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a b s t r a c t 

The Internet of Things (IoT) is heavily affecting our daily lives in many domains, ranging from tiny wear- 

able devices to large industrial systems. Consequently, a wide variety of IoT applications have been devel- 

oped and deployed using different IoT frameworks. An IoT framework is a set of guiding rules, protocols, 

and standards which simplify the implementation of IoT applications. The success of these applications 

mainly depends on the ecosystem characteristics of the IoT framework, with the emphasis on the security 

mechanisms employed in it, where issues related to security and privacy are pivotal. In this paper, we sur- 

vey the security of the main IoT frameworks, a total of 8 frameworks are considered. For each framework, 

we clarify the proposed architecture, the essentials of developing third-party smart apps, the compati- 

ble hardware, and the security features. Comparing security architectures shows that the same standards 

used for securing communications, whereas different methodologies followed for providing other security 

properties. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The Internet of Things (IoT) plays a remarkable role in all as-

pects of our daily lives. It covers many fields including healthcare,

automobiles, entertainments, industrial appliances, sports, homes,

etc. The pervasiveness of IoT eases some everyday activities, en-

riches the way people interact with the environment and sur-

roundings, and augments our social interactions with other peo-

ple and objects. This holistic vision, however, raises also some con-

cerns, like which level of security the IoT could provide? and how

it offers and protects the privacy of its users? 

Developing applications for the IoT could be a challenging task

due to several reasons; (i) the high complexity of distributed com-

puting, (ii) the lack of general guidelines or frameworks that han-

dle low level communication and simplify high level implementa-

tion, (iii) multiple programming languages, and (iv) various com-

munication protocols. It involves developers to manage the in-

frastructure and handle both software and hardware layers along

with preserving all functional and non-functional software require-

ments. This complexity has led to a quick evolution in terms of in-

troducing IoT programming frameworks that handle the aforemen-

tioned challenges. 
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Very recently, several IoT frameworks have been launched by

he major shareholders in the IoT domain and by the research

ommunity in order to support and make it easy to develop, de-

loy and maintain IoT applications. Each player built his approach

epending on his vision towards the IoT world [1] . In this survey,

e compare the properties of a subset of IoT frameworks, targeting

n particular their security features. The selected set of IoT plat-

orms 1 includes: AWS IoT from Amazon, ARM Bed from ARM and

ther partners, Azure IoT Suite from Microsoft, Brillo/Weave from

oogle, Calvin from Ericsson, HomeKit from Apple, Kura from Eclipse ,

nd SmartThings from Samsung . 

We selected the above frameworks based on the following cri-

eria: (i) the reputation of the vendors in the software and elec-

ronics industries, (ii) the support of rapid application development

nd the number of applications on the store, (iii) the coverage and

sage of the framework, and it’ s popularity in the IoT market. 

The objectives of this survey are manifold: 

• Giving a picture of the current state of the art IoT platforms and

identifying the trends of current designs of such platforms. 
• Providing a high level comparison between the different archi-

tectures of the various frameworks. 
• Focusing on the models designed and approaches developed for

ensuring security and privacy in these frameworks. 
1 In this paper, the terms Framework and Platform are used interchangeably. 
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Fig. 1. A high level system model of IoT. 
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• Illustrating the pros and cons of each framework in terms of

fulfilling the security requirements and meeting the standard

guidelines. 
• Exploring the design flaws and opening the door for more in

depth security analysis against potential threats. 

The remainder of this paper is structured as follows:

ection 2 describes the general concept of the IoT framework. Re-

ated works are presented in Section 3 . Section 4 is the backbone

f this paper which provides a horizontal overview of the various

oT frameworks and focuses on the related security features. A dis-

ussion is provided in Section 5 . Finally, Section 6 concludes this

tudy. 

. Background 

The very rapid growth of Internet-connected devices, ranging

rom very simple sensors to highly complex cloud servers, shapes

he Internet of Things , where Things , in this context, refers to a

ide variety of objects (e.g. smart bulbs, smart locks, IP cameras,

hermostats, electronic appliances, alarm clocks, vending machines,

nd more). The resemblance between all IoT objects is the ability

o connect to the Internet and exchange data. The network connec-

ivity feature allows controlling objects remotely across the exist-

ng network infrastructure, resulting in more integration with the

eal world and less human intervention. The IoT transforms these

bjects from being classical to smart by exploiting its underlying

echnologies such as pervasive computing, communication capabil-

ties, Internet protocols, and applications. Protocols are required in

rder to identify the spoken language of the IoT devices in terms of

he format of exchanged messages, and select the correct bound-

ries that comply with the various functionality of each device. Ap-

lications determine levels of granularity and specialty of the IoT

evice and how big are the data generated for analytics purposes.

hey also indicate the general scope of the IoT framework covering

he context of the applied domain. 

The concept of IoT framework entails identifying a structure

hich coordinates and controls processes being conducted by the

arious IoT elements. This structure is a set of rules, protocols

nd regulations that organize the way of processing data and ex-

hange messages between all involved parties (e.g. embedded de-

ices, cloud, end-users). Also, it should support the high level im-

lementation of IoT applications and hide the complexity of infras-

ructure protocols. There are several approaches that can be fol-

owed to build an IoT framework depending on the requirements

f the target business [2] . 

In this survey, we are targeting IoT frameworks based on the

ublic cloud approach, as they are the most commonly used and

idely available in the IoT market. The main building blocks of any

loud-based IoT framework are the physical objects and the pro-

ocols. Physical objects include: (i) smart devices such as sensors,

ctuators, etc., (ii) servers act as a cloud-backend or hubs/gateways

or routing, storing, and accessing various pieces of data, and (iii)

nd-users represented by the applications they use to access data

nd interact with IoT devices. Protocols run on different layers and

rovide end-to-end communication. To the best of our knowledge,

here is no a standard IoT architecture yet. For simplicity, we are

onsidering the basic one which is a 3-layer architecture [3] com-

osed of Application, Network , and Perception layers. The Perception

ayer belongs to the physical devices that identify and sense ana-

og data and then digitize it for transportation purposes. Infras-

ructure protocols such as ZigBee [4] , Z-Wave [5] , Bluetooth Low

nergy (BLE) [6] , WiFi, and LTE-A [7] run in the Network layer. The

pplication layer is the interface for end-users to access data and

alk to their IoT devices. It supports standard protocols such as Hy-

er Text Transfer Protocol (HTTP) [8] , Constrained Application Protocol
CoAP) [9] , Message Queue Telemetry Transport (MQTT) [10] , Exten-

ible Messaging and Presence Protocol (XMPP) [11] , Advanced Mes-

aging Queuing Protocol (AMQP) [12] , and Data Distribution Service

DDS) [13] . 

The system model, presented in Fig. 1 , helps to gain a better in-

ight into the real meaning of IoT, and understand the importance

f having a framework, in which, hiding the complexity and bring-

ng simplicity to application development are axial. The IoT frame-

ork should handle the life cycle of sensing, computing, delivering,

nd presenting data. Depending on their capabilities, some IoT de-

ices can reach the outside world (e.g. the cloud) directly and some

thers must connect to a hub or a gateway in order to connect to

he external world. For the IoT frameworks considered in this sur-

ey, the cloud is the backbone, which offers databases for storing

ata, services for data analytics, security modules for preserving

onfidentiality and supports privacy, and other services. Customers

se their smart phones, tablets, or laptops to interact with other

oT devices indirectly through either a cloud backend or a gateway.

In spite of targeting the same objective, different approaches

ave been designed and followed by vendors in order to build their

oT frameworks. In particular, the following questions arise regard-

ng the design details of such frameworks: 

• How each IoT framework handles the communication processes

between IoT devices and cloud? Between cloud and end-users?

What are the protocols and techniques used? 
• What are the hardware and software dependencies in each

framework? 
• To which extents these frameworks use the common security

standards? 
• What are the security-related functionality offered by each ele-

ment/layer in each IoT framework? 
• How each framework solves the challenge of preserving secu-

rity and privacy among all involved parties? what are the tech-

niques used for providing authentication, authorization, access

control, cryptography, and other security features? 

Section 4 answers the above questions for each framework con-

idered in this study. 
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Fig. 2. AWS IoT architecture. 
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3. Related work 

Several survey papers have been published covering various

topics of the IoT domain. Al-Fuqaha et al. [14] surveyed the IoT

in general, mentioning various IoT architectures, market opportu-

nities, IoT elements, communication technologies, standard appli-

cation protocols, main challenges and open research problems in

the IoT area. Derhamy et al. [2] presented a number of commercial

IoT frameworks and provided a comparative analysis based on uti-

lized approaches, supported protocols, usage in industry, hardware

requirements, and applications development. A brief overview of

the current IETF standards for the Internet of things is provided

in [15] . 

Security and privacy issues in IoT had a lot of attention by

the research community and addressed at different levels. In [16] ,

the authors surveyed the security and privacy issues in IoT from

four different perspectives. First, they highlight on the limitations

of applying security in IoT devices (e.g. battery lifetime, comput-

ing power) and the proposed solutions for them (e.g. lightweight

encryption scheme designed for embedded systems). Second, they

summarize the classifications of IoT attacks (e.g. physical, remote,

local, etc.). Third, they focus on the mechanisms and architectures

designed and implemented for authentication and authorization

purposes. Last, they analyse the security issues at different layers

(e.g. physical, network, etc.). Authors in [17,18] addressed the se-

curity and privacy issues in IoT at each layer identified in the 3-

layer architecture [3,19] surveyed most of the security flaws exist-

ing in IoT, resulted from the various communication technologies

used in wireless sensor networks. An authorization access model

is proposed in [20] as a security framework for the IoT in order

to ensure controlling access and authorizing legitimate users only.

Authors in [21] reviewed the challenges and approaches proposed

to overcome the security issues of the IoT middleware, where a

large number of existing systems inherit security properties from

the middleware frameworks. Depending on the well-known secu-

rity and privacy threats, authors analyse and evaluate the available

middleware approaches and show how security is handled by each

approach. The work concludes with illustrating a set of require-

ments to have a secure IoT middleware. 

All of the aforementioned surveys review the IoT security with

regards to one element of the common IoT standards (e.g. network

protocols or middleware employed). To the best of our knowledge,

this survey is the first one of addressing the IoT security at the

programming level by evaluating the security features of a subset

of commercially available IoT programming frameworks. 

