

File encryption and decryption system based on RSA algorithm

Abstract-This paper describes a complete

set of practical solution to file encryption based
on RSA algorithm. With analysis of the present
situation of the application of RSA algorithm, we
find the feasibility of using it for file encryption.
On basis of the conventional RSA algorithm, we
use C + + Class Library to develop RSA
encryption algorithm Class Library, and realize
Groupware encapsulation with 32-bit windows
platform. With reference of this Groupware on
Net platform, you can realize the window
application of encryption operation on any files
with RSA algorithm.

Keywords- RSA algorithm; file encryption
and decryption;Portable Components

I. INTRODUCTION

RSA public key encryption algorithm is
developed by Ron rivest, Adishamir and
Leonard adleman in 1977, is the most influential
public-key encryption algorithm, and has been
recommended for ISO public key data encryption
standard. RSA algorithm is an asymmetric
cryptographic algorithm, the asymmetric, meaning
that the algorithm requires a key pair, use one of
the encryption, you need to be decrypted with
another.

RSA algorithm can be simply described as
follows

� <Generate keys >
� Take the prime number p,q, make

n=p×q

� Taken an integers e which coprime with
(p-1) × (q-1)

� Solution of the variant d by the equation
d×e=1 (mod (p-1)×(q-1))

� Tuple (e, n) as a public key
� Tuple (d, n) as the private key
� < Encryption and decryption >

� b=a e mod n a=bd mod n. A is

expressly, b is cipher text
RSA technology has formed a relatively

complete international norm in all aspects of
electronic security field. On the hardware side, it is
used in a variety of sophisticated consumer
electronics products with the mature IC technology.
In terms of software applications, mainly in the
Internet, RSA is widely used in encrypted
connection, digital signatures and digital
certificates core algorithms.

II. PROJECT DESIGN

After detailed needs analysis, software
requirements can be summarized as follows:

� Can generate the asymmetric keys with
required digits

� You can save and load the key, the key
is saved as plain text

� Can use specified key to encrypt any file
with RSA algorithm, encrypted data
generated as plain text

� Encrypted files can be loaded and
decrypted with the specified key to
restore the original file

Suli Wang Ganlai Liu
School of Information Engineering Support Center

Jingdezhen Ceramic Institute Jingdezhen Telecom
Jingdezhen, Jiangxi Province, China Jingdezhen, Jiangxi Province, China

sallysur@163.com liugl@189.cn

2011 International Conference on Computational and Information Sciences

978-0-7695-4501-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICCIS.2011.150

797

� Message integrity, ease of operation, the
graphical interface decency

III. THE SPECIFIC DESIGN

As the design process involves many classes
and programs, so the following list only a few key
technical designs, the specific encryption and
decryption processes are all standard RSA
algorithm, so it is skipped to mention.

A. Storage of large number and arithmetic
operation

Large number storage is provided by the
Flex_unit Class. Large numbers are stored in a
linear group with unit named as Unsigned. In the
method Void Reserve (unsigned x) by the C++ to
give a new open space for pointer variable a, When
Flex_unit instance is stored in a larger number than
the current stored one, they will call the reserve to
increase storage space, but when Flex_unit
instance is stored in a smaller number than the
current stored one, storage does not automatically
tighten to improve the efficiency of computing.
With pointer variable a, there are two important
unsigned integer to control the storage, which is
unsigned variable z and unsigned variable n.
Variable z is the number of units assigned space,
with the increasing number of larger, not their
crunch, and variable n is the share of large
numbers currently stored in the number of units,
each composed of a large numbers of Unsigned
and read into the unit from the Set method, Get
method to complete, the variable n is read-only.

Based on the Flex_unit Class storage
capabilities, we may have new class of
Vlong_value, implement arithmetic functions, and
to achieve the cast operator unsigned, to facilitate
the large number of each type and ordinary integer
assignment. When large number is cast to
Unsigned, it will be the lowest four-byte value.

B. Montgomery modulus algorithm

Exponentiation modulus operation is the
largest proportion of RSA algorithm; it most
directly determines the RSA arithmetic
performance. In the code of this software, we
directly scan vlong binary By-bits canning.

To improve the speed of exponentiation
modulus operation, the key is to improve the speed
of modular multiplication. This software is the
application of Montgomery algorithm.

