
A Project Human Resource Allocation Method Based

on Software Architecture and Social Network

Lixin Zhou

School of Software and Microelectronics, Peking University, 102600

Beijing, China

Lxzhou@uiuc.edu

Abstract —— The allocation of human resource is one of the

most essential aspects in a project management. A situation with

employees working on tasks that they are not well-suited for can

lead to a significant loss of time and resources in addition to a

sub-par product or service. The simple difference between a

good and bad task assignment for employees can easily result in

major differences in a company's bottom line.

In this paper, we present a project human resource

allocation method based on software architecture and social

network in a project organization. An algorithm for matching

employees and tasks is put forward which are based on task

attributes, software architecture, employee skills and employee

preference and social network relations. As a result, we have

created a new human resource allocation method in a project

management.

Keywords – Human resource, work package, WBS, software

architecture, interpersonal relation.

1. INTRODUCTION

The human element is one of the most important but

frequently overlooked aspects of managing IT projects. A

project’s success directly relates to the quality of talent

employed, and, more importantly, the manner in which

management deploys talent on the project.[1] Some

implemented solutions often ignore employee preference of

which tasks they work on which inhibits employee

productivity [2]. Those that do take employee preference into

consideration are non-deterministic, thus making it more

difficult to evaluate the business process in an efficient

manner. [3]

In the process of task assignment, we don’t consider the

relations between tasks. In a software development project,

software architecture has impacts on organizational structure.

As long ago as 1968 the close relationship between an

architecture and the organization that produced it was a

subject of comment Conway [4] makes the point as follows

 Take any two nodes x and y of the system Either they

are joined by a branch or they are not That is either they

communicate with each other in some way meaningful to the

operation of the system or they do not If there is a branch

then the two not necessarily distinct design groups X and Y

which designed the two nodes must have negotiated and

agreed upon an interface specification to permit

communication between the two corresponding nodes of the

design organization If on the other hand there is no branch

between x and y, then the subsystems do not communicate

with each other, there was nothing for the two corresponding

design groups to negotiate and therefore there is no branch

between X and Y.

Conway was describing how to discern organizational

structure at least in terms of communication paths from

system structure but the relationship between organizational

and system structures is bidirectional and necessarily so

The interpersonal relations also have impacts on the task

assignment.

We have taken into consideration the satisfaction and

ownership of the problem by the employee and also the

attributes of the tasks for which they are most qualified for

and to distribute the work load as evenly as logistically

possible. In this method, we also consider the relation

between tasks and the interpersonal relations. The existing

applied approaches to this problem involve a manager

assigning tasks without considering the relation between tasks

978-1-4244-2108-4/08/$25.00 © 2008 IEEE 1

effectively and the relations between employees.

2.THE ALGORITHM PRINCIPLES

2.1 Work Breakdown Structure (WBS)

The WBS is a deliverable-oriented hierarchical

decomposition of the work to be executed by the project team,

to accomplish the project objectives and create the required

deliverables. The WBS organizes and defines the total scope

of the project. The WBS subdivides the project work into

smaller, more manageable pieces of work, with each

descending level of the WBS representing an increasingly

detailed definition of the project work. The planned work

contained within the lowest-level WBS components, which

are called work packages, can be scheduled, cost estimated,

monitored, and controlled. [5]

In this paper, work packages, the lowest-level WBS

components are defined as follows:

 Work package ::= work package id + name + Work

package skill requirements.

 Work package Skill Requirements ::= {analysis, OO

Design, C++, Java, UML, ……}

2.2 Software Architecture

The software architecture of a program or computing

system is the structure or structures of the system, which

comprise software components, the externally visible

properties of those components, and the relationships between

them.[6]

The impact of an architecture on the development of

organizational structure is clear. Once an architecture for the

system under construction has been agreed on teams are

allocated to work on the major modules and a work

breakdown structure is created that reflects those teams Each

team then creates its own internal work practices or a

system-wide set of practices is adopted For large systems

the teams may belong to different subcontractors The work

practices may include items such as bulletin boards and Web

pages for communication, naming conventions for files and

the configuration control system All of these may be different

from group to group again especially for large

systems Furthermore quality assurance and testing

procedures are set up for each group and each group needs to

establish liaisons and coordinate with the other groups

Thus the teams within an organization work on

modules Within the team there needs to be high

bandwidth communications Much information in the form of

detailed design decisions is being constantly shared Between

teams low-bandwidth communications are sufficient and in

fact crucial (Fred Brooks's contention is that the overhead of

inter-team communication, if not carefully managed will

swamp a project This of course assumes that the system has

been designed with appropriate separation of concerns.