4. IoT Frameworks 

4.1. AWS IoT 

AWS (Amazon Web Services) IoT [22] is a cloud platform for the

Internet of things released by Amazon. This framework aims to let

smart devices easily connect and securely interact with the AWS

cloud and other connected devices. With AWS IoT , it is easy to

use and utilize various AWS services like Amazon DynamoDB [23] ,

Amazon S3 [24] , Amazon Machine Learning [25] , and others. Fur-

thermore, AWS IoT allows applications to talk with devices even

when they are offline. 2 

4.1.1. Architecture 

As shown in Fig. 2 , the AWS IoT architecture consists of four ma-

jor components: the Device Gateway , the Rules Engine , the Registry ,

and the Device Shadows [26] . 
2 Using Device Shadows as discussed later in the Architecture. 

b  
The Device Gateway acts as an intermediary between connected

evices and the cloud services, which allows these devices to talk

nd interact over the MQTT protocol. In spite of being an old

rotocol, in comparison with other IoT protocols, Amazon uses

QTT [10] due to several features; (i) fault tolerance property, (ii)

xcellent for intermittent connectivity, (iii) small footprint in terms

f the space needed in the device memory, (iv) very efficient in

erms of the network bandwidth requirements, and (v) depends on

he publish/subscribe programming model to allow one-to-many

ommunication between various devices [27] . The latter feature

eans that sensors and other embedded devices that are moving

nd talking to the Device Gateway do not need to know who is

ending data to them. They just send the data route and those who

ubscribe to the data will receive it. This enables a scalable en-

ironment for low-latency, low-overhead, and bi-directional com-

unication. Under the hood, the Device Gateway is built in a fully

anaged and highly available environment controlled by the com-

unity of Amazon in order to simplify the development of appli-

ations and provide unified security measures to all users. Secure

ommunication between IoT devices and applications is guaranteed

ecause MQTT messages are carried out over TLS ( Transport Layer

ecurity ), the successor of SSL ( Secure Socket Layer ) [28] . Further-

ore, the Device Gateway supports WebSockets and HTTP 1.1 pro-

ocols [29] . 

On the other hand, the Device Gateway is teamed up with an-

ther component called Rules Engine . The Rules Engine processes

ncoming published messages and then transforms and delivers

hem to other subscribed devices or AWS cloud services, as well as

o non-AWS services via AWS Lambda [30] for further processing or

nalytics. This enables the possibility to build IoT applications that

rchestrate, collect, process, analyze, and act on data generated and

ublished by connected devices globally without having to pay at-

ention to the low level network protocols or manage any infras-

ructure. In order to maintain usability, developers can author rules

nd add them to the Rules Engine by writing SQL-like statements

r using the AWS Management Console service [31] . Considering the

xample shown in Listing 1 3 , the rule consists of two main seg-

ents: the SQL statement and the actions list. The SQL statement

dentifies the publish/subscribe topics to apply the rule on, and the

onditions under which the rule should be executed. The actions

ist specifies a set of actions that should be performed when the

QL statement is executed. The rule definitions use a JSON-based

chema. 

Rules behave differently depending on the content of each in-

oming message. Apart from this, the Rules Engine offer dozens of

uilt-in helping functions and calculations to aggregate, transform,
3 This example has been taken from the online Amazon tutorials. 
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Listing 1. Example of a defined rule in the rules engine. 
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Fig. 3. AWS IoT security mechanism. 
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4 The figure has been taken from Amazon documentation. 
oncatenate, and process data and build very sophisticated rules.

evelopers can create their own functions and define others us-

ng AWS Lambda . the Rules Engine can receive data from multiple

ources, different devices, and even from the AWS cloud. It inte-

rates and routes this information to other IoT devices and AWS

loud services such as Amazon Kinesis [32] , Amazon S3, Amazon Dy-

amoDB , etc. 

The Registry unit is responsible for assigning a unique Id to each

onnected device regardless the device type, vendor, or the way of

onnection. Also, it stores the metadata (e.g. device name, Id, at-

ributes, etc.) of connected devices in order to have the capability

f tracking them. If the device is not active anymore and did not

how up in the network for a period of 7 years, the metadata will

e expired and removed from the Registry . Either AWS IoT Manage-

ent Console or the AWS Command Line Interface [33] can be used

o interact with the Registry and configure it manually. 

AWS IoT instantiates each connected device by creating a virtual

mage called Device Shadow . This shadow is persistent and stored

n the cloud to be available and accessible all the time. It repre-

ents the last state of the device when it was online, and enforces

he future state over the physical device once it shows up again in

he network. This means that cloud services and other devices can

ntegrate, communicate, and read the current state of a certain de-

ice through its shadow even if the device is offline. They can up-

ate the state of the device as well. Updates are applied once the

evice gets online. Reading the last reported state and setting the

esired future state is done by interacting with Device Shadows via

EST API or by using the Rules Engine . This functionality helps in

asily controlling devices and performing actions over them with-

ut having to know about the low level of connectivity. This means

hat the shadow accelerate applications development by providing

 uniform and available interface to devices, even when they use

ifferent IoT communication and security protocols, or even when

hey are constrained by intermittent connectivity, limited band-

idth, limited computing ability, or limited power. From a pro-

ramming point of view, the Device Shadow is a JSON document,

hich used to store and retrieve the current state of a certain de-

ice. 

Optionally, applications can communicate directly to the con-

ected physical devices using only the Device Gateway and the

ules Engine . This means ignoring the Registry and Device Shadow .

evertheless, it is not recommended since the user has to focus

n maintaining the underlying communication protocols and solv-

ng synchronization issues between the connected devices and the

loud. 

AWS IoT provides a Device SDK which makes it easy for the de-

ice to synchronize its state with its shadow , and accept the de-

ired future states. In particular, The AWS IoT Device SDK is a set
f libraries to help connecting hardware devices, authenticating

ith the cloud, installing mobile applications, and exchanging mes-

ages easily. It supports different programming languages including

 and JavaScript. 

.1.2. Smart applications specifications 

The AWS IoT has no restrictions regarding either the program-

ing languages of developing smart applications or operating sys-

ems running them. Users can use various platforms (e.g. mobiles,

aptops, etc.) to interact with their cloud-connected IoT devices

ia REST APIs. In general, there are two types of smart applica-

ions in AWS IoT;companion and server apps. The latter are de-

igned and implemented to monitor, manage, and control a large

umber of connected devices at the same time. An example of a

erver application would be a fleet management website that plots

housands of trucks on a map in real-time. Companion apps are

obile or web-based applications that allow end-users to inter-

ct with their cloud-connected devices. As stated previously, com-

anion and servers apps can access and communicate with device

hadows in the cloud via uniform Restful APIs. 

.1.3. Hardware specifications 

AWS IoT provides an open-source client libraries and device

DKs that make the framework available for several embedded op-

rating systems and microcontroller platforms. To the best of our

nowledge, the device SDKs supports C, Node.js, and the Arduino

latform. Any IoT device can connect to the AWS IoT cloud if it has

he ability to be configured using one of the aforementioned pro-

ramming languages. Even those devices that connect to private IP

etworks or communicate using non-IP protocols, e.g. ZigBee, can

ccess the AWS IoT cloud as long as they are connected to a physi-

al hub, which serves as an intermediary gateway for the external

orld (e.g. AWS cloud). 

.1.4. Security features 

Amazon leverages a multi-layer security architecture for the

WS IoT , in which, the security is applied at every level of the

echnology stack. The design of the security architecture is based

n teaming up the Message Broker service with the Security and

dentity service as shown in Fig. 3 4 . 

• Authentication: In order to connect a new IoT device to the

AWS IoT Cloud , the device has to be authenticated. The AWS

IoT supports mutual authentication at all points of connection,

so that the source of the transmitted data is always known. In

general, AWS IoT provides three ways of verifying identity: 
• X.509 certificates [34] . 
• AWS IAM users, groups, and roles [35] . 
• AWS Cognito identities [36] . 
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Fig. 4. mbed OS architecture. 
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The most commonly technique used for authentication, in AWS

IoT , is X.509 certificates [37] . They are digital certificates, de-

pend on the public key cryptography, and should be issued by

a trusted party called a certification authority (CA). In our case,

the security and identity unit in the AWS IoT cloud acts as a CA.

These certificates are SSL/TLS-based to ensure secure authenti-

cation. Utilizing the authentication mode in the SSL/TLS proto-

col, AWS IoT verifies the certificate of any object by asking the

client for his ID (e.g. AWS account) along with the correspond-

ing X.509 certificate to check validity against a registry of cer-

tificates. AWS IoT then challenges the client to prove the owner-

ship of the private key that belongs to the public key provided

in the certificate. Optionally, the user can use his own certifi-

cate issued by his preferred CA. However, he must register this

certificate in the registry. 

HTTP and WebSockets requests sent to the AWS IoT are authen-

ticated using either AWS Identity and Access Management (AWS

IAM) [38] or AWS Cognito [39] . Both of which support the AWS

method of authentication. It’s called AWS Signature Version 4

(SigV4) [40] . For HTTP protocol, it is optional to use one of

these methods for authentication, but using MQTT requires au-

thenticating using only X509 certificates. In contrast, connec-

tion using WebSockets is limited only to the use of SigV4 for

authentication. 

To sum up, each IoT device, connected to the AWS IoT , is au-

thenticated using one of the methods discussed, chosen by the

end-user. It is the responsibility of the message broker to au-

thenticate and authorize all actions in the user’s account. In

particular, it is responsible to authenticate all attached devices,

securely ingest device data, and adhere to the access permis-

sions applied by the user on his devices using policies. 
• Authorization and access control: The authorization process

in AWS IoT is policy-based. It can be applied by either map-

ping authored rules and policies to each certificate or apply-

ing IAM policies. This means that only devices or applications

specified in these rules can have access to the corresponding

device, that this certificate belongs to. This can be ensured by

the use of the Rules Engine since the communication through

AWS IoT follows the principle of least privilege. The Rules Engine

has the responsibility to leverage the AWS access management

system to securely access and transfer data to its final destina-

tion according to the predefined rules/policies. So, the owner

of a cloud-connected device can write some rules in the Rules

Engine to authorize some devices or applications to access his

device and prevent others. The use of AWS policies or IAM poli-

cies offers a complete control over own devices and regulates

other’s right to access their capabilities and perform operations

over them [41] . 
• Secure communication: All traffic to and from AWS IoT is

encrypted over SSL/TLS protocol. TLS is used to ensure the

confidentiality of the application protocols (MQTT, HTTP) sup-

ported by AWS IoT . For both protocols, TLS encrypts the con-

nection between the device and the Message Broker . Many

TLS cipher suites are supported in AWS IoT including: ECDHE-

ECDSA-AES128-GCM-SHA256, AES128-GCM-SHA256, AES256-

GCM-SHA384, etc. Furthermore, AWS IoT supports Forward Se-

crecy , a property of secure communication protocols, in which

compromising long-term keys does not compromise temporary

session keys. This means that a malicious user who learns the

private key of an IoT device should not be able to decrypt any

communication protected under this key unless learning the

temporary key of each session. 