Select a cardinal number R=2k which coprime
with modulus n, variable n satisfy 2k-1�n<2k,
variable n should be odd number.Select R-1 and n’,
Satisfy 0<R-1 <n, 0 <n '<n, making the RR-1-nn' =
1. For 0 � m <Rn for any integer, Montgomery
multiplication is given modulo mR-1 mod n Fast
Algorithm M (m):

M (m)
{

Rnmt

RRnRm
/)(

0;mod')mod(
λ

λλ
+=

≤≤=

if (t�n) return (t-n);
else return t;

}

Because Rmmnnn mod' −≡≡λ so

variable t is integer, At the same time

nmtR mod≡ ,so nmRt mod1−≡ And

because RnRnnm +≤+≤ λ0 variable t
results in the range 0 � t <2n, return if variable t is
not less than variable n, should return t-n

In this program, RSA's core operations by
using the modulus multiplication algorithm is
M (A * B). Although M (A * B) is not really
needed by the results of modulus multiplication,
but as long as the power mode algorithm to be
modified accordingly, you can call this modulus
multiplication algorithm to calculate.

798

Use above modulus multiplication algorithm
by combining the above described power modulus
algorithm, it can constitute a standard power
module Montgomery algorithm, which is the
software used by the process described below:

M(m)
{
k = (m * n’) mod R;
x = (m + k*n) / R;
 if (x>=n) x -= n;
 return x;
}
Exp(C,E,n)
{
 D=R-n;
 P=C*R mod n;
 i=0;
 while(true)
 {
 if(Ei==1)D=M(D*P);// Ei is the

current binary bit of E
 i+=1;
 If (i== binary digits of E)

break;
 P=M(P*P);

 }
 return D*R-1 (mod n);

}

We can use the Mul method and Exp method

of class of Monty in the practical realization. The

global function Modexp can initialize the object of

Monty and call it’s exp method, we can directly

call Modexp when operation.

C. Eratosthenes to find primes and Fermat
primes screening test

Screening integers in the range of integer

filter to find prime numbers, with all known to be a

composite number of integer excluded. Program

constructs an array b [], size is a prime number

search range, the size of search range is minded

variable SS. Array b [0] to b [SS] correspond to

the large number Start to Start + SS. First of all

elements of b[] initialized to 1, corresponding to

the large number to determine if a composite

number, the corresponding element of b [] is set to

0. Finally, only need to do the exact prime number

test for those large number which elements with b

[] is corresponding to value 1. As long as the

number being tested is a prime number reaches a

certain threshold, this number is on the sub-prime.

This not only ensures the implementation of this

program can be completed in a short time, and that

makes it possible to obtain relatively high accuracy

prime number.

Next, the number of possible prime number
(tag array b [] in the value of 1 corresponds to the
number of elements) for prime testing.

The software application of Fermat's little
theorem directly, take integer variable A which
relatively prime with variable p, is for a large
prime p should satisfy the AP-1mod p = 1, we put
the large prime p into a large integer, the number
does meet this relationship may not be a prime
number. Then we change variable A, for several
tests, if several tests are passed, the probability that
this number is prime number is relatively large. By
this principle, we write the following test functions
of prime numbers.

Int is_probable_prime_san (const vlong &p)
{
 const rep = 4; //Testing times

const unsigned any[rep] = { 2,3,5,7 };
 for (unsigned i=0; i<rep; i+=1)
if(modexp(any[i], p-vlong(1), p) != vlong(1))

return 0;

799

 return 1;
}
If testing passed, the number is a prime

number and will pass to previous program to use.
And here may be also another problem which can’t
be neglected, it is to get a composite number which
can pass this test. In this case, it is to validate it
from mathematical point of view that if RSA
encryption can be realized or not. After get a large
prime number, that is parameter p and q in the
RSA algorithm, we can calculate the key, also the
encryption operation.

CONCLUSION

RSA algorithm encryption used in file
encryption for small files, any file with asymmetric
key encryption into its text can be more convenient
to communicate and manage, and it has broad
development prospects. The project application
was designed to take the efficiency and reusability
into account. The whole project opens source code
and a variety of development information; it is
convenient for the reference and continuous
development. Application of this procedure can
easily communicate data including arbitrary binary

and text files under the environment which
demand a high security, such as in public forums.

REFERENCES

[1] Montgomery PL, Modular multiplication
without trialdivision[J], Mathematics of
Computation, 1985

[2] Oh JH,Moon S J, Modular multiplication
method J , IEE Proceedings Computers and
Digital Tech-niques, 1998

[3] Shi Xiangdong, Dong Ping, a new core
design based on the RSA encryption algorithm,
micro-computer information, period 2005 12-3

[4] [AX931] ANSI X9.31-1998 Digital
Signatures using Reversible Public Key
Cryptography for the Financial Services Industry
(rDSA), Appendix A, American National
Standards Institute, 1998

[5] [COCK73] Clifford Cocks, A Note on
'Non-Secret Encryption', CESG Research Report
20 November 1973

[6] [KALI93] Burton Kalinski, Some
Examples of the PKCS Standards, RSA
Laboratories, November 1993

800

