

Implementation and Analysis of AES Encryption on GPU

Qinjian Li
Center for High Performance Computing
Northwestern Polytechnical University

Xi’an, CHINA

Chengwen Zhong
National Key Laboratory of Science and Technology on

Aerodynamics Design and Research
Northwestern Polytechnical University

Xi’an, CHINA
zhongcw@nwpu.edu.cn

Kaiyong Zhao, Xinxin Mei, Xiaowen Chu
Inspur-HKBU Joint Lab of Heterogeneous Computing

Department of Computer Science
Hong Kong Baptist University

Hong Kong, CHINA

Abstract—GPU is continuing its trend of vastly outperforming
CPU while becoming more general purpose. In order to
improve the efficiency of AES algorithm, this paper proposed
a CUDA implementation of Electronic Codebook (ECB) mode
encoding process and Cipher Feedback (CBC) mode decoding
process on GPU. In our implementation, the frequently
accessed T-boxes were allocated on on-chip shared memory
and the granularity that one thread handles a 16 Bytes AES
block was adopted. Finally, we achieved the highest
performance of around 60 Gbps throughput on NVIDIA Tesla
C2050 GPU, which runs up to 50 times faster than a sequential
implementation based on Intel Core i7-920 2.66GHz CPU. In
addition, we discussed the optimization under some practical
application scenarios such as overlapping GPU processing and
data transfer.

Keywords-CUDA; GPU; AES; Electronic Codebook; Cipher
Feedback; parellel computing

I. INTRODUCTION
As Internet becomes more and more important in

commercial, government, finance and other key areas, there
is an increasing demand of efficient data encryption
solution. Advanced Encryption Standard (AES) [1] is a
specification of symmetric cryptographic algorithm
announced in 2001 by the National Institute of Standards
and Technology (NIST) to replace the Data Encryption
Standard (DES). It has been adopted by the U.S. government
and is now used worldwide. AES has several advantages in
security, flexibility, parallel potential and so on.

Over the years, the computer Graphics Processing Unit
(GPU) is developing with a speed far exceeding Moore’s
predictions and recent advancement in CPU performance.
The high computing efficiency, outstanding parallelism as
well as programmability developed recently, of GPU,
provide a good platform of general purpose scientific and
engineering computing other than graphic processing [2].
Nowadays, The GPU has been widely used in PCs,
workstations, and data center servers. The various parallel
products on the market promote high performance

computing gradually into desktop or laptop areas. Since
GPU has brought out as a general purpose applications’
accelerator, it has attracted attention from various research
fields [3] [4] [5].

It has become increasingly clear that the speed of GPU-
based implementation for symmetric block cipher surpasses
that of FPGA implementation [6], for which the speedup
depends heavily on programmers’ tuning techniques. GPU
could act as a good co-processer in block cryptography, so
the effort in developing novel approaches in implementation
of AES encryption on GPU is of great significance in
practice.

II. CUDA
Compute Unified Device Architecture (CUDA) is a

parallel computing platform and programming model
invented by NVIDIA. Making use of NVIDIA GPU’s
parallel computing engine, CUDA is more efficient at
solving many complex computational tasks than CPUs.

For CUDA users, GPU behaves like a single instruction
multiple thread (SIMT) computing device consisting of a
group of streaming multi-processors (SM). A Thread is the
basic implementation unit of CUDA program model. Each
thread executes the same code, which is called as CUDA
kernel. While similar to threads in operating systems,
CUDA threads are extremely light weight threads. Due to
the efficient hardware support, CUDA programmers can
ignore the cost of generating and scheduling these threads.
CUDA threads are organized hierarchically. A certain
number of threads can be composed of a thread block
(BLOCK) up to three dimensions. Certain thread blocks can
be composed of one-dimensional or two-dimensional grid
(GRID). Warp is the basic unit of SM managing, scheduling
and executing threads. Threads in the same warp start at the
same time at the same program address. And each time, only
one thread is executed.

CUDA memory hierarchy includes registers, shared
memory, constant memory, texture memory and global
memory. CUDA provides explicit methods to organize
memory architecture. Using this storage hierarchy

2012 IEEE 14th International Conference on High Performance Computing and Communications

978-0-7695-4749-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HPCC.2012.119

843

effectively is of great significance to avoid GPU’s memory
bandwidth bottleneck as well as to improve the overall
performance of the applications.