AWS IoT cloud assigns a private home directory for each legiti-

mate user. All private data are stored encrypted using symmet-
ric key cryptography (e.g. AES128). s  

l  
.2. ARM mbed IoT 

ARM mbed IoT is a platform to develop applications for the

oT based on ARM microcontrollers [42] . It provides all require-

ents through it’ s ecosystem to build either an IoT standalone

pplications or networked ones [43] . ARM mbed IoT platform aims

o provide scalable, connected, and secure environment for IoT

evices by integrating mbed tools and services, ARM microcon-

rollers, mbed OS, mbed Device Connector , and mbed Cloud . 

ARM mbed IoT framework has the advantage over the vast ma-

ority of frameworks by providing a common OS foundation for de-

eloping IoT. It supports the most important communication pro-

ocols for connecting devices with each others and with the cloud.

urthermore, it supports automatic power management in order to

olve the power consumption problem. 

.2.1. Architecture 

The key building blocks of the ARM mbed IoT platform are mbed

S, mbed client library, mbed cloud, mbed device connector , and

ardware devices based on ARM microcontrollers. The mbed OS

epresents the backbone of this platform. Therefore, discussing it’ s

rchitecture helps in simplifying the architecture of the ARM mbed

oT platform and clarifying it. 

ARM mbed OS [44] is an open source and full stack operating

ystem designed for embedded devices, specifically, ARM Cortext-

 microcontrollers, used to power smart homes and smart cities.

t is built in a modular fashion, so that developers can use it as

 complete operating system or just pick what meets their needs

rom its modules. The mbed OS represents the device-side com-

onent and stands on the top of a device security module, called

bed uVisor . 

Fig. 4 presents the various modules of the architecture of the

bed OS . It is an event-driven architecture and does not support

ulti-threaded environment. mbed OS provides a core operating

ystem, drivers that simplify the connectivity with the hardware

ayer, security and device management functionality, a suite of
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Fig. 5. ARM mbed IoT architecture. 

s  

t

 

m  

E  

T  

s  

A  

t

 

n  

p

 

F  

d  

p

 

p  

s  

p  

t  

n  

s  

s  

i  

L

 

o  

t  

c  

R  

c  

t  

s  

T

 

a  

v  

l  

a  

m  

S  

u  

v

Fig. 6. ARM mbed IoT security architecture. 
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5 8-bits and 16-bits architectures can be used without selecting security modules 

in mbed OS. 
tandard communication protocols, and multiple APIs for integra-

ion and interaction purposes. 

The mbed device interface layer supports a wide variety of com-

unication protocols including Bluetooth low energy (BLE), WiFi,

thernet, ZigBee IP, 6LoWPAN, and many others. In particular, the

L S/DTL S sub-layer represents mbed TLS security module and en-

ures the end-to-end security across the communication channels.

lso, multiple application protocols are supported in the architec-

ure such as CoAP, HTTP, and MQTT. 

mbed OS is designed to work in concert with mbed Device Con-

ector, mbed Device Server , and mbed Client . Together, they form the

latform that delivers comprehensive IoT solutions. 

A high level view of the mbed IoT architecture is provided in

ig. 5 . The hardware layer, at the base, represents mbed IoT -enabled

evices. One level up, the mbed OS takes a place with all it’ s com-

onents. 

The mbed client Library is the key to communicate with the up-

er layer in the architecture. In particular, it encapsulates a sub-

et of the mbed OS functionality in order to be able to connect

hysical devices to the mbed Device Connector Service . Practically,

he mbed Client Library is a C++ API which implements a commu-

ication stack with low power consumption based on CoAP, and

upports security measures (e.g. mbed TLS) that comply with con-

trained networks and devices. Furthermore, it is portable to var-

ous operating systems (e.g. RTOS and Linux) and supports OMA

ightweight Machine to Machine (LWM2M) compliance [45] . 

The mbed Device Connector is a web service that helps devel-

pers to connect IoT devices to the cloud without taking care of

he infrastructure [46] . It is full compatible with the mbed OS and

an be accessed via the mbed Client Library . Also, it works with

EST APIs, making it easy to integrate and transit to the various

ommercial service providers. Moreover, the mbed Device Connec-

or provides end-to-end trust and security using TL S/DTL S, and

upports a wide range of standard protocols including CoAP/HTTP,

L S/TCP, DTL S/UDP and OMA Lightweight M2M. 

Recently, ARM community announced about mbed Cloud [47] ,

nd integrated it into the IoT ecosystem. It is a Software as a Ser-

ice (SaaS) solution for managing IoT devices. The mbed Cloud al-

ows users to securely update, provision, and connect devices. It

ims to provide all security guarantees in terms of cryptography

odules, trusted zones, keys management, etc. Because of being a

aaS, the mbed Cloud can be shipped out and configured by end

sers depending on their business needs. In practice, the mbed De-

ice Connector is a hosted instance of the mbed Cloud services. 
The top layer of the mbed IoT architecture is the third-party ap-

lications. Developers can implement various web and smart ap-

lications to manage cloud-connected IoT devices via REST API. 

.2.2. Smart applications specifications 

Using the mbed IoT platform involves implementing embedded

pplications for IoT devices as well as smart apps for end-users.

evelopers have to use C ++ programming language at the device

ide. At the user side, there is no prior requirements, any program-

ing language supports REST API can be used (e.g. Java) [48] . 

.2.3. Hardware specifications 

ARM mbed IoT platform is mainly dedicated to ARM Cortex-M

ased 32-bits 5 microcontrollers supporting advanced RISC architec-

ure. Other microcontrollers are not supported. 

.2.4. Security features 

The security architecture of mbed IoT platform is applied at

hree different levels: 

• The device itself (as a hardware & mbed OS). 
• The communication channels. 
• The lifecycle of developing embedded and smart applications in

terms of device management, firmware updates, etc. 

Fig. 6 provides an overview of the security architecture [49] .

he core components are: 

• The mbed uVisor [50] : the device-side security solution, which

has the ability to isolate various pieces of software from each

others and from the operating system. 
• The mbed TLS [51] : for securing communication, confidentiality,

and authentication purposes. 

The following security properties are provided by the aforemen-

ioned security components. 
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Fig. 7. Azure IoT architecture. 
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• Authentication: There is no specific way of authentication.

ARM mbed IoT provides a wide variety of cryptography stan-

dards, key exchange mechanisms, certificate-based signatures,

and symmetric and public/private key encryptions through the

mbed TLS software block [51] . Developers can pick from this

basket what is suitable for them to perform the authentication

process efficiently e.g. X.509 certificates. 
• Authorization and access control: Arm mbed IoT devices sup-

port multiprogramming, so memory is not a single unprotected

space, but it’s organized into compartmentalized blocks, result-

ing in good security levels. Therefore, in order to control access

to resources and preserve levels of authorization, the mbed IoT

platforms depends on the ARMv7-M architecture in terms of

having MPU and uVisor components. 

The Memory Protection Unit (MPU) is a hardware module, which

enforces memory isolation. The uVisor is a self-contained soft-

ware hypervisor, which represents the basis of the kernel of

mbed OS security architecture. It acts as a sandbox and uses

the MPU to enforce isolated security domains within the mi-

crocontroller itself (Cortext-M3, M4, or M7). Forming isolated

domains protect sensitive parts of the system, as each part is

located in a different portion of the memory. In other words,

the application will be composed of some non-intersected sec-

tions. Attacking any section does not violate others. Moreover,

having any bug or security flaw in some sections of the system

does not threaten others. 

In summary, the uVisor secures software running on Cortex-M3,

Cortex-M4, and Cortex-M7 processors by segmenting mem-

ory into insecure (public) and secure (private) memory spaces

based on the MPU. 
• Secure communication: End-to-end security is ensured be-

tween all involved parties in the communication channel by

implementing the TL S/DTL S protocol. It is the cornerstone of

securing all communications. 

In mbed OS , the mbed TLS provides security mechanism in order

to secure and protect communication, by supporting Transport

Layer Security (TLS) and the related Datagram TL S (DTL S) pro-

tocol. Both protocols are the state of the art standards for se-

curing communication over the World Wide Web. This means

preventing eavesdropping, tampering and message forgery and

ensuring integrity. 

The mbed TLS also includes reference quality software imple-

mentations of a wide range of popular cryptographic primitives,

secure key management, certificate handling, and other crypto-

graphic functionality. In addition, ARM benefits from the hard-

ware cryptography block in some microcontrollers to encrypt

sensitives parts of data. 

4.3. Azure IoT Suite 

Microsoft has released Azure IoT Suite [52] , a platform composes

of a set of services that enable end-users to interact with their IoT

devices, receive data from them, perform various operations over

data (e.g. aggregation, multidimensional analysis, transformation,

etc.), and visualize it in a suitable way for business. Azure IoT Suite

addresses the challenge of having a full-featured IoT framework as

a combinations of three different sub-problems: scaling, telemetry

patterns, and big data. Azure IoT supports a wide range of hardware

devices, operating systems, and programming languages. 

4.3.1. Architecture 

A high level overview of Azure IoT’ s architecture is provided

in Fig. 7 [53] . IoT devices interact with Azure cloud through a

predefined cloud gateway. The incoming data from these devices

is either stored in the cloud for further processing and analytics

by Azure cloud services (e.g. Azure Machine Learning and Azure
tream Analytics) or offered immediately to some services for real-

ime analytics. The output of both tracks is presented and visual-

zed in a customized way that fits the desires of customers and

uites their business. 

Azure IoT Hub [54] is a web service that enables bi-directional

ommunication between devices and the cloud backend services

aking into account all security requirements. The cloud sends

essages to devices in terms of either commands or notifications.

ommands are orders to devices to perform actions, whereas no-

ifications are information needed in some cases during the lifecy-

le of the execution of some commands. For each command being

ent, the cloud backend should receive a feedback from the de-

ice as a confirmation message of successful delivery, or a deliv-

ry fault message to warn about the delivery failure status. Simi-

arly, devices send messages to the cloud backend in two formats:

elemetry data or commands outcome. Azure IoT hub has an iden-

ity registry for holding the identity and authentication related in-

ormation of each device. Also, it has device identity management

nit to manage all connected and authenticated devices. 