Highly complex systems result when these design criteria

are not met In fact team structure and controlling team

interactions often turn out to be important factors affecting a

large project's success If interactions between the teams need

to be complex either the interactions among the elements they

are creating are needlessly complex or the requirements for

those elements were not sufficiently “hardened” before

development commenced In this case there is a need for

high-bandwidth connections between teams not just within

teams requiring substantial negotiations and often rework of

elements and their interfaces Like software systems teams

should strive for loose coupling and high cohesion.[6]

So, if two work packages have relations according to the

software architecture in a project, we define the relation

between the two work packages using a Work Package

Relation Weight,

Work Package Relation Weight ::= {wpwij | 0 < wpwij < 1,

wpwij is a decimal and ∃relations

between work package i and work

package j according to the software

architecture in a project }

2.3 Social Network

There are many kinds of interpersonal relations between

employees, such as classmate relation, neighbor relation and

townee relation. We define the relation between the two

employees using an Employee Relation Weight,

Employee Relation Weight ::= {erwij | 0 < erwij < 1, erwij is a

decimal and ∃relations

978-1-4244-2108-4/08/$25.00 © 2008 IEEE 2

between employee i and

employee j }

2.4. The n-body problem[1]

One reason creating a good team dynamic is so difficult

is that the number of working relationships grows as a

polynomial function of n, the number of people on the team. I

call this the n-body problem. Figure 1 depicts this problem.

In fact, you can easily prove (by induction) that for n

people on a team, there are n(n 1)/2 possible working

relationships, and any of them can sour. Further, the quality of

a working relationship is not transitive. For example, Fred

might work well with Jane, and Jane might work well with

Bob, but this does not necessarily imply that Fred and Bob

work well together. Finally, complicating these interactions

are cultural differences that you must consider when building

and managing teams, planning projects, and dealing with

difficult personal situations, according to MacDonald. Taken

another way, it is unwise to ignore interpersonal interactions

and view staff as simply “headcount.” As noted software

developer Fred Brooks postulated in what is now known as

Brooks’ law, adding manpower to a late software project just

makes it later . [7]

Fig.1 The number of working relationships grows as a

function of the number of team members.

3. A PROJECT HUMAN RESOURCE ALGORITHM

An employee is defined as follows :

 An employee ::= employee skills + preference + potential

 Employee skills ::= {analysis, OO Design, C++, Java,

UML, ……}

 Preference ::= decimal

 Potential :: = decimal

The steps of the algorithm presented in this paper are as

follows,

Step1. Assign a work package to an employee who has the

skills the work package requires and calculate the skill match

score,

 SkillMatchScore =

 →• →
illsEmployeeSkquirementseSkillWorkPackag Re

Step2. Add employee preference and potential impacts to the

score,

 WorkEmployeeMatchScore =

SkillMatchScore * preference * potential

Then, a system level score is calculated as,

SystemScore = WorkEmployeeMatchScore (for all

work packages and employees)

Step3. Add software architecture impacts to the system score,

 If two work packages have relations and the two work

package have been assigned to the same development group,

then,

 SystemScore = SystemScore – WorkPackageWeight/2

 If two work packages have relations and the two work

package have been assigned to two different development

group, then,

 SystemScore = SystemScore – WorkPackageWeight

Step4. Add interpersonal relations impacts to the system

score,

978-1-4244-2108-4/08/$25.00 © 2008 IEEE 3

 If two employees have interpersonal relations and the two

employees are in the same development group, then,

 SystemScore = SystemScore + EmployeeRelationWeight

 If two employees have interpersonal relations and the two

employees are in two different development groups, then,

 SystemScore = SystemScore – EmployeeRelationWeight

Step5. Repeat Recursively from step1 to step4 for another

work package assignment solution.

Finally we will obtain different solutions with different

system scores. We will choose the highest score work package

assignment solution.

4. EXAMPLE

An E-business system has three subsystems, one is the

product information management subsystem (PIMS), one is

the custom information management subsystem (CIMS),

another is the order information management subsystem

(OIMS). In the process of development, a Client-Server

software architecture style is adopted. So the E-business

system has been divided into 6 modules : product information

management subsystem client, custom information

management subsystem client, order information management

subsystem client, product information management subsystem

server, custom information management subsystem server and

order information management subsystem server. The skills

which modules require are as shown in Table 1.The relations

between one module and other modules are shown in table 2.