Readers, who are interested, please find the details of
CUDA program model and its software and hardware
structure in [7].

III. OVERVIEW OF AES

A. The Encryption Scheme
The AES cipher is specified as a number of repetitions of

transformation rounds that convert the input plaintext into
the final output of ciphertext. Each round consists of several
processing steps: AddRoundKey, SubBytes, ShiftRows and
MixColumns. Note that the initial round only includes
AddRoundKey step that depends on the encryption key,
while the last round does not include MixColumns step. The
number of transformation rounds, however, is decided by
the size of encryption key. The ciphertext can be
transformed back into the original plaintext by applying a set
of reverse rounds using the same encryption key. Although
128-bit, 192-bit, or 256-bit key size can be selected, we
discuss only 128-bit in this paper. Our work can be easily
extended to different key sizes.

A lookup table solution could be substituted for the four
steps in an AES transformation round, to enable a more
compact and efficient implementation on 32-bit or more bits
processors. In this method, four lookup tables are defined as:
T0 T1, T2 and T3. Each table (or “T-box”) accepts one byte of
input, and comes out with a 32-bit column vector. The
operations of each transformation round can be defined as
follows:

jjjjjj kaTaTaTaTe ⊕⊕⊕⊕= +++][][][][3,332,221,11,00 (1)

where a represents the round input, kj is one column of the
stage key and ej denotes one column of the round output in
terms of bytes of a.

According to the compact solution above, it only takes 4
exclusive-OR operations and 4 table lookups per column per
round. Although the transformation order of AES decryption
and encryption are different, an equivalent version of
decryption algorithm and encryption algorithm has the same
structure. The details of AES algorithm can be found in [8].

B. The work modes of AES block cypher
In cryptography, block cipher modes of operation allow

encrypting more than one plaintext blocks with the same key
and ensure its security. In 2001, NIST released five
recommended modes of AES operation [9]. These modes
have different characteristics of parallelization caused by
their algorithm difference. A simple comparison of these
modes is listed in Table I.

The input to the encryption processes of the CBC, CFB,
and OFB modes includes a data block called the
initialization vector (IV) in addition to the plaintext. An
initialization vector must be generated for each execution of
the encryption operation, and the same vector is necessary
for the corresponding execution of the decryption operation.

TABLE I. COMPARISON OF FIVE RECOMMENDED MODES

Mode Description Parallelization
potential

Electronic
Codebook
(ECB)

For a given key, the forward cipher
function is applied directly and
independently to each block of the
plaintext.

Suitable for
parallelization

Cipher
Block
Chaining
(CBC)

Each successive plaintext block is
exclusive-ORed with the previous
output/ciphertext block to produce the
new input block. The forward cipher
function is applied to each input block
to produce the ciphertext block.

Decryption is
suitable for
parallelization

Cipher
Feedback
(CFB)

The feedback of successive ciphertext
segments into the input blocks of the
forward cipher to generate output
blocks that are exclusive-ORed with
the plaintext to produce the ciphertext,
and vice versa.

Not suitable for
parallelization

Output
Feedback
(OFB)

The iteration of the forward cipher on
an IV to generate a sequence of output
blocks that are exclusive-ORed with
the plaintext to produce the ciphertext,
and vice versa.

Not suitable for
parallelization

Counter
(CTR)

The application of the forward cipher
to a set of input blocks, called
counters, to produce a sequence of
output blocks that are exclusive-ORed
with the plaintext to produce the
ciphertext, and vice versa.

Suitable for
parallelization

It is notable that in CBC encryption, the input block to

each forward cipher operation (except the first) depends on
the result of the previous forward cipher operation, so the
forward cipher operations cannot be performed in parallel.
In CBC decryption, however, the input blocks for the
inverse cipher function, i.e., the ciphertext blocks, are
immediately available, so that multiple inverse cipher
operations can be performed in parallel.

IV. RELATED WORK
 Harrison et al. presented the first CPU competitive
implementation of AES on GPU [10]. The authors achieved
AES encryption with 870 Mbps throughput on Geforce
7900GT using Direct X9.

Manavski implemented CUDA-AES and achieved 8.28
Gbps throughput using Geforce 8800GTX in [11]. Authors
of this paper took the table lookup approach and stored pre-
computed T-boxes in GPU constant memory.