There are two classes of IoT devices: IP-capable and PAN. IP-

apable devices have the ability to communicate with Azure IoT

ub directly by implementing one of the supported communica-

ion protocols [55] . Azure IoT Hub natively supports communication

ver AMQPs, MQTT or HTTP protocols. Support for additional pro-

ocols is possible via Azure IoT protocol gateway [56] . The gateway

llows for protocol adaptation. Some devices and field gateways

ight not able to use one of the supported protocols by Azure IoT

ub . In this case, they can communicate with Azure IoT Hub via

zure IoT protocol gateway which acts as a bidirectional bridge. It

educes the gap between the different communication protocols,

nd tries to find a common language between all involved parties.

rom one side, the protocol gateway uses MQTT/AMQP protocol to

ommunicate with Azure IoT Hub directly. From the other side, it

s adaptable to support a variety of communication protocols de-

ending on the connected device standards. 

The Field Gateway is simply an aggregation point for PAN (per-

onal area network) devices. Since these constrained devices do
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Fig. 8. Azure IoT security architecture. 
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ot have enough capacity to run secured HTTP sessions, they send

heir data to the field gateway to aggregate, store, and forward it

ecurely to Azure IoT Hub . 

The IoT solution backend layer represents a wide range of Azure

loud services [57] (e.g. Azure Machine Learning, Azure Stream An-

lytics, etc.). 

The top layer of Azure IoT architecture is the presentation layer.

sers are free to visualize their data as they want. Microsoft pro-

ides the Business Intelligence (BI) service to present data in an

ffective and attractive way [58] . 

.3.2. Smart application specifications 

Microsoft provides various SDKs to support different IoT devices

nd platforms. IoT device SDKs along with IoT service SDKs are

rovided in order to make developers able to connect to Azure IoT

ub and let users manage their devices. The IoT device SDKs en-

ble developers to implement client applications for a wide vari-

ty of devices ranging from simple network-connected sensors to

 powerful standalone computing devices. Up to now, C, Node.js,

ava, Python, and .NET programming languages are supported in

uch SDKs [59] . 

.3.3. Hardware specifications 

Azure IoT supports a wide range of operating systems and

ardware devices. The following conditions must be satisfied in

ach device in order to have the ability interact with Azure IoT

loud [59] : 

• TLS support : for secure communication. 
• SHA-256 support : for authentication purposes. 
• Memory footprint : the memory footprint mainly depends on

the SDK and the protocol used, in addition to the platform tar-

geted (e.g. the minimum requirement of RAM used by C SDK is

64KB). 
• Real time clock : having a real time clock or being able to con-

nect to an NTP server is important for establishing TLS connec-

tions and generating secure tokens for authentication. 

Only IP-capable devices can communicate directly with Azure

oT Hub (see Fig. 7 ). Other low-power constrained devices are able

o connect via a field gateway if they satisfy the aforementioned

onditions. 

Compatible operating systems and platforms include Windows,

ndroid, Debian, mbed OS, Windows IoT Core, Arduino, TI-RTOS,

nd many others. A complete list of the compatible operating sys-

ems, platforms and hardware devices exists in the Azure Certified

or IoT device catalog 6 . 

.3.4. Security features 

Azure IoT takes the advantage of the security and privacy built

nto the Azure platform, along with Security Development Lifecy-

le (SDL) 7 [60] and Operational Security Assurance (OSA) 8 [61] pro-

esses for secure development and operation of all Microsoft soft-

ares. In the architecture of Azure IoT , security is embedded into

very layer and enforced in each component of the ecosystem.

ig. 8 gives an overview of Azure IoT security architecture 9 [62] . 

• Authentication: In order to establish a connection between

IoT devices and Azure IoT Hub , mutual authentication is re-

quired. Transport Layer Security (TLS) protocol is used to encrypt
6 https://catalog.azureiotsuite.com/ . 
7 SDL is a software security assurance process that helps developers to address 

ecurity requirements and build more secure software along with reducing devel- 

pment cost. 
8 OSA is a framework incorporates a variety of security capabilities including SDL. 
9 The Figure has been taken from Microsoft Azure documentation. 

B

 

A  

g

d

the handshaking process. The cloud service is authenticated by

sending an identity proof in terms of X.509 certificate to the

targeted IoT device. Azure IoT issues a unique device identity

key for each device at deployment time. The device then au-

thenticates itself to Azure IoT Hub by sending a token contains

an HMAC-SHA256 signature string which is a combination of

the generated key along with a user-selected device Id. 
• Authorization and access control: Azure IoT takes benefits of

Azure Active Directory (AAD) [63] to provide a policy-based au-

thorization model for data stored in the cloud, enabling easy

access, management, and auditing. This model also enables

near-instant revocation of access to data stored in the cloud,

and of connected IoT devices. Azure IoT Hub identifies a set of

access control rules to grant or deny permissions to either IoT

devices or smart apps. System-level authorization makes access

credentials and permissions near-instantly revocable. Therefore,

The access control policies include activation and dis-activation

of the identity of any IoT device. 
• Secure communication: SSL/TLS protocol is used to encrypt

communication and ensure the integrity and confidentiality of

data. The identity registry in Azure IoT Hub provides a secure

storage of the identities of devices and security keys. Further-

more, data is stored in either DocumentDB [64] or in SQL

databases, ensuring a high level of privacy. 

.4. Brillo/Weave 

Google released Brillo/Weave platform for the rapid implemen-

ation of IoT applications. The platform consists of two main back-

ones: Brillo [65] and Weave [66] . Brillo 10 is an android-based oper-

ting system for the development of embedded low power devices,

hereas Weave acts as a communication shell for interactions and

essage-passing purposes. The main role of Weave is to register

 device over the cloud and send/receive remote commands. Both

omponents complement each other and together form the IoT

ramework. Brillo/Weave is mainly targeting smart homes and ex-

anding to support general IoT devices. 

.4.1. Architecture 

Fig. 9 provides an overview of the architecture of Brillo/Weave

ramework, which includes two sub-architectures belonging to

rillo and Weave respectively. 

Brillo is a light-weight embedded operating system based on

ndroid stack and fully implemented in C/C++ programing lan-

uages. It does not support any Java framework or runtime. 
10 Recently, Google released a rebranded version, called AndroidThings but it still 

oes not support Weave to create a fully featured IoT framework. 

https://catalog.azureiotsuite.com/
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Fig. 9. Brillo/Weave architecture. 
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The bottom layer represents the platform of IoT devices. The

Kernel layer is located at the top of the Hardware layer. It is Linux

based and it has the responsibility to provide basic architectural

model for managing system resources, process scheduling, com-

munication with external devices when needed and so on. Also, It

provides drivers and libraries to control displays, cameras, power,

WiFi, keypads, and many other resources over the physical device.

However, no graphics or GNU libraries are supported. The android

HAL (Hardware Abstraction layer) is a middleware, which bridges

the gap between the hardware and the software. It allows android

applications to communicate with hardware specific device drivers

by handling system calls between the kernel and the top android-

based layers. Not shown in the architecture, Brillo uses Binder IPC

mechanism [67] to interact with the android system services from

the application framework. 

Moving upwards, the OTA Updates component [68] is a wire-

less service aims to install batches and update versions of software

over the air. The underlying devices perform regular checks with

OTA servers for updates. Also, OTA servers notify all connected de-

vices once there are some new updates available. Metrics compo-

nent collects usage data from devices in order to analyze and view

it to understand the behavioral patters of users. Also, crash reports

can be submitted to debug remote devices. 

While Brillo represents the low level segment (OS) of this archi-

tecture, Weave 11 is the high level one. It is a communication suite

of protocols and APIs that lets smart phones, IoT devices, and the

cloud to communicate with each others. In addition, it provides

services for authentication, discovery, provisioning, and interaction.

Practically, Weave is following a JSON format. As mentioned before,

Weave module is baked into the Brillo OS as a significant part of

the top layer in Brillo’ s architecture. Weave adds a key feature to

the user experience through the capability to connect to devices

directly or via the cloud. This is achieved by exposing a common

language between all Brillo-powered devices, which is Weave . Fur-
11 Google Weave is totally different from NEST WEAVE protocol. e
hermore, Weave exists as a mobile SDK for smart phones and a

loud-based web services for the cloud. Mobile SDK runs on ei-

her Android or iOS phones in order to connect mobile apps to the

rillo-powered IoT devices. Once the connectivity gets established,

obile apps can use either the local APIs, if they are located in the

ame network, or the cloud APIs to control and manage the con-

ected IoT devices. As shown in Fig. 9 , Weave supports multiple

ommunication and application protocols. 

To sum up, the underlying architecture illustrates the key build-

ng blocks of Brillo/Weave IoT framework. The last three layers rep-

esent the operating system, whereas the top layer includes the

ore services which composes of OTA Updates, Weave , and Metrics

nd Analysis services. Figuratively, the Brillo developer kit (BDK) is

 necessary building block of the IoT platform [69] which is based

n Android.mk build architecture. Using DBK, developers can per-

orm local unit tests, integration tests, and build entire packages. 

.4.2. Smart applications specifications 

Weave comes with a mobile SDK for both iOS and Android to

uild apps to control and enhance the connected device experi-

nce for mobile users. Any Android- or iOS-based mobile phone

an run smart apps able to talk to Brillo-powered embedded de-

ices. The smart app should include the Weave SDK as a commu-

ication module. In general, third party developers can implement

pplications in any platform using any programming language sup-

orts Weave . On the other side, IoT devices should run Brillo in

rder to interact with smart apps with no further requirements.

urrently, only Google Cloud supports Weave and no other profes-

ional cloud (e.g. Amazon, Microsoft, etc.) does that. 

.4.3. Hardware specifications 

Brillo operating system is compatible only with Microprocessor

MPU) 12 devices that have a minimum memory footprint of at least

5 MB of RAM. ARM, Intel (X86), and MIPS are the only supported

rchitectures [69] . 

In particular, the minimum hardware requirements [69,71] of

he smart device to host Brillo are: 

• 32 MB RAM. 
• 128 MB ROM. 
• support one of the following architectures: ARM, X86, or MIPS. 
• WiFi 802.11n. 
• Bluetooth 4.0+. 

Commercially, the Intel Edison kit [72] with the Arduino expan-

ion board is the first Brillo starter board. 

.4.4. Security features 

A high priority has been given for verifying security through out

he design of both Brillo and Weave . Secure boot, signed over-the-

ir updates, timely patches at the OS level, and the use of SSL/TLS

re all building blocks of the security architecture of Brillo/Weave

ramework. 

• Authentication: Weave main functions is the Discovery, provi-

sioning, and authenticating devices and users. OAuth 2.0 pro-

tocol along with digital certificates are used for authentication.

Regardless the Weave-enabled cloud server chosen by the user,

Google provides the authentication server. 
• Authorization and access control: The right of access con-

trol is ensured by the Linux kernel. SELinux (Security Enhanced

Linux) module is responsible for ensuring access control secu-

rity policies, in which the owner of an IoT device can apply

multiple levels of access control as needed. Enforcing access
12 For the difference between MPU and MCU devices, please refer to refer- 

nce [70] . 
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Fig. 10. Calvin architecture. 
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control is done by assigning the actual rights (read, execute,

write) for each user or group of users. 