Table 1

Work packages (Modules) Skill requirements

PIMS client HTML, JSP, Javascript

CIMS client

OIMS client

PIMS server Java, Database, Tomcat

CIMS server

OIMS server

Table 2

 PIMS

client

CIMS

client

OIMS

client

PIMS

server

CIMS

server

OIMS

server

PIMS

client

 0.3 0.3 1

CIMS

client

0.3 0.3 1

OIMS

client

0.3 0.3 1

PIMS

server

1 0.3 0.3

CIMS

server

 1 0.3 0.3

OIMS

server

 1 0.3 0.3

Work Package Relation Weight

The available employees are shown in Table 3.

Table 3

Employee

Name

Skills preference potential

Jack HTML, JSP,

Javascript, ASP

1 1

Michael HTML, JSP,

Javascript

1 1

Richard HTML, JSP,

Javascript

0.1 0.5

Mary HTML, JSP,

Javascript, ASP

1 1

Robert Java, Database,

Tomcat

1 1

Ben Java, Database,

Tomcat, C++

1 1

Allen Java, Database,

Tomcat

1 1

The interpersonal relations (Employee Relation Weight)

between employees are shown in Table 4.

978-1-4244-2108-4/08/$25.00 © 2008 IEEE 4

Table 4

 Jack Michael Mary Robert Ben Allen

Jack 1 0.5

Michael 1

Mary 0.8

Robert 0.5 0.5

Ben 0.8

Allen 0.5

Employee Relation Weight

There are three solutions given in this paper which are

shown in Table 5, Table 6, Table 7.

Table 5 , Solution 1

Employee

Name

Work package Team Score

Michael PIMS client Team 1

10.95

Richard CIMS client

Mary OIMS client

Robert PIMS server Team 2

Ben CIMS server

Allen OIMS server

Table 6, Solution 2

Employee

Name

Work package Team Score

Jack PIMS client Team 1

14.3

Michael CIMS client

Mary OIMS client

Robert PIMS server Team 2

Ben CIMS server

Allen OIMS server

Table 7, Solution 3

Employee Name Work package Team Score

Jack PIMS client Team 1

14.5

Robert PIMS server

Mary OIMS client Team 2

Ben OIMS server

Michael CIMS client Team 3

Allen CIMS server

In Solution 1, although Richard has the skills which

assigned work package requires, he has lower preference and

potential, so the Solution 1 obtains the lowest score. Solution

2 and Solution 3 have assigned the work packages on the

same set of employees, but they have different organization

structures. The organizational structure of Solution 3 is better

than the organizational structure of Solution 2. So, we can

select Solution 3. In our software development project

management experience, a project adopted the Solution 2

failed, and another project adopted the Solution 3 succeeded.

5. CONCLUSION

In this paper, we present a project human resource

allocation method based on software architecture and social

network in a project organization. An algorithm for matching

employees and tasks is put forward which are based on task

attributes, software architecture, employee skills and

employee preference and social network relations.

An example has been presented in this paper. The

example proves the method is useful and effective.

Reference

[1]Philip Laplante. Remember the human element in IT

project management. IT Professional, Volume 5, Issue 1,

Jan/Feb 2003 Page(s): 46 – 50.

[2]Ivancevich, John M. “High and Low Task Stimulation

Jobs: A Causal Analysis of Performance-Satisfaction

Relationships.” Academy of Management Journal, Vol. 22,

No. 2, p. 206-222, 1979.

[3]Lagesse, B. A Game-Theoretical Model for Task

Assignment in Project Management. Management of

Innovation and Technology, 2006 IEEE International

Conference on Volume 2, Issue , June 2006 Page(s):678 –

680.

[4]Conway, M. “How Do Committees Invent ?” Datamation

14(4), 1968.

[5]PMI.PMBOK, Third Edition.

[6]Bass, Len; Paul Clements, Rick Kazman (2003). Software

Architecture In Practice, Second Edition. Boston:

978-1-4244-2108-4/08/$25.00 © 2008 IEEE 5

Addison-Wesley, p. 21-24. ISBN 0-321-15495-9.

[7] Frederick P. Brooks, The Mythical Man-Month,

Addison-Wesley, 1975.

978-1-4244-2108-4/08/$25.00 © 2008 IEEE 6