Harrison et al. [12] presented an AES implementation of
CTR mode of operation on an NVIDIA G80 GPU. It is
notable that the authors used all available types of on-chip
memory (shared memory, constant memory and texture
memory) to store lookup tables and found that using shared
memory lead to best performance.

Di Biagio et al. [13] also proposed an implementation of
CTR mode of operation using Geforce 8800GT. Authors of
this paper indicated that using on-chip shared memory rather
than constant memory to store T-boxes would bring a
considerable performance improvement. In addition, they
carried out a tentative discuss on parallel processing

844

granularity. Also Chonglei Mei et al. [14] implemented
AES encryption on Geforce 9200M in a similar way.

Liu et al. [15] implemented AES on a Geforce 9800
GPU to investigate the program behavioral characteristics
and their impacts on the performance. They found the
following four observations: (1) The number of threads can
affect the overall performance. (2) Larger shared memory
capacity is necessary to hold the lookup tables. (3) Data
stored in global memory are organized to generate burst
access to global memory. (4) Communication between CPU
and GPU might be a program bottleneck.

Nishikawa et al. conducted a study on granularity
optimization for GPU-based AES encryption in [16]. They
defined 16Bytes/thread as the granularity of one thread to
process one plaintext block and other similar granularities
such as 4Bytes/thread and 1Byte/thread.

Keisuke Iwai et al. [17] studied the influence of memory
usage scheme as well as the parallel processing granularity
on the GPU-based AES encryption efficiency. They
affirmed the 16Bytes/thread granularity and storing T-boxes
in shared memory lead to best encryption throughput. Most
recently, Nishikawa et al. [18] evaluated AES and other
three ciphers based on previously reported insights using
NVIDIA Tesla C2050 GPU.

Table II summarizes the peak performances and
implementation environments of all previous works. Since
the CBC mode AES is wildly used (such as the
encryption/decryption algorithm of RAR files) but its
parallel implementation of decryption has not received any
discussion, this paper is motivated to discuss the GPU-based
implementation of CBC mode AES decryption in addition to
the basic ECB mode AES encryption.

TABLE II. PERFORMANCE OF PREVIOUS WORKS

Reference Compute Device Mode Throughput

Harrison et. al.[10] Geforce 7900GT ECB 870Mbps
Manavski et.al.[11] Geforce 8800GTX Unknown 8.28Gbps
Harrison et. al.[12] NVIDIA G80 CTR 6.91Gbps
Di Biagio et.al.[13] Geforce 8800GT CTR 12.5Gbps
Chonglei Mei et.al.[14] Geforce 9200M Unknown 6.4Gbps
Nishikawa et.al.[16] Geforce GTX285 ECB 6.25Gbps
Keisuke Iwai et.al.[17] Geforce GTX285 ECB 35Gbps
Nishikawa et.al.[18] Tesla C2050 ECB 50.6Gbps

V. OUR GPU-BASED AES APPROACH

A. Parallel granularity
Our implementation also adopts the 16 bytes per

thread parallel granularity, which means that each thread is
mapped to a 16 bytes AES block and the blocks are
processed concurrently. Since there is no need of parallel
execution for each thread computation, or synchronization
and sharing data among executed threads, the threads can
complete processing on their own registers.

B. Memory usage scheme
Both the Round Keys values and T-boxes are read-

only data, and shared by all threads, in line with constant

memory features. However, the T-boxes access is random,
which is not the same as the Round Keys. Considering that
fast T-boxes access is of great significance in AES
algorithm, and the T-box size is only 4KB, we store T-boxes
in on-chip shared memory to ensure fast memory access.

C. ECB mode encryption
In ECB mode encryption, each thread has to load four

continuous 32-bit words (16 bytes block) into the global
memory for processing. Due to the global memory access of
one 32-bit word by threads within a half-warp is separated
and non-sequential, it would lead to low global memory
bandwidth. To solve this problem, we can reorder the
plaintext in host memory before they are loaded onto device
memory. The reorder process is as following: divide each
plaintext block into four 32-bit words, store them column-
majored in a two dimensional memory space, so that
different 32-bit words of different AES blocks are consistent
in host linear memory space. Then all 16 threads in a half-
warp could read the consistent 32-bit words in global
memory, thus the memory access is coalesced. The reorder
process could be done efficiently and naturally when loading
plaintext from disk files. There is another approach make
access to global memory coalesced, for example, Liu et al.
used a CUDA built-in vector data type to combine 16 linear
bytes into a 128-bit ‘int4’ variable in [15].