Again, as this IoT framework is Linux-based, sandboxing tech-

nique is applied with regards to UID (User Id) and GID (Group

Id). It provides an enhanced mechanism to enforce the sepa-

ration of information based on confidentiality and integrity re-

quirements for each profile. 
• Secure communication: Secure communication are guaranteed

via Weave by providing link-level security through the SSL/TLS

protocol. Furthermore, the Linux kernel supports full disk en-

cryption of saved data. Also, Brillo depends on a Trusted Execu-

tion Environment (TEE) and secure boot to protect code and data

loaded inside the IoT and preserve confidentiality. The availabil-

ity of TEE provides the connected devices Hardware-backed key-

store/ketmaster [73] . 

.5. Calvin 

Calvin is an open source IoT platform released by Ericsson [74] .

t is designed for building and managing distributed applications

hat enable devices talk to each others. Calvin is a framework that

pplies Flow based Computing (FBP) 13 paradigm [75] methodologies

ver the well-defined actor model 14 [76] . 

.5.1. Architecture 

Fig. 10 shows the high level architecture of Calvin . The two bot-

om layers compose a foundation for the runtime environment 15 .

he base layer represents the hardware or the physical device,

hereas the second one encapsulates the operating system that

he hardware exposes. At the top, the platform dependent runtime

ayer of Calvin takes a place. In this layer, all kinds of communica-

ions between different runtime environments (e.g. IoT devices) are

andled. Also, this layer provides an abstraction of the hardware

unctionality (e.g. I/O operations). In other words, this layer sup-

orts several transport layer protocols (WiFi, BT, i2c) and presents
13 The FBP development approach views an application as a network of asyn- 

hronous processes communicating by passing messages as streams of structured 

ata chunks, called information packets. This component-oriented model does not 

upport single sequential processes which start at a particular point of time, do 

perations, and then finish to let others start their actions. 
14 The actor model is a mathematical theory that treats Actors as the universal 

rimitives of concurrent digital computation. The model has been used as a frame- 

ork for a theoretical understanding of concurrency. 
15 Runtime environment means the IoT device with the executable software 

oaded into it. 
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he platform specific features like sensors and actuators in a uni-

orm manner to the platform independent runtime layer where it

esides above the platform dependent runtime layer. The platform

ndependent runtime layer acts as an interface to the actors. The

untime can be configured to grant access to different resources

epending if an actor is a part of the application or not. Actors ex-

cute asynchronously and autonomously per definition. They can

lso encapsulate protocols, such as REST or SQL queries, as well

s device specific I/O functionality. Connections between actors are

ot specified in the architecture since they are logical and dynam-

cally handled by the different runtimes. 

Proxy Actors [77] is one of the important features that Calvin

rings to the users. Using this attribute, Calvin-based applications

an scale and function with non-Calvin ones. Proxy Actors help in

ntegrating different systems as one system by handling communi-

ation and doing the task of converting data to messages or tokens

hat both systems can understand. 

.5.2. Smart applications specifications 

Calvin framework divides the development process of an ap-

lication into four pipelined isolated steps, each step has its own

unctionality as explained in the following [78] : 

Describe: the functional part of any application which consists

f reusable components or blocks called Actors . An actor is a com-

onent representing any object doing a computation e.g. smart

hone, cloud, client, server, and etc. The way of communication

etween actors is by passing tokens over predefined ports. This is

he only way to affect the behavior of an actor and change its state.

ata is processed on the input ports of actors and then passed to

he output ports in order to fire some actions depending on the

ontents of messages/tokens. Thus, writing an actor means identi-

ying a new component that can be used in several locations by

ultiple applications. An actor can be created by (i) describing its

ctions, (ii) defining its input/output ports, (iii) identifying condi-

ions for each particular action to be triggered, and (iv) adjusting

he priority orders between actions. 

Connect: in this interaction step, information about how ac-

ors are connected is supplied in a simple way using CalvinScript , a

eclarative language used to describe applications and how actors

onnected inside them. At the end of this phase, the application is

ompletely identified and ready for deployment. 

Deploy: after completing the two former steps, the deployment

hase takes a place in order to run the application in reality. The

ore of this step is the lightweight distributed runtime that pro-

ides a number of accessible nodes for deployment and actors exe-

utions. Once the runtime environment is ready for execution after

assing the application script to it, the distributed execution envi-

onment can move actors to any accessible runtime based on sev-

ral factors such as resource, locality, connectivity, or performance

equirement. 

Manage: it monitors the life cycle of the application. Fur-

hermore, it is involved in keeping track of the resource usage,

rmware updates, error recovery, and scalability. 

In order to support multiple programming languages and plat-

orms, the design of Calvin does not require a specific way of pro-

essing data inside different actors. Only the format of data passed

etween ports is standardized. An API, written in python, is pro-

ided to device manufacturers and third party developers to port

o Calvin runtime from various platforms and languages. 

.5.3. Hardware specifications 

Calvin framework supports different platforms, ranging from

mall sensor devices to data centers. Also, it is designed to run

n distributed heterogeneous cloud environment. The only require-

ent needed in the hardware is the support of one of the compat-

ble communication protocols. 
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Fig. 11. Calvin communication system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. HomeKit architecture. 
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4.5.4. Security features 

Calvin platform applies security measures at different levels us-

ing various techniques [79] . 

• Authentication: Authenticating users can be done in three dif-

ferent ways. The first is via local authentication, in which the

hash value of usernames and passwords are stored in a JSON

file in a well-known directory in the same machine. Authenti-

cation can be verified by comparing the hash value of the en-

tered and stored records. Second, using an external machine,

which acts as an authentication server and performs the au-

thentication on behalf of the corresponding runtime. Third, by

using a RADIUS server. The radius server verifies the username

and password and replies with subject attributes. 
• Authorization and access control: Authorization is only sup-

ported via local or external procedure. In the local authoriza-

tion, policies are stored in JSON files in a directory on the same

machine, whereas the external authorization involves using an-

other runtime to act as an authorization server. When external

authorization is used, digital certificates in the form of X.509

standards are needed to verify signed JSON web tokens that

contain the authorization request/response. The authorization

process must be done after a successful authentication since

it uses as an input the returned subject attributes. The access

control is activated for a certain actor or entity via an attribute-

based configuration file. Adding a feature with its value as an

attribute means activating this feature in Calvin framework. 

To the best of our knowledge, neither sandboxing nor virtual-

ization technique are provided in Calvin framework because Er-

icsson does not maintain their own cloud infrastructure. 
• Secure communication: Fig. 11 shows an overview of the em-

ployed communication mechanism inside Calvin system. IoT de-

vices can interact with each other or with smart applications.

They are connected over short-range radio protocols to M2M

gateways. Devices and gateways are integrated with the mo-

bile network in order to access the cloud. End-users commu-

nicate with the cloud and explore the various information of

the different IoT devices, that they authorized to access. IoT de-

vices can not connect to the cloud via M2M gateways with-

out conducting the authentication and authorization processes.

Since M2M gateways have no user interface for entering user-

names and passwords, Calvin depends on the mobile networks

and utilizes their capabilities. All M2M gateways are injected

with SIM cards, and use their SIM-based identity to authen-

ticate themselves to the cloud services using 3GPP standard-

ized Generic Bootstrapping Architecture (GBA). The transmit-

ted/received data may be secured using TL S/DTL S protocol. El-

liptic Curve Cryptographic (ECC) algorithm is implemented as a

part of the TLS suite and used for encrypting communications
and providing digital signatures, as it incurs limited overhead,

compared with other protocols (e.g. RSA). Calvin framework can

be integrated with any public cloud system since it does not

involve Ericsson cloud as a main component of the ecosystem.

Therefore, Calvin does not provide details of the object level-

security in the cloud. 

.6. HomeKit 

HomeKit is an IoT framework released by Apple [80] . It is a

latform dedicated only to home-connected IoT devices. It facil-

tates the process of managing and controlling connected acces-

ories and appliances in a user’ s home by enabling interaction via

mart apps. Through their own iOS devices, using the HomeKit app,

alled Home , users can discover, configure, control, and manage all

omeKit connected devices in a secure way. Furthermore, users can

reate actions and trigger their IoT devices using Siri service [81] .

ntil the moment of writing, iOS, watchOS, and tvOS are the only

perating systems supporting the HomeKit capabilities. 

.6.1. Architecture 

The core components of HomeKit architecture are: the HomeKit

onfiguration database, HomeKit Accessory Protocol (HAP), HomeKit

PI, and the HomeKit -enabled devices. 

Fig. 12 simplifies the HomeKit architecture. The IoT devices (ac-

essories) are located in the base layer. However, not all home-

onnected IoT devices can integrate with the HomeKit platform

irectly. They should meet some conditions as explained later in

he hardware specifications section. Accessories that do not satisfy

omeKit requirements are still able to connect to the HomeKit plat-

orm using intermediate devices called Bridges. HomeKit Bridges are

ateways that act as a proxy between iOS applications and home

utomations that do not support the HomeKit protocol. At the de-

ice side, the bridge supports only ZigBee and Z-Wave protocols.

herefore, the connected accessories are limited to support one of

hese protocols. For accessories that implements HAP, the bridge is
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ot required and either IP (LAN, WiFi) or BLE is used as a transport

rotocol. 

Since HomeKit speaks HAP, the backbone of the architecture is

he HAP layer. HAP is proprietary protocol mapped over HTTPs

ith discovery leveraging the Bonjour architecture 16 [82] . JSON for-

at is used in HAP for exchanging messages between iOS apps and

omeKit compliant devices. 

The HomeKit API layer is responsible for providing interfaces to

hird party developers to simplify the development of smart appli-

ations and hide the complexity of the underlying layers. 

The application layer resides at the top of the architecture. It

s responsible for providing a consistent user interface to all Apple

evices sharing the same account, by synchronizing the stored data

n the shared database using iCloud [83] . 

With tvOS 10 [84] , Apple extended the capabilities on the Ap-

le TV and HomeKit by bringing the HomeKit framework to the

vOS. Interestingly, Apple TV is able to run all home automations

hat users have set up inside their homes. Therefore, wherever

sers are, if they have an Internet connection, they can access their

ome accessories remotely. In other words, Apple TV acts as a hub

r a gateway for home automations. 

Apple TV also supports features for providing additional con-

rols to shared users. This enables the possibility of any user to

hare the control of accessories with others, by inviting them us-

ng their Apple Id. It is also possible to grant administrative access

o shared users. Shared users with an administrative access can

hange the configurations in the home. They can add or remove

ccessories as necessary. Also, they, in turn, can invite additional

sers to the home and let them control home accessories. Another

ossibility is controlling remote access per user. Using this func-

ionality, the admin user can grant or deny remote access capabil-

ties to the other shared users. 

