9], where the
measurements were imprecise (intervals on ), but the likeli-
hood was precise. Second, vector is considered as a nuisance
parameter and is not estimated.

III. THE SOLUTION IN THE FRAMEWORK
OF RANDOM SET THEORY

In order to simplify notation, let us temporarily drop the sub-
script . The key idea of the proposed approach ([1, Chs. 4–7])
is to realize that the measurement set resulting from the one-to-
many mapping

(3)

can be modeled by a random closed set which takes values
as closed intervals of , i.e., .
A random set is a random element whose value is a set. As

such it is a generalization of the familiar concept of a random
variable. The probability laws of random sets on can be spec-
ified via distribution functions of random sets. This has been
done rigorously, see for example [10], [11]. Loosely speaking,
a random closed set is a mapping from the sample space
to some collection of closed subsets of , which is -
measurable, where and are fields on and , respec-
tively. If is the probability measure on , then the probability
law of is the probability measure:

(4)

for .
Going back to the random closed set which represents

the model , the first question is how to state that
a particular (point) measurement matches the model.
Mahler ([1, Sec. 6.3]) takes the approach that a measurement
matches the model if it does not contradict it, i.e., if .
This translates to the following definition of the measurement
likelihood function (referred to as the generalized likelihood):

(5)

(6)

Note that the generalized likelihood does not integrate to 1. For
the case of additive noise as in (3), the generalized likelihood
(6) can be expressed as follows:

(7)

where

(8)

(9)

define the limits of an dimensional interval on which con-
tains all points for . The integral in (7) is
dimensional, which is in contrast to the standard Bayesian anal-
ysis, where marginalization over nuisance parameters involves
dimensional integration.

Next we work out analytically the generalized likeli-
hood for the important case of a Gaussian additive noise
. Let denote a Gaussian PDF with mean
and covariance . Its cumulative distribution function is

. Assuming that mea-
surement noise in (6) is zero-mean white Gaussian with
covariance , i.e., , expression (7) sim-
plifies to

(10)

(11)

(12)

(13)

Note that the generalized likelihood in (13) effectively
defines a fuzzy membership function on . As the measure-
ment noise is reduced (i.e., when measurement uncertainty is
dominated by imprecision rather than randomness), the fuzzy
membership function (13) approaches the indicator function.
This can be seen by considering the case with small covariance

in (13): the cumulative distribution can then be ap-
proximated as , where is the Heav-
iside function, and from (13) we have

(14)

where if and zero otherwise, is the indicator
function.
The generalized likelihood function provides a useful rela-

tionship with the Dempster–Shafer theory [12]: the generalized
likelihood function (6) represents the plausibility function on
singletons.
Fig. 1 illustrates the generalized likelihood for one-

dimensional measurement . The limits of integration
are and . Three values of variance are
considered: 4, 1, and 0.0001. For a very small value of , the
generalized likelihood in accordance with (14) approaches the
indicator function .
The optimal Bayes estimator for imprecise likelihoods in now

defined as ([1], (5.6))

(15)

where is the joint generalized likelihood function.
Assuming that measurements are conditionally independent,

. All quantities of interest related to
can be computed from the posterior PDF .
The posterior PDF in general cannot be found in

the closed-form. However, Monte Carlo methods can be applied
easily and with a reasonable computational expense [13]. This
will be illustrated next.

IV. EXAMPLE: LOCALIZATION USING RSS

Received signal strength (RSS) is often used for localization
of energy emitting sources [14]. Since the emitting power of the
source is in general unknown, the parameter vector for localiza-
tion in the two-dimensional Cartesian coordinate system can be
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Fig. 1. Illustration of the generalized likelihood function (13) for and
additive zero-mean Gaussian measurement noise with variance .

specified as , where is the
source position and is the received power (in dB) at a
short reference distance from the source. A measurement
of RSS (in dB) at known location can be modeled as [3]:

