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Bistatic cross sections applicable to scattering from a cloud of

randomly positioned and randomly oriented resonant dipoles, or

chaff, are found. The chaff cloud can have an arbitrary location

relative to an illuminating radar and the radar antenna can have an

arbitrarily specified polarization. The receiver can be located

arbitrarily in relation to the radar and chaff cloud and can also

have arbitrary polarization (different from the transmitter antenna).

Average cross sections are found for a preferred receiver

polarization and the corresponding orthogonal polarization. Results

are reduced to simple, easily applied expressions, and several

examples are developed to illustrate the ease with which the general

results can be applied in practice.
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Chaff is a countermeasure designed to reduce the
effectiveness of radar. It has also been used in
communication systems. It usually consists of a large
number of thin, highly conducting wires dispensed in the
atmosphere to form a "cloud" of scatterers. Energy
scattered by the cloud and received by a radar would
ideally be large enough to mask the presence of some
target the chaff is to protect. The strips may have many
forms but typically are cut to a length so that they
become resonant dipoles at the radar's frequency. The
dipoles also will be effective at harmonics of the radar
frequency. For example, dipoles that are tuned to half-
wavelength resonance at frequencyfo will be full-wave
dipoles at 2fo' three-halves wavelength at 3fo, etc. By
dispensing dipoles of several lengths, chaff can be made
effective over a wide band of frequencies.

Chaff was first used in World War II to confuse
German radar, but it remains an important
countermeasure to date. Many parameters enter into the
overall effectiveness of chaff, such as physical cross
sectional area of chaff elements (dipoles), losses in the
elements, speed and extent to which clouds form, effects
of winds and turbulence on dipole shape, fall speed, and
attitudes of the elements, weight, volume, clustering
(birdnesting) tendencies, and radar cross section. This
paper is concerned only with the radar cross section of
chaff. For the reader interested in the other parameters,
several survey papers are available [1-51.

The literature related to scattering from chaff and
from chaff elements is voluminous and no effort will be
made to give a comprehensive list of references. For a
good listing of articles prior to about 1970, [6] is a good
source. Reference [7] is a bibliography on the subject up
to about 1983. We shall, however, cite a few references
that are considered representative of the developments
that have evolved and that relate most directly to the
interests of this paper.

Early efforts to describe chaff effects centered mainly
on backscatter cross section (monostatic scattering).
Bloch et al. [8] gave one of the earliest analyses based on

a simple, infinitely conducting, wire model of the dipole;
backscatter cross section was found for a dipole element
having any orientation relative to the incident wave. In
addition, the importance of the randomness of dipole
positions and orientations was realized and average cross
sections were determined. For chaff elements with
directions uniformly distributed over the sphere, the cross
section was found to be 0. 158X2 per dipole, a value that
is still representative. For dipoles in the wave's
polarization plane, but uniformly distributed in angle
within the plane, the cross section per dipole was found
to be 0.289X2 [8].

Apparently using a dipole model similar to [8], Chu,
in unpublished work cited in [9], found the spherically
averaged backscatter cross section, denoted by a, for
resonant dipoles. His result can be put in the form
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1. 178(L/X) 0.131 + 0.179 In(22.368 L/X)
[ln(22.368 L/X)12

(1)
per dipole, where L is the dipole length, X is wavelength,
and L must be a multiple of X/2, i.e., L = MX/2, M =

1,2, .... From (1), 1i = 0.153K2, 0.166K2, and 0.184K2
for half-wave, full-wave, and 1.5-wave dipoles,
respectively.