.6.2. Smart application specifications 

An important part of the HomeKit ecosystem is the Home appli-

ation. It is an Apple-designed app for HomeKit platform. It sets up

ome accessories as well as controls their common functions. 

The Home app provides a very simple interface for users to set

p, control, and configure accessories inside the home. The Home

pp is supported in all iOS devices and in the Apple watch. Using

ts user interface, the user can add a number of homes and de-

ne number of rooms in each home. Then, he start setting up and

etecting accessories in each room. 

Due to the integration with Apple system, HomeKit allows users

o access their accessories when they are not at home. This re-

ote access enabled through iOS device connectivity, in which the

pple TV acts as a gateway and intermediate layer between home-

onnected accessories and Internet-connected Home app or even

hird party apps. 

Additionally, developers can implement iOS-based mobile ap-

lications and bring their apps to the foreground by utilizing the

omeKit API provided by Apple [85] . Using this API, developers

an implement their applications by creating instances of a lim-

ted number of classes, delegating them to their apps and then

ustomizing them according to the requirements. The architecture

f HomeKit API is hierarchical. The entry point is the Home Man-

ger class which provides pointers to a common database shared

mong all user’ s homes and maintains their data. Being shared,

uch database ensures consistency between all authorized applica-

ions in various devices. The Home Manager acts as a container of

ultiple homes and lets the user to label the primary one. Also, it

ets the user to add or remove homes as necessary. Each home has
16 Bonjour is Apple framework for networking purposes. It implements a number 

f functionalities including: service discovery, address assignment, and hostname 

esolution. 

s  

M

 

m  
o be uniquely identified and each one should points to its own

ata. Everything in a home must have a unique name as well. Nar-

owing the scope, the instance of the Room class lets users to add

he number of rooms they have inside their homes. From a pro-

ramming point of view, each room is an array of accessories. Each

nput of this array belongs to an instance of the Accessory class. 

An accessory corresponds to the physical IoT device. Accessories

re assigned and distributed between rooms. The instance of the

ccessory object allows users to access the device state. Also, ac-

essories have to be uniquely named within a home. Names of ac-

essories can be recognized by Siri service too. An accessory is the

hole object that the a user is referring to. So, an accessory has a

ointer back to the room where it is located, and it has a pointer to

he array of services that represents its functionality. An accessory

t any point of time may be reachable or not depending on the

tate of connectivity. This should be reflected in the smart applica-

ion by maintaining the callback handler available to developers in

he API [85] . 

Services represent the functionality of accessories. A service is

escribed as a collection of characteristics. Characteristics are spe-

ific parameters that the user could interact with. Not all of ser-

ices have names. The anonymous services are operational ones

nd not designed for user interaction (e.g. a firmware update ser-

ice). Named services should be unique and exposed within the

ser interface. An example of such services are the light bulb

nd door bell. HomeKit does not only recognize names of services,

ut also takes into account Apple-defined service types. Therefore,

sers can refer to the service by its name or type when using Siri

o detect it. The Service class contains the name of the service,

n array of characteristics, service type, and a pointer back to the

ccessory. Characteristics provide some information and metadata

bout the state of the physical device. The characteristics can be of

 few varieties: Read-only, Read-write, or Write-only. A good ex-

mple is the thermostat device, where users want to read its tem-

erature degree without writing privileges. This implies that the

haracteristics of this service should be Read-only [85] . 

HomeKit objects are stored in a database residing in the user’ s

OS device, which is synchronized over the iCloud to other involved

OS devices. This common database contains all information about

omes and accessories that have been configured by users. It is

vailable to all user’ s applications in a consistent way [85] . 

.6.3. Hardware specifications 

HomeKit framework is compatible only with HomeKit -enabled

evices. Thus, HomeKit supports all third-party hardware acces-

ories that use Apple’ s MFi licensed technology [86] to connect

lectronically to the iPhone, iPad, iPod or Apple Watch. By us-

ng Apple’ s MFi license, Apple ensures that the produced hard-

are meets all key requirements and technical specifications of the

omeKit framework in terms of the supported communication pro-

ocols, physical security, etc. 

As stated earlier, in order to connect an accessory, that is not

Fi-certified, to the HomeKit framework, A HomeKit bridge must

e used to find a common language between the heterogeneous

ransport protocols. The bridge supports only ZigBee and Z-Wave

rotocols from the input side of the accessory. 

From a low level point of view, HomeKit supports a wide range

f embedded microcontrollers including low-power, low-cost 32

it MCUs. Both ARM and MIPS architectures are supported. Gener-

lly, the memory is the most critical resource in microcontrollers.

owever, for HomeKit , there is no minimum requirements for the

ize of memory since it mainly depends on the specific goal of the

CU and the size of the code loaded. 

For users, HomeKit -enabled accessories can be controlled and

anaged only by Apple smart devices such as iPhones and iPads.
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Fig. 13. Kura architecture. 
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18 The OSGi specification Open Services Gateway initiative describes a modular 
There is no support for devices powered by other operating sys-

tems such as Android. 

4.6.4. Security features 

HomeKit leverages many features from the security architecture

of iOS [87] as it composes of software, hardware, and services de-

signed to work together in a secure way, in which, end-to-end se-

curity must be guaranteed. This means that the entire ecosystem

is covered by the security polices and mechanisms enforced by the

tight integration of hardware and software in iOS devices. 

• Authentication: Authentication is required between HomeKit -

connected accessories and iOS devices based on Ed25519 17 

public-private key signature [88] . For each user and accessory

in the HomeKit framework, an ed25519 key pair is generated

for authentication purposes. Keys are stored in shielded key-

chain and synchronized between devices using iCloud Keychain.

In the authentication process, keys are exchanged using Secure

Remote Password protocol, in which a 8-digit code, provided by

the accessory’s manufacturer, must be entered by the user via

the UI of the iOS device. 

Keys are encrypted using ChaCha20-Poly1305 AEAD with HKDF-

SHA-512-derived keys [87] . The accessory’ s MFi certification is

also verified during setup. The aforementioned keys are long-

term keys. In order to protect each communication session, a

temporary session key is generated using the Station-to-Station

protocol and encrypted with HKDF-SHA-512 derived keys based

on per-session Curve25519 keys [89] . The process of configuring

Apple TV in order to perform remote access and the process of

adding new shared users are also subjects to the same authen-

tication and encryption mechanisms. 
• Authorization and access control: Applications have to ex-

plicitly ask user’s permissions to get access to their home

data. Moreover, all applications are subject to security measures

designed to prevent collisions and compromising each other.

Sandboxing is enforced among apps. An application can access

its own data only, which stored in a unique home directory.

This directory is assigned randomly during the installation pro-

cess of the application. On the other hand, iOS system data is

isolated from third-party apps and users have no privilege to

modify it in any case. Also, Address Space Layout Randomiza-

tion (ASLR) technique [90] is applied to prevent buffer overflow

memory-based attacks. 
• Secure communication: The integration of the core compo-

nents of the iOS security architecture (e.g. secure boot, etc.)

ensures that only trusted code can run in Apple devices. AES

256 encryption protocol is applied through an engine built into

the DMA path between the flash storage and the main system

memory in each device, making data encryption is highly effi-

cient. Each Apple device has a unique device Id which is AES

256-bit key injected into the processor during manufacturing

and this allows data to be cryptographically tied to one par-

ticular device only. This feature provides a robust secure hard-

ware in case the memory chip is moved from a device to an-

other one, the data is inaccessible and can not be read or de-

crypted. Apart from this, all cryptographic keys are created by

the system’ s random number generator (RNG) using an algo-

rithm based on CTR_DRBG [91] . 

Communication using HTTP protocol are secured using

TL S/DTL S with AES-128-GCM and SHA-256. 

In HomeKit , the long-term keys, used to secure communica-

tions, reside only in the user’ s devices. So even if the com-

munication flows through an intermediate devices or services,

the keys can not be decrypted even by Apple. 
17 https://ed25519.cr.yp.to/ . 

J

m

Moreover, HomeKit provides Perfect Forward Secrecy , a property

that ensures in every communication session between an Apple

users’s devices and their HomeKit enabled accessories, a new

session key is generated for secrecy and confidentiality pur-

poses. After the completion of the underlying session, this key

is discarded. This feature strengthens the communication pro-

cess in case, in the future, the device is compromised and the

long-term key is publicly known, the adversary can not decrypt

the communication process using only this long-term key. 

.7. Kura 

Kura is an Eclipse IoT project which aims to provide a

ava/OSGi-based 

18 framework for IoT gateways that run M2M ap-

lications [93] . Kura offers a platform for managing the interac-

ion between the local network of physical IoT devices and the

ublic Internet or the cellular networks. Similarly to other frame-

orks, Kura abstracts and isolates the developer from the com-

lexity of the hardware, networking sub-systems, and re-defining

he development of existing software components, by offering an

PIs that allow accessing and managing the underlying hardware

moothly [94] . 

.7.1. Architecture 

Fig. 13 shows an overview about Kura ’ s architecture. Kura can

nly be installed on Linux-based devices and provides a remotely

anageable system, complete with all the core services and a

evice abstraction layer for accessing the gateway’s own hard-

are [95] . 

To interact with network-connected devices, smart applications

an use Java’ s own networking capabilities to plug into the ex-

sting device infrastructure. The device abstraction layer allows de-

elopers to access many devices by abstracting the hardware us-

ng OSGi services for Serial, USB and Bluetooth communications.
system and a service platform that implements a dynamic component system for 

ava to simplify the process of developing reusable software building blocks. For 

ore information, refer to [92] . 

https://ed25519.cr.yp.to/
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Fig. 14. SmartThings architecture. 
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 communication API for devices attached via GPIO, I2C, or PWM

ill allow a system integrator to incorporate a custom hardware as

 part of their gateway [96] . 

The Gateway Basic Services layer provides a configurable OSGi

ervices available to applications to interact with the basic gateway

unctionality. Such services include watchdog, clock, GPS position,

mbedded database, process, and device profile service. 

Also, the network management layer offers a configurable OSGi

ervices to access the current network configuration and adminis-

er it (e.g. DHCP, NAT, DNS, etc.). It interacts with the Linux system

o configure network interfaces including WiFi access points and

PP connections. 

Furthermore, the connectivity & delivery layer simplifies the de-

elopment of telemetry M2M applications interacting with a re-

ote cloud server [97] . 