(16)

for , where

is the distance between the source and sensor is the prop-
agation loss from the source to sensor , and is zero-mean
white Gaussian noise with a known standard deviation
dB. The propagation loss in free space is 2. In real world,
however, due to multipath and shadowing [3], [14], is only
partially known: experimentally it has been found that it can be
anywhere in the interval [2, 4].
The scenario we consider is shown in Fig. 2(a): there are

sensors placed on a circle centred at (50, 50), with
a radius 50 (sensors 1, 2, and 3 are labeled; anticlockwise la-
beling continued for the remaining sensors). The (unknown)
true source parameters are and , with
a (known) reference distance . The (unknown) propa-
gation loss factors are set to for sensors and

for sensors . The prior PDF used in estima-
tion is , where

is the uniform density with support .
The Bayes density estimator (15) was implemented using

a rather simplistic variant of the importance sampling method
[15], [16]. The first step is to draw a random sample from the
prior PDF: for . An importance weight

is then associated with each sample .
This is carried out by first computing the unnormalized weights
using (13): . Then the weights are nor-
malized to obtain: . The final step con-
sists of resampling times from the random mea-
sure to obtain equally weighted sam-
ples which approximate the

Fig. 2. (a) Estimation setup: 12 sensors, marked by , placed on a circle; the
source location (marked by asterisk) is (30, 60); dashed lines mark the limits of
the prior in the space; the cloud of dots represents the random sample
approximation of the posterior PDF in the space, ;
(b) The histogram of random samples approximating the posterior PDF

; the prior PDF is shown by a dashed line; the true value
is .

posterior PDF . The result is shown in Fig. 2(a) in
space and Fig. 2(b) in space, using sam-

ples.
Few observations can be made from this simple example.

First, the Bayes estimator has reduced the uncertainty (the sup-
port of the posterior PDF is much smaller than the support of the
prior). Second, the true parameter is included in the support of
the posterior PDF. Third, the point Bayes estimates, such as the
mean or the maximum of the posterior PDF, in general would
be biased.
The Bayes optimality of the density estimator (15) guarantees

that the resulting posterior is the most concentrated PDF whose
support contains the true . Next we verify numerically that the
support of the density estimator (15) indeed contains the true .
For this we need the concept of a credible set ([2], p. 140).

V. CREDIBLE SET AND INCLUSION

A credible set associated with the posterior PDF
is defined via , where is the
probability. A credible set at represents the support of

. Inclusion criterion for the posterior PDF is de-
fined as: if true parameter vector , and zero
otherwise. Next we want to establish via Monte Carlo simula-
tions the percentage of time the inclusion criterion is satisfied
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Fig. 3. Percentage of 1000 Monte Carlo runs in which the inclusion was satis-
fied, shown as a function of the number of samples .

for the proposed Bayes estimator. For this we use the simula-
tion setup described above, with one difference: the propagation
loss factors are now random in each run and for each sensor:

. The kernel density estimation
(KDE) method [17] is used to establish if the inclusion is satis-
fied in each run. Assuming the posterior PDF is represented by
equally weighted samples ,
the KDE approximation of the posterior PDF is [17]:

(17)

where is the kernel and is the kernel width param-
eter. For convenience is adopted to be a Gaussian PDF
with zero-mean and covariance matrix . The optimal fixed
bandwidth (under the assumption that the underlying PDF is
Gaussian) for the Gaussian kernel is [17]:

, where . The covari-
ance is estimated as a sample covariance. Using the KDE ap-
proximation (17) it would be possible to estimate the boundary
of the credible set . The computation involved, how-
ever, would be prohibitively expensive, and we adopt a simpler
approximation of the inclusion criterion as follows:

(18)

where is the true value of the parameter vector and was
defined in (17). The value of in (18) effec-
tively approximates the boundary of the credible set at .
Fig. 3 shows the percentage of 1000 Monte Carlo runs in

which the inclusion was satisfied , as a function of
the number of samples . Observe that as is increased, and
therefore theMonte Carlo approximation of the posterior PDF is
more accurate, the inclusion percentage grows. For a sufficiently
good approximation, i.e., for above a certain threshold, the
inclusion is guaranteed (i.e., satisfied 100%).

VI. SUMMARY

In many practical applications of statistical signal processing,
the likelihood functions are only partially known. Adopting the
random set theoretical approach developed by Mahler [1], the
paper presented the optimal Bayesian estimator for this case.
The key role played the generalized likelihood function, which
captured two sources of uncertainty, the stochastic uncertainty
and imprecision. The optimal Bayesian estimator for partially
known likelihoods in general cannot be found in the closed-
form, however Monte Carlo methods can be applied easily and
with a reasonable computational expense. The optimal Bayesian
estimator for imprecise likelihoods was illustrated by a numer-
ical example where the problem was to localize an emitting
source in the presence of partially known propagation losses.
It has been verified by Monte Carlo simulations that the support
of an accurate approximation of the posterior PDF is guaranteed
to contain the true value of the parameter vector.
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