D. CBC mode AES decryption
The CBC mode decryption implementation is almost the

same with the ECB mode encryption mentioned above
except that the decrypted blocks need to exclusive-OR the
previous ciphertext blocks to recover the exact plaintext. In
order to avoid reloading the ciphertext blocks from the low
bandwidth global memory for the exclusive-OR operations,
we can store the ciphertext blocks, which had already been
loaded in the registers by each thread, into share memory.
Thus, when the inverse cipher function has been applied to
the corresponding cipher block, the resulting block can
exclusive-OR with its previous ciphertext block in share
memory to recover the exact plaintext with high efficiency.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Environment

TABLE III. SPECIFICATION OF EXPERIMENT PLATFORM

Platform Inspur NF5588
CPU Intel(R) Xeon(R) E5620@2.4GHz
Memory 24GB
OS Windows 7(64-bit)
Compiler Visual C++9.0(option –O2)
GPU Accelerator NVIDIA Tesla C2050
GPU Memory 3GB
PCI Bus PCI-E 2.0 16
CUDA Compiler Nvcc Ver4.0

Table III shows the configuration of our experiment

platform. Our early results show that each block contents
512 threads can get the 100% occupancy rate of the SM and
the highest computational speed. Therefore, we use 512

845

threads in a block as our default setting. Additionally, we set
the capacity of shared memory and L1 cache in Tesla C2050
to 48 KB and 16 KB and enable the “ECC” check by default.

Figure 1. AES throughput of different input size

B. Throughput
Fig.1 gives the throughput of ECB mode encryption and

CBC mode decryption of different input size.
In CBC mode AES decryption, each thread needs 8KB

(512x16Byte) shared memory to store ciphertext blocks for
exclusive-OR operations. In NVIDIA Tesla C2050, each
SM can offer 48KB shared memory, except the 4KB for T-
boxes and other space for few parameters, each SM could
still afford 3 thread blocks working concurrently. The CBC
mode decryption could make full use of SMs as same as
ECB mode encryption. The consistent trend of two curves in
Fig.1 shows that.

Our experiment achieves coalesced global memory
access and high speed grouping on low latency registers.
Compared with the theoretical 1.03Tflops compute
performance and 144GB/s memory bandwidth, however, the
highest throughput we have reached is 60GB/s. To analyze
the execution process, we can find that the compute task in
AES is not that much. The main reason of low utilization
rate may caused by frequent random access to T-boxes in
shared memory, which brings lots of bank conflicts [7].

Finally, we get a maximum of 50 times speedup
compared with Core i7-920 2.66GHz CPU implementation
which achieved 1.2Gbps throughput [17].

C. Overlapping data transfer and processing
In order to study the parallel computing capacity of

GPU, we do not take data transfers time into account when
calculating the throughput. However, it is still necessary to
consider the data transfers cost to evaluate actual promotion
of general GPU computing.

When GPU is working, the data should transfer from
host memory to device memory through PCI-E bus.
Although PCI-E 2.0×16 can provide 8GB/s throughput up

and down in theory, there is only about 3GB/s in our real
experiments. In our experiment, the time of data transfer
from host to device is more than the time of computing
(approximately 2 fold). Including data transfers, the
maximum throughput is only 11.3Gbps. Therefore, we try to
use stream mechanism provided by CUDA to overlap data
transfer and kernel execution in decryption process.

TABLE IV. TOTAL COST USING STREAMS

Data
Scales(KB)

Time spent with different stream
numbers(ms)

Pined
memory

allocation
time(ms) 0 2 4 8 16

256 0.44 0.20 0.19 0.23 0.29 0.3

1024 0.96 0.45 0.43 0.60 0.67 0.31

4096 3.15 2.23 2.10 2.06 2.09 0.93

16384 12.58 6.69 6.12 5.88 7.94 3.36

65536 48.06 35.12 32.83 23.45 31.23 13.12

262144 189.5 140.2 97.03 92.47 124.36 58.5

Table IV shows the time spent with different stream

numbers and the time of pined memory application in
decryption process. Technically speaking, using streams
could hide the small parts of data transfer and kernel
execution, and the total time cost would decrease with more
streams. However, as table IV shows, the total computing
time is minimized with 4 or 8 streams, while increases with
stream number grow. The reason is that besides the inherent
cost by streams, the transfer speed through PCI-E bus of
overlapping data as well as kernel execution decreases
heavily. This is proved by Visual Profiler analysis [19].