The functionality of Remote Management layer include remote

onfiguration, remote software update, remote system command,

emote log retrieval, device diagnostic service, and remote VPN ac-

ess. Finally, The administration GUI provides interfaces for access-

ng such services. 

.7.2. Smart applications specifications 

Java is the main programming language of Kura framework. An

pplication is delivered as an OSGi module and run according to

he standard specifications inside the container along with other

omponents. The deployment of an application can be done re-

otely in the form of OSGi bundles. Kura package provides also

 web front interface that allows developers to remotely login and

anage their applications. 

.7.3. Hardware specifications 

Kura has two hard requirements in order to run on the IoT de-

ice. First, it must run at the top of Linux operating system. This

eans that the IoT device should be Linux-based. Second, Ora-

le Java VM 7 or later is required for Kura [98] . Memory size re-

uirement depends on how large is the installed application and

umber of exchanged messages with other connected devices. An

xample of compatible devices, that meet the mentioned require-

ents, includes Raspberry Pi [99] and BeagleBone [100] . 

.7.4. Security features 

The naive Kura framework provides a robust and simple secu-

ity architecture for protecting and securing communications with

oT devices and gateways. However, there is a limited support for

ecurely updating and configuring devices from cloud applications.

o handle this issue, Eurotech [101] released an open-sourced ESF,

 tool can be used along with Kura [102] . ESF adds support for ad-

anced security, remote access via virtual private network (VPN),

iagnostics and bundles for specific vertical applications. ESF max-

mizes the productivity by utilizing the basic Kura security API to

ake it easier to write Java applications that can ensure the in-

egrity and security of new software bundles. 

Eclipse foundation has injected also a number of security com-

onents into the Kura framework such as a security service, a cer-

ificate service, a secure sockets layer (SSL) manager, and a cryp-

ography service. 

• Authentication: 

Kura uses secure sockets provided by the Java Runtime envi-

ronment. The Eclipse Paho client 19 [103] handles the majority

of data communication via MQTT protocol [97] . This includes

using public key cryptography to authenticate communication

with remote devices and gateways. 
19 The Paho Java Client is an MQTT client library written in Java for developing ap- 

lications that run on the JVM or other Java compatible platforms such as Android. 

d  

i  

p  

a  
• Authorization and access control: The security service com-

ponent in Kura offers API to manage security policies and start

script consistency, whereas the certificate service API is used

to retrieve, store and verify certificates for SSL, device manage-

ment and bundle signing. 

Ensuring the non-corruption or non-tampering with a file by a

malicious user is done by doing a regular check of environmen-

tal integrity by the security manager component. ESF also en-

forces runtime policies to deny execution of particular services

or the import/export of specific packages. This makes it harder

for hackers to access the service for retrieving the master pass-

word from the device. 
• Secure communication: The SSL manager manages SSL certifi-

cates, trust stores and private and public keys. All communi-

cations are secured using SSL/TLS protocol. The cryptography

APIs are used to encrypt and decrypt secrets and to retrieve the

master password. 

.8. SmartThings 

SmartThings is a platform released by Samsung for developing

oT applications. It is mainly dedicated to smart homes, where de-

elopers can implement applications that let users manage and

ontrol their home appliances via smart phones [104] . 

.8.1. Architecture 

According to Fig. 14 , the SmartThings ecosystem comprises of

he following components: the SmartThings cloud backend , the

martThings hub/home controller , the SmartThings mobile client app

the buddy app), and the IoT device ( SmartDevice ). 

The hub (home controller) acts as a gateway between the IoT

evices (SmartDevices) and the cloud services. It connects directly

o the Internet and supports multiple communication protocols in-

luding ZigBee, Z-Wave, WiFi, and BLE. The SmartThings hub has

he ability to execute some functionality locally without the need

o connect to the cloud backend. Events are still required to be

ent to the cloud once the hub gets online in order to reflect the

urrent state of the home and execute other cloud-based services.

ommunication between all connected parties are encrypted using

SL/TLS protocol. 

The buddy app, released by SmartThings , lets users access the

ome controller, manage their IoT devices smoothly, and, if re-

uired, install third party applications (SmartApps). The buddy app

s supported by multiple mobile operating systems including An-

roid and iOS. While the buddy app provides a basic and unified

nterface to all connected devices, SmartApps are customized ap-

lications, developed by third party developers, add more options

nd functionality to the end-user. Three classes of SmartApps are
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Fig. 15. The structure of the SmartThings cloud system. 
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specified: (i) Event-handlers , (ii) Solution Modules , and (iii) Service

Managers. Event-handler SmartApps allow end-users to subscribe to

events and call handler methods upon their firings. Solution Module

SmartApps act as a container for the two other categories of Smar-

tApps and simplify the management of a certain physical area in-

side the home (e.g. bedroom). They are predefined by SmartThings

developers and thus they can be installed via the SmartThings ap-

plication interface (the buddy app). Lastly, Service Manager Smar-

tApps are applications that integrate with SmartDevices and should

be installed by end users in case of the presence of the device

on the network. SmartApps may run on the hub as well as in the

cloud depending on the physical characteristics of the SmartDevice.

SmartDevices may have the ability to connect via WiFi/IP proto-

col. This feature lets these devices to bypass the gateway and con-

nect directly to the SmartThings cloud . Each SmartDevice belongs

to one or more of the following categories: (i) Hub-connected , (ii)

LAN-connected , and (iii) Cloud-connected [105] . Hub-connected de-

vices include all devices that have the capability to interact with

the SmartThings hub using ZigBee or Z-Wave home automation

protocols, whereas LAN-connected devices have an extra feature

which lets them to communicate with the hub over the LAN, e.g.

Sonos system. Cloud-connected devices, e.g. Ecobee thermostaat , con-

nect to the cloud directly using HTTP and authenticate themselves

using OAuth protocol. Both LAN and Cloud-connected devices are

able to communicate and integrate via web services like REST or

SOAP [104] . 

There are two ways of communication between SmartApps

and SmartDevices; (i) Method calls , in which, SmartApps can ex-

ecute and perform operations over SmartDevices, and (ii) Event-

Subscription , where SmartApps can subscribe to events generated

by other SmartApps or SmartDevices. 

Fig. 15 gives an overview of the key building blocks of the

SmartThings cloud [106] . The Connectivity Management layer is re-

sponsible for maintaining persistent and secure connection be-

tween the connected device (e.g. the hub) and cloud services. The

Device Type Handlers layer simplifies the scalability by maintain-

ing an instance or a virtual image for each type of SmartDevices.

End-users interact with the physical SmartDevices indirectly via

instances, hosted in the cloud. The Subscription Processing layer

acts as an event manager for routing events from hubs/devices to

SmartApps that are subscribed to a specific SmartDevice/event. The

SmartApp Management & Execution layer provides access rights to

the stored data, and is responsible for the execution of the Smar-

tApp when triggered via either subscriptions or external calls. The

top layer of the stack is the Web UI layer which provides web ser-
ices and APIs in order to support the integration with third party

pplications. 

The SmartThings cloud backend has two important functionality.

irst, it hosts and run SmartApps in a closed source environment.

econd, it runs the virtual software image of the physical Smart-

evice. In other words, it provides the abstraction and intelligence

ayers as well as web services that support the application layer. 

.8.2. Smart applications specifications 

SmartApps should be implemented using a web-based IDE, of-

ered by SmartThings , and in Groovy programming language [107] .

ollowing a particular structure, a SmartApp is composed of five

ections: definition, preferences, predefined callbacks, event handlers ,

nd mappings . The latter is optional and only required for cloud-

onnected SmartApps. The definition section holds the metadata

f the application (e.g. application name, author, etc.). The prefer-

nces section is responsible for defining the target group of devices,

pecifying their capabilities and then reflecting the information to

he user interface for interaction purposes. The pre-defined call-

acks are methods already defined and automatically called upon

eeting some conditions during the life cycle of the SmartApp. Fi-

ally, the event handlers section contains the handler methods of

he various events. 

.8.3. Hardware specification 

SmartThings platform supports a wide variety of IoT devices that

ay either integrate with the SmartThings hub or connect directly

o the cloud backend. These devices are manufactured by several

endors like Samsung, Google, Amazon, Philips Hue and many oth-

rs. The only required specification is the ability to communicate

sing one of the compatible protocols. 

.8.4. Security features 

SmartThings has a security architecture that specifies what

martDevices a SmartApp may access and what services can a

martApp utilize in the authorized SmartDevice. In the following,

e are discussing the security attributes verified by this architec-

ure. 

• Authentication: Integrating new SmartDevice in SmartThings

environment involves the use of OAuth/OAuth2 protocol for au-

thenticating this SmartDevice and authorizing SmartThings plat-

form to access its capabilities. Cloud- and LAN-connected de-

vices follow a bit different procedure for authentication due to

the use of other communication protocols to bypass the gate-

way and connect directly to the cloud. Both of them require

identifying a custom service manager SmartApp along with a

device handler for establishing connections, handling authenti-

cation, granting authorization, and maintaining communication.

The main functions of the service manager are handling authen-

tication with 3rd party cloud service, device discovery, initiat-

ing connection using OAuth protocol, and controlling SmartDe-

vice actions. The device handler is responsible for parsing mes-

sages being sent or received by the corresponding SmartDe-

vice. On the other hand, identifying the SmartDevice through

out the authentication process is based on many factors due

to the wide range of the supported SmartDevices from various

vendors. Examples of such factors include unique identifier e.g.

serial number, media access control (MAC) address, unique IP

address, and so on. 
• Authorization and access control: Accessing SmartDevices us-

ing SmartApps follows the policies governed by the SmartThings

Capability model. Capabilities is an important concept in the un-

derlying architecture which belongs to a logical layer that pro-

vides an abstraction of the capabilities of SmartDevices. The

SmartApp should ask for a permission to use a capability of-

fered by a SmartDevice. The capability, as identified by its
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Table 1 

Examples of capabilities in SmartThings. 

Resource Name Capability Command Attributes 

Switch capability.switch on(), off() switch(status: string) 

Energy Meter capability.energyMeter – energy(status: Integer) 

Thermostat capability.thermostat off(), heat(), cool(), fanOn(), ... temperature, thermostaatMode(status: string) 

Smoke Detector capability.smokeDetector – smoke(status: string) //possible values:detected, clear, or tested 

Notification capability.notification deviceNotification(status: string) –
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framework. 
name, is composed of a set of commands and their associ-

ated attributes. Commands are methods or functions to perform

some actions on the SmartDevice, whereas attributes are input

parameters representing the state of the device. Table 1 pro-

vides some examples of some capabilities in the SmartThings

platform. As a consequence of applying this model, installing

a battery-monitoring SmartApp will be authorized to use the

capability of battery and prevented from accessing other re-

sources or capabilities supported by the SmartDevice. 