Much effort has been made over the years to refine
and extend the models for dipole scattering. One model
based on induced electromotive force (EMF) was
developed in [9]; it was called Method A and gave nearly
the same results as Chu but was also valid for dipole
lengths between resonances and nonzero wire cross
sectional area. A second Method B [9] produced better
agreement with measured data than Method A and was a
first-order integral equation solution. Method B was
comparable with an independent development of King
and Middleton [ 10]. Another model due to Tai [ 1 1 1
applied to infinitely conducting dipoles and used a
variational method. Cassedy and Fainberg [12] extended
the model of Tai to include finite dipole conductivity.
Harrison and Heinz [13] have considered backscatter for
tubular and strip chaff elements as well as solid wires, all
for finite conductivity. A model based on the Wiener-
Hopf technique introduced by Chen [14] for thin wires
applies to longer dipoles and appears to fit experimental
data better than some earlier models. More complicated
computer models taking into account mutual coupling
between dipoles in a cloud are described by Wickliff and
Garbacz [15]. Medgyesi-Mitschang and Eftimiu [16] have
used Galerkin expansions to examine backscattering from
infinitely conducting tubes. Other characteristics that have
been studied that are applicable to backscatter from chaff
are statistical properties [17] and spectral properties due
to dipole motion [18, 19].

Whereas considerable effort has been made to
describe backscattering, less effort has been made in the
more general bistatic scattering problem. One of the
earliest studies appears to be that of Hessemer [20] where
reflections from chaff were used for communications.
Useful formulas were derived for average cross sections
assuming both spherical and planar random dipole
distributions when using a simple thin wire model
(similar to [8]). Mack and Reiffen [21] also used a thin
wire model to find average bistatic cross sections and
showed how they depend on linear or circular
polarization. Some discussion of the effect of losses was
also given. Unfortunately, there has been some question
as to correctness of some results in [211 as pointed out by
Harrington [22]. We say more about this below. Borison
[231 has also obtained some specific average cross
sections, but only for linear polarizations. Other studies
of bistatic scattering from dipoles 124-291 have used
more exact models, but results obtained are either
somewhat difficult to apply in practical cases, do not give
explicit equations for cross section useful to applications,
or do not show the way in which geometry and

polarizations of transmit and receive antennas affect the
scattering. Some of these efforts also did not obtain the
averaged cross section of chaff.

Probably the most complete study of chaff to date is
due to Dedrick et al. [30]. By applying an approach using
Stokes parameters they were able to show that four
independent quantities are all that are required to
determine any chaff cross section. The results in [301
applied to any combination of transmit-receive antenna
polarizations, but how to compute results for such
combinations was not shown. Results that were given
were mainly in the form of graphs derived from
simulations and these were for dipole lengths that are not
usually of much interest in practice (no specific equations
were given for solutions of the four required parameters).

The most recent analyses of bistatic chaff have used
the polarization scattering matrix. Heath [311 has used
this approach to show the relations between cross sections
applicable to circular transmit-receive polarizations and
cross sections applicable to linear field components
parallel and normal to the plane containing transmitter,
scatterer, and receiver. Other work [32] showed the
relationship between circular cross sections and cross
sections applicable to linear transmit-receive
polarizations.

From the above discussion one concludes that the
complete solution to the problem of bistatic scattering
from chaff, even for the simple dipole model, has not
been developed. It is the purpose of this paper to present
such a solution in a form that is readily applied in
practice. Specifically, we shall determine explicit
equations for the chaff bistatic cross section presented to
a receiving antenna having arbitrary (elliptical)
polarization, arbitrary location, and viewing the chaff
cloud in an arbitrary direction when that cloud is being
illuminated by a transmitter having an arbitrarily
polarized (different elliptical) antenna. Our results are in
a form that is easy to use, and several specific examples
of practical interest are developed in detail.

11. PROBLEM DEFINITION AND SUMMARY OF
RESULTS

A. Problem Definition

The overall geometry applicable to bistatic scattering
is shown in Fig. 1. A transmit antenna located at point T
radiates an arbitrarily polarized wave toward a cloud of
randomly positioned and randomly oriented dipoles
represented by point D. ' The transmit direction is defined
by spherical coordinate angles 0, 4, defined in the
common x,y, z coordinate frame. The dipole cloud is
assumed far enough away that the incident wave is
planar. Cloud extent is assumed to be small enough in
relation to average distance, denoted by r,, so that

'Clearly, point D cannot represent the cloud; it is helpful to view D
as a point toward which both transmit and receiver antennas are directed
and about which dipoles in the cloud are dispersed.
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field vector, denoted by ER, of an elliptically polarized
wave having the receive antenna's polarization, defined
by QR, and a second wave's electric field vector, denoted
by ER, having the orthogonal polarization also defined
by QR.