Using stream asynchronous transfer data must use the
page-lock memory. Note that the page-locked memory
allocation takes time can't be ignored. Consider this case, the
decryption of 256MB cipher can get the highest actual
throughput is only 14.22Gbps. And, decrypt the small file
(e.g. 256KB) with streams will reduce the actual throughput,
so we must decide whether to use overlapping technique or
not, according to the file size.

As shown in table IV, decrypting 256MB cipher text
achieves the highest 23.2Gbps throughput with 8 streams,
corresponding to the result of [17]. Because of the limitation
of PCI-I bandwidth, the actual throughput of the GPU-based
AES algorithm hardly increases with better compute
capacity GPUs.

VII. CONCLUSION AND FUTURE WORK
As described in this paper, although the AES encryption

and decryption make significant performance advance, the
bandwidth of PCI-E bus and page-lock memory allocation
cost are vital limitations. It makes the throughput of
encryption and decryption greatly reduced. Even
overlapping techniques used, this problem can't be solved
satisfactorily.

The maximum 60Gbps throughput of AES-CBC
decryption on Tesla C2050 indicates that GPU-based AES
can obtain one order magnitude speedup to CPU one. The

846

brute force of lowest 128-bit AES encryption algorithm on
GPU is still not practical, but a wide range of GPU in PC
can be used as general-purpose accelerator to improve the
security of network applications.

Lastly, many cipher algorithms exist in the real world in
addition to the algorithms implemented in this paper. Future
research might investigate other common encryption
algorithms.

ACKNOWLEDGMENT
This project was supported by the graduate starting seed

fond of Northwestern Polytechnical University (Grant No.
Z2012126).

Appendix A: Kernel function encrypt_Kernel

Algorithm 1 ECB mode AES encryption
__global__ static void encrypt_Kernel(u32_t *dev_input,
u32_t* dev_output, size_t pitch_a, size_t pitch_b, u32_t* dev_sm_te1,
u32_t* dev_sm_te2, u32_t* dev_sm_te3, u32_t* dev_sm_te4)
{

// local thread index and global index
int tid = threadIdx.x;
int index = THREAD_NUM*(BLOCK_NUM*blockIdx.y+blockIdx.x)

+ threadIdx.x;
u32_t w1,w2,w3,w4,s1,s2,s3,s4;

// store the T-boxes and sbox in share memory.
__shared__ u32_t sm_te1[256], sm_te2[256], …
__shared__ u8_t sm_sbox[256];

if (tid<256){

//load dev_sm_te1, dev_sm_te2, dev_sm_te3, dev_sm_te4 and
// const_sm_sbox to share memory variables sm_te1, sm_te2,
//sm_te3, sm_te4 and sm_sbox;

...
}
//load the cipher blocks, all the global memory transactions are
//coalesced. The original plain text load from files, due to the read
//procedure reverse the byte order of the 32-bit words, So a reverse
//process was necessary.
w1 = dev_input[index];
w1= ((w1>>24)&0xFF)|((w1>>8)&0xFF00)|((w1<<8)&0xFF0000)|

((w1<<24)&0xFF00 0000;
...
// first round AddRoundKey: ex-or with round key
w1 ^= const_m_ke[0]; ...
// round transformation: a set of table lookups operations.

#pragma unroll
for (int i = 1; i < 10; i++) {

s1 = (sm_te1[w1 >> 24] ^ sm_te2[(w2 >> 16) & 0xFF] ^
sm_te3
[(w3 >> 8) & 0xFF] ^ sm_te4[w4 & 0xFF]) ^
const_m_ke[i*4];

w1 = s1;
...