All SmartApps are executed by the SmartThings ecosystem. This

means that these apps run either in the closed-source cloud or

on the SmartThings hub. The SmartThings infrastructure environ-

ment applies Kohsuke sandboxing technique [108] and isolates

both SmartApps and SmartDevices (Device Handler instances)

from each other [109] . In the sense of providing a highly con-

trolled environment by Groovy, Kohsuke sandbox is an efficient

implementation that isolates untrusted running pieces of code

and allows only method calls that are predefined in a white list,

stored in the restricted operating system. Developers can not

create their own classes or load external libraries in such envi-

ronment and once they publish a SmartApp or a SmartDevice,

a private isolated data store is assigned. 
• Secure communication: The SmartThings Hub is a security-

enabled Z-Wave product. When a security-enabled Z-Wave de-

vice is added to the Hub’s network, communication will be

encrypted using 128-bit AES. As the hub also supports the

ZigBee protocol, it provides the same security guarantees for

ZigBee-enabled products. In general, communications between

all building blocks of the SmartThings ecosystem is performed

over a SSL/TLS protocol. 

. Discussion 

The IoT is where the Internet meets the physical world, in

hich, a completely new dimensions to security should be inves-

igated as the attack threat moves from manipulating information

o controlling actuations. The frameworks, included in this survey,

pproach IoT from the perspectives and priorities of their vendors.

t the hardware level, there is a gap between these frameworks

n terms of compatibility. This issue is due to the requirements

nd dependencies of the other components of the ecosystem of

ach framework (e.g. OS, security requirements). For example, IETF

lass-1 IoT devices can be integrated with AWS IoT framework, and

hey are not supported in Brillo/Weave because they do not have

ufficient memory to allocate the operating system. HomeKit con-

ects only to IoT devices that meet the minimum level of secu-

ity by supporting Apple’ s MFi licensed technology. At the soft-

are level, some frameworks support any programming language

or apps development (e.g. AWS IoT ), whereas some others are

imited to specific programming languages (e.g. SmartThings sup-

orts only Groovy). At the security level, each framework encapsu-

ates its own security logic and applies the model that implements

his logic. However, they follow the same trend and enforce the

ame security standards in some aspects. For example, for secur-

ng communications between IoT elements, they all use SSL/TLS
rotocol. For access control, they behave a little bit differently;

ome of them implements sandboxing techniques and some oth-

rs propose their own models (e.g. capability model in SmartThings ,

onfiguration files in Calvin , etc.). Various cryptography primitives

nd cipher suites are supported by each framework depending on

he availability of either supported software libraries or hardware

odules. Techniques used to perform the mutual authentication

etween the involved parties in each framework are limited to the

overage domain and the capabilities of communication protocols.

heoretically, the presented security architectures seem to be ro-

ust and immune against potential threats. However, design flaws

till exposes users to significant security risks if good practices

n both design and implementation are not followed. Fernandes

t al. [109] constructed four proof-of-concept attacks by exploit-

ng two design flaws in SmartThings framework. On the other hand,

ome security challenges are still not handled by the majority of

oT frameworks. The vast majority of IoT devices depend on the

ommercial of the shelf (COTS) microcontrollers, and these devices

re deployed without hardware security support. However, the de-

ign of the security models of the current frameworks does not

onsider these devices. Encryption techniques need higher com-

uting power than what the simplest type of IoT devices can pro-

ide. Some frameworks (e.g. HomeKit ) create and inject the se-

ret key of the IoT device prior deployment to be used for the

hole lifetime of the device. This key can’t be changed after de-

loyment. This increases the overall on-boarding time and threat-

ns the privacy as, generally, IoT entities may not be owned by a

ingle user (e.g. selling or exchanging this device between multiple

sers). Moreover, the embedded device may outlive the encryption

lgorithm lifetime, causing a cavity in the security architecture. For

xample, smart meters could last beyond 40 years, whereas crypto

lgorithms have a limited lifetime before they are broken. There-

ore, they need to be updated frequently. Physical protection is still

nother security challenge couldn’t be handled easily in IoT frame-

orks. Deployed IoT devices can be stolen or moved from their lo-

ations. This requires a physical protection of the IoT device to se-

ure sensitive information in its memory. Addressing the privacy of

he outlined frameworks was challenging due to the lack of infor-

ation in some of them. Privacy should be ensured in all levels of

he architectures. SDKs offered to third party developers to imple-

ent their IoT apps should preserve privacy in terms of preventing

enerating traceable signatures of the location and behavior of the

ndividuals by applications. Finally, the flexibility of the security

ramework is a requirement. For example, If a cloud server is un-

ergoing a Denial of Service (DoS) attack, the secure availability of

ata for end-users should be verified by outsourcing it from a sec-

ndary server. For a critical industrial processes that rely on time,

he availability of data is of paramount importance. This feature is

ot ensured by frameworks such as Kura as it is M2M framework

nd does not offer its own cloud system. The user of Kura has to

andle it himself by choosing a cloud server that meet this prop-

rty. 

Table 2 presents a comparison of the characteristics of each IoT
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Table 2 

A brief summary of the characteristics of IoT frameworks. 

IoT Framework SmartThings AWS IoT Calvin Brillo/Weave Kura ARM Mbed HomeKit Azure IoT 

Company Samsung Amazon Ericsson Google Eclipse ARM Apple Microsoft 

Architecture 

Components 

+ Cloud Backend 

+ Smart 

Devices + 

SmartThings 

Hub + 

SmartThings 

Home App. 

+ Cloud services 

+ Smart devices 

+ Device 

Gateway + 

Rules Engine + 

Registry Unit + 

Device Shadow 

+ Actors: smart 

embedded 

devices, smart 

phones, cloud, 

servers. + Flow 

based 

computing 

+ physical devices 

with 

Brillo/Android 

as OS + OTA 

servers + Cloud 

Services 

Java/OSGi based. + Mbed OS + 

Mbed device 

Connector + 

mbed Cloud + 

mbed Client + 

ARM Cortex-M 

MCU 

+ Home Conf. 

D.B. + HAP + 

HomeKit API + 

HomeKit- 

enabled 

devices 

+ Cloud backend 

+ Cloud 

Services + 

Cloud Gateway 

+ Smart 

Devices 

Programming 

Language 

Groovy Any language can 

use Restful API 

+ CalvinScript + 

Python + others 

Any 

programming 

language can 

talk through 

Weave SDK 

Java + C++ for device 

side + multiple 

for user side 

+ Swift + 

Objective-C 

+ C + Node.js + 

Java + Python + 

.Net 

Hardware 

Dependencies 

+ SmartThings 

Hub 

+ (optionally) 

AWS hub 

NONE NONE NONE + ARM MCU + (optionally) 

Apple TV + 

(optionally) 

HomeKit bridge 

+ Azure IoT Hub 

Software 

Dependencies 

The Home app. NONE NONE + Brillo OS + 

Weave SDK 

+ JVM 7.0 or later + mbed OS + 

mbed Client 

+ iOS + watchOS 

+ tvOS + 

HomeKit app. 

NONE 

Compatible 

Hardware 

All MCUs that 

support 

compatible 

communication 

protocols. 

Any MCU can be 

configured 

using C, 

arduino 

platforms, or 

Node.js 

Any MCU with 

communication 

capabilities 

Any MCU with 

memory = 

35 MB 

Linux based 

devices that 

support JVM 

7.0+ 

+ 32 bits ARM 

Cortex-M MCUs 

+ All devices that 

support Apple’s 

MFi licensed 

technology + 

All devices can 

connect to 

HomeKit bridge 

All devices that 

have 64KB 

RAM and RTC 

and support 

SHA-256 

Supported 

Application 

Protocols 

+ HTTP + HTTP + 

WebSockets + 

MQTT 

+ HTTP + HTTP + XMPP + MQTT + CoAP + CoAP + HTTP + 

MQTT + others 

+ HTTP + HTTP + MQTT + 

AMQP 

Supported Com- 

munication 

Protocols 

+ ZigBee + 

Z-wave + WiFi 

+ BLE 

All + WiFi + i2c + BT 

+ others 

+ WiFi + BLE + 

Ethernet 

+ WiFi + BLE All + WiFi + BLE + 

ZigBee + 

Z-wave 

+ WiFi + ZigBee + 

Z-wave + 

others 

Security 

Authentication + OAuth/ OAuth2 

protocol. 

+ X.509 

Certificates + 

AWS IAM + 

AWS Cognito 

+ X.509 

Certificates + 

Sim-based 

Identity 

+ OAuth 2.0 + 

TEE 

+ secure sockets + X.509 

Certificates + 

other standards 

(mbed TLS) 

+ Ed25519 

public/private 

key signature + 

Curve25519 

keys 

+ X.509 

certificates + 

HMAC-SHA256 

signature 

Access Control + Capability 

mode/ Rules 

for granting 

permissions + 

Sandboxing 

Technique 

+ IAM Roles + 

Rules Engine + 

Sandboxing 

+ Configuration 

files 

+ SELinux + ACL 

+ Sandboxing: 

UID&GID 

+ Security 

Manager + 

Runtime 

Policies 

+ uVisor + MPU + Sandboxing + 

iOS security 

architecture + 

ASLR Technique 

+ Azure Active 

Directory 

Policies + 

Access control 

rules of Azure 

IoT hub 

Communication + SSL/TLS + SSL/ TLS + SSL/ TLS + SSL/TLS + SSL/TLS +mbed TLS + TL S/DTL S + 

Perfect Forward 

Secrecy 

+ TL S/DTL S 

Cryptography + 128-bits AES 

protocol. 

+ 128-bits AES + 

other 

primitives 

+ ECC protocol Full disk 

encryption 

supported by 

Linux kernel 

Multiple 

cryptography 

primitives 

+ mbed TLS + 

Hardware 

Crypto. 

+ 256-bits AES + 

many others 

Multiple 

cryptography 

primitives 
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. Conclusion 

The IoT market is growing rapidly and as a consequence the at-

ention has shifted from proposing single IoT elements and pro-

ocols towards application platforms in order to identify frame-

orks supporting the standard IoT suites of regulations and pro-

ocols. This study has covered a subset of commercially available

rameworks and platforms for developing industrial and consumer

ased IoT applications. The selected frameworks have the same de-

ign philosophy in terms of identifying cloud-based applications by

entralizing distributed data sources. However, they followed var-

ous approaches in order to apply this philosophy. A comparative

nalysis of the frameworks was conducted based on the architec-

ure, hardware compatibility, software requirements, and security.

e highlighted on the security measures of each framework as

erifying the various security features and immunity against at-

acks is one of the most important contemporary issues facing the

nternet of Things. 
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