With the above definitions we define bistatic cross
section, denoted by r, based on the power arriving at the
receiver in the receiver's preferred polarization according
to

(-= lim 4wr22 (IER j2/jE 12) -- 4wrr22IER 12/E, 12.

Cross section, denoted by ox, can also be defined for
power arriving at the receiver in the orthogonal
polarization by

x (tV = lim 4 rrr,2 (IER, P2IE, 12) 4rr22 IER I2/jE, |2.

(2)

(3)

Fig. 1. Overall geometry of bistatic scattering.

strength of the incident field is approximately the same
for all dipoles.

Scattering between dipoles is assumed negligible and
dipoles are presumed sufficiently dispersed that mutual
coupling is of no concem. Study has shown [291 that
dipoles spaced at least two wavelengths apart in any
direction produce almost no mutual coupling; average
spacings down to 0.4X, where X denotes wavelength, can
produce up to 3 dB loss in bistatic cross section. Dipoles
are assumed to be infinitely conducting wires with a
length that produces resonance at the transmitter
frequency; thus we shall assume the simple wire model.
In many practical cases dipole size and material are such
that dipole losses are negligible [33].

As illustrated in Fig. 1 a typical dipole scatters some
energy in the direction of a receiver, at point R, defined
by spherical angles 02, 4)2. The receiving antenna is
assumed far enough away from all dipoles in the cloud
being viewed by the receiver antenna so that all dipole-
receiver path distances approximately equal the average
distance, denoted by r2. The receiver is arbitrarily located
and the angle between its line of sight (RD) and the
radar's line of sight (TD) is called the bistatic scattering
angle, denoted by ,3.

Both transmit and receive antennas are presumed to
be arbitrary, that is, they are elliptically polarized. By
employing the usual complex envelope representation of
fields, the transmitted (or received) field polarization can
be defined by a complex quantity Q (QT for transmitters,
QR for receiver) that equals the complex field in the 4)
direction (i), for transmitter; 4)2 for receiver) divided by
the complex field in the 0 direction (01 for transmitter; 02
for receiver). Appendix A gives details on ways of
selecting QT and QR for specific systems. The electric
field of the wave incident on the dipole cloud is denoted
by El; it has components in directions 01 and 4, and its
polarization is determined by QT. The electric field
vector, denoted by E2, of the wave arriving at the
receiver can be decomposed into the sum of an electric

The approximations in (2) and (3) are true because we
have assumed r2 relatively large. These cross sections
depend on the exact dipole positions and orientations. A
reasonable approach to reducing the complexity of (2)
and (3) is to take advantage of the random nature of
positions and orientations by treating these quantities as
random variables and averaging to get average cross
sections, denoted by a and Ux. By using E[.1 to denote
the statistical average we have

( = 41Tr22E[lER 121/lEhI2

Cr = 4 Trr22E[ E, 12]/lE 1 2

(4)

(5)

B. Summary of Results

In the following sections we show that

N

(1 + IQTIP) (1 + IQRI2)

(- to 11W 12 + - |o W212) X 12

+ (U( to 1j1W, 12 + 11 toll W2 12) 1X212

± 4U, Re(WIW*)Re(XiX2*)}

N
i5l (1 + IQTI2) (1 + IQRI2)

I((1 to 1 W212 + ?i1 toll W 12) 1x112

+ (U toll W212 + U11 toll WI 12) 1X212

-4cr Re(WIWf')Re(XlX*)}
where Re(.) represents the real part of the quantity in
parentheses, the asterisk denotes complex conjugation,
and

XI = TI - T2QT

(7)

(8)

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. AES-20, NO. 2 MARCH 1984

(6)