} //The final round doesn’t include the MixColumns
w1 = (u32_t)(sm_sbox[s1 >> 24]) << 24; //SubBytes and ShiftRows
w1 |= (u32_t)(sm_sbox[(s2 >> 16)& 0xFF]) << 16;
w1 |= (u32_t)(sm_sbox[(s3 >> 8)& 0xFF]) << 8 ;
w1 |= (u32_t)(sm_sbox[s4 & 0xFF]);
w1 ^= const_m_ke[ROUNDS*4]; //AddRoundKey
w1=((w1>>24)&0xFF)|((w1>>8)&0xFF00)|((w1<<8)&0xFF0000)

|((w1<<24)&0xFF000000;
dev_output[index] = w1 ; //store the cipher text
...

}

Appendix B: Kernel function decrypt_Kernel
Algorithm 2 CBC mode AES decryption
__global__ static void decrypt_Kernel(u32_t *dev_input,

u32_t* dev_output, size_t pitch_b, size_t pitch_b, u32_t* dev_sm_td1,
u32_t* dev_sm_td2, u32_t* dev_sm_td3, u32_t* dev_sm_td4)
{

// local thread index and global index
int tid = threadIdx.x;
int index = THREAD_NUM*(BLOCK_NUM*blockIdx.y+blockIdx.x)

+ threadIdx.x;
u32_t w1,w2,w3,w4,s1,s2,s3,s4;

// store the T-boxes and sbox in share memory.
__shared__ u32_t sm_td1[256], sm_td2[256], …
__shared__ u8_t sm_isbox[256];

 // store the ciphertext blocks for the later ex-or operations.
__shared__ u32_t iv_1[THREAD_NUM], iv_2[THREAD_NUM], ... ;

if (tid<256){

//Load dev_sm_td1, dev_sm_td2, dev_sm_td3, dev_sm_td4 and
// const_sm_sbox to share memory variables sm_td1, sm_td2,
//sm_td3, sm_td4 and sm_isbox;

...
}
// first thread of each block store the cipher blocks that corresponding
// to the last thread of the previous block to share memory.
if(tid = = 0 & index !=0){

w1 = dev_input[index-1];
iv_1[0] = ((w1>>24)&0xFF)|((w1>>8)&0xFF00)|

((w1<<8)&0xFF0000)|((w1<<24)&0xFF000000);
...

}
//the first thread of the whole gird load the initialization vector (IV).
if(index==0){

 iv_1[0] = dev_iv[0];
...

}
//Load the blocks and reverses the byte order of the 32-bit words.
w1 = dev_input[index];
w1= ((w1>>24)&0xFF)|((w1>>8)&0xFF00)|((w1<<8)&0xFF0000)|

((w1<<24)&0xFF00 0000;
...
if(tid<THREAD_NUM-1){
 //store the current cipher block in share memory for later usage.

 iv_1[tid+1] = w1;
...

}
if(index==THREAD_NUM*BLOCK_NUM-1){
 //the final thread of a grid store the last cipher block to
 //global memory for next kernel.

 dev_iv[0] = w1;
...

}
// AddRoundKey: ex-or with round key
w1 ^= const_m_ke[0];
...
// round transformation: a set of table lookups operations.

#pragma unroll
for (int i = 1; i < 10; i++) {

s1 = (sm_td1[w1 >> 24] ^ sm_td2[(w2 >> 16) & 0xFF] ^ sm_td3
[(w3 >> 8) & 0xFF] ^ sm_td4[w4 & 0xFF]) ^
const_m_ke[i*4];

w1 = s1;
...

}
w1 = (u32_t)(sm_isbox[s1 >> 24]) << 24; //SubBytes and ShiftRows
w1 |= (u32_t)(sm_isbox[(s4 >> 16)& 0xFF]) << 16;
w1 |= (u32_t)(sm_isbox[(s3 >> 8)& 0xFF]) << 8 ;
w1 |= (u32_t)(sm_isbox[s2 & 0xFF]);
//AddRoundKey and ex-or with the corresponding ciphertext to recover
//the the exact plaintext.
w1 ^= iv_1[tid]^const_m_kd[ROUNDS*4];
w1 = ((w1>>24)&0xFF)|((w1>>8)&0xFF00)|((w1<<8)&0xFF0000)

|((w1<<24)&0xFF000000;
dev_output[index] = w1 ; //store the results
...

}

847

REFERENCES
[1] National Institute of Standards and Technology (NIST), “FIPS-197 :

Advanced Encryption Standard (AES)”, 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] WU EH, “State of the art and future challenge on general purpose
computation by graphics processing unit,” Journal of Software, vol.
15(10), 2004, pp.1493-1504(in Chinese with Englisth abstract).

[3] X.-W. Chu, K. Zhao, and M. Wang, “Massively Parallel Network
Coding on GPUs,” Proc. of IEEE IPCCC’08, Austin, Texas, USA,
Dec 2008. pp. 2070-2078.

[4] X.-W. Chu, K. Zhao, and M. Wang, “Practical Random Linear
Network Coding on GPUs,” Proc. of IFIP Networking’09, Archen,
Germany, May 2009.

[5] Y. Li, K. Zhao, X.-W. Chu, and Jiming Liu, “Speeding up K-Means
Algorithm by GPUs,” Proc. of 2010 IEEE Internactional Conference
on Computer and Information Technology(IEEE CIT 2010), July
2010, Bradford, UK. pp.115-122.

[6] H.Qin, T.Sasao, and Y.Iguchi, “An FPGA design of AES encryption
circuit with 128-bit keys,” Proc. of 15th IEEE/ACM Great Lakes
Symposium on VLSI(GLSVLSI’05), 2005, pp.147-152.

[7] NVIDIA, CUDA Programming Guide, Version 4.0, 2011.
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs
/CUDA_C_Programming_Guide.pdf

[8] W. Stallings, Cryptography and Network Security: Principles and
Practices, 3rd ed., Beijing: Publishing House of Electronics Industry,
2004, pp.103-127.

[9] M. Dworkin, “Recommendation for block cipher modes of operation:
methods and techniques,” Gaithersburg: U.S.Doc/NIST,2001.
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800- 38a.pdf

[10] Owen. Harrison, J. Waldron, “AES Encryption Implementation and
Analysis on Commodity Graphics Processing Units,” Proc. of the 9th
Workshop on Cryptographic Hardware and Embedded Systems
(CHES 2007), Vienna, Austria, September 10-13, 2007. LNCS, Vol.
4727/2007, Pages 209-226.

[11] S.A.Manavski, “CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography,” Proc. of 2007 IEEE International
Conference on Signal Processing and Communication(ICSCP 2007),
IEEE press, Nov. 2007, pp.65–68.

[12] Owen Harrison, John Waldron, “Practical Symmetric Key
Cryptography on Modern Graphics Hardware,” Proc. of the 17th
conference on Security symposium. San Jose, CA, 2008, pp. 195-209.

[13] A. D. Biagio, A. Barenghi, G. Agosta, and G. Pelosi, “Design of a
parallel AES for graphics hardware using the CUDA framework,”
Proc. of 2009 IEEE International Parallel and Distributed Processing
Symposium, IEEE press, 2009, pp.1–8.

[14] Chonglei Mei, Hai Jiang, Jenness, “CUDA-based AES parallelization
with fine-tuned GPU memory utilization,” Proc. of 2010 IEEE
International Symposium on Parallel Distributed Processing
Workshops and PhD Forum(IPDPSW), IEEE press, 2010, pp.1-7.

[15] Gu Liu, Hong An, Wenting Han, Guang Xu, Ping Yao, Mu Xu,
Xiurui Hao, Yaobin Wang, “A Program Behavior Study of Block
Cryptography Algorithms on GPGPU,” Proc. of Frontier of
Computer Science and Technology, Fourth International Conference
on FCST ’09, 2009, pp.33–39.

[16] N.Nishikawa, K. Iwai, and T. Kurokawa, “Granularity optimization
method for AES encryption implementation on CUDA(in
Janpanese),” IEICE technical report. VLSI Design Technologies
(VLD2009-69), Kanagawa, Japan, Jan. 2010, pp.107-112.

[17] K. Iwai, T. Kurokawa, and N. Nishikawa, “AES encryption
implementation on CUDA GPU and its analysis,” Proc. of 2010 First
International Conference on Networking and Computing, 2010,
pp.209-214, doi:10.1109/IC-NC.2010.49.

[18] N.Nishikawa, K Iwai, and T.Kurokawa, “High-Performance
Sysmmetric Block Ciphers on CUDA,” Proc. of 2011 Second

International Conference on Networking and Computing(ICNC),
2011, pp.221-227.

[19] NVIDIA, Compute Visual Profiler User Guide, Version 2.0, 2010.
http://developer.nvidia.com/nvidia-gpu-computing-documentation

848