130



X2 = T2 + TIQT

TI = sin 02 sin(4l - 42)/sin P3
T2 = [sin 01 cos 02 - cos 01 sin 02

cos(4l - (2)]/sin ,B

W, = RI - R2QR

W2 = R2 + RIQR

RI = sin 01 sin(o1 - +2)/sin P
R2 = -[sin 02 COS 01 - COS 02 sin 01

cos(+i - (2)]/sin P3.
N is the number of dipoles being illuminated by the
transmitter that exists in the volume viewed by the
receiver's antenna, and U, to 1' to 1 to jj, and 5iA
are four functions (actually cross sections) that are
defined and graphed (Figs. 3-6) in the subsequent text. It
results that these four functions depend only on ,B (for a
given dipole length) and are independent of other
scattering geometry involving rj, 01, Xl, r2, 02, and 4f2.

For a given problem where the geometry is given
such that r1, 01, 41, r2, 02, +2, f, N, and X are known,
the use of (6) and (7) involves mainly two things. First,
for whatever dipole case is of interest, the functions
1 to 1L± 51 to jj 1 to j, and ii1 are determined from the

graphs given. Second, QT and QR must be specified for
the transmitter and receiver. Table I is helpful in
choosing the Qs for the more common cases. In the
general case of elliptical polarizations the relationships of
the Appendix may be used.

TABLE I
Values of Q for various wave polarization

Wave Polarization Q A B a

Linear in 0 direction 0 arbitrary =' 0 0 0
Linear in 4) direction X0 0 arbitrary = 0 0
Linear tilted by angle

4)o from 4) axis cot 4)N arbitrary A cot i)o 0
Left circular j arbitrary = A rr/2
Right circular -i arbitrary = A - '/2

ill. ANALYSIS OF SINGLE DIPOLE SCATTERING

The overall scattering geometry is given in Fig. 1. By
proper choise of coordinates defining scattering by the
dipole at point D, the effect of the dipole can be
separated from the incident path parameters r , 01, 4,
and the scattering path parameters r2, 02, and 4>2. The
choice consists of defining a scattering plane TDR. The
scattering plane and dipole geometry are shown in Fig. 2.
A coordinate system x', y', z' is defined such that x' and
y' axes lie in the plane TDR with x' positioned to bisect
the scattering angle ,B. The dipole is located at the origin
of the primed coordinate system with its wire axis located
by spherical angles Od and 4d' as shown.

EeR

T
xI

Fig. 2. Scattering plane and dipole geometry.

We define E'bT and E4'R as incident and received
electric field components that lie in the scattering plane
and are normal to axes TD and DR, respectively.
Similarly we define field components E0 T and E0R that are

normal to the scattering plane and orthogonal to E,1'T and
E15R, respectively, all as shown in Fig. 2. By using the
polarization scattering matrix approach to the scattering
problem we have

E[ R Pdl d121 EFT1 FE

EI EI =-[dl E
L-Rj Ld21 d22J LE~LETJ T

Here [d] is the scattering matrix of the dipole with
elements dmn, m and n = 1, 2, that are to be determined.

The field components E0 and E154T are related to the
transmitted fields EO and E,;, (Fig. 1) that are incident on

the dipole by
FL FT11 T21 1 1E

[7T_'L 21 T'22 J L [7_]

(16)

(17)

where [T] is a field transformation matrix for the incident
path that we subsequently determine. In an analogous
manner, fields EO and E,,2 (Fig. 1) at the receiver are

related to EOR and E154 by

FEOl2 [RI, R121 FE 1R FE 1R

-~~~=[R ]
E4,J [R2, R22 LE JE(

where [R] is another field transformation matrix for the
receiver path. By combining (16)-(18) we have

|E4,, [R] [d] [T]
[E ](

2
-1 F1
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It is shown in the Appendix that the received wave
can be decomposed into two elliptically polarized waves.
One with electric field vector we denote by ER will

have an "amplitude" denoted by ER and polarization set

by QR which is that of the receiver antenna's polarization.
The second wave, with electric field vector denoted by
ER,, has the polarization orthogonal to that of the

receiver. Thus, from the Appendix, we write

ER -ER, QR1

I=ER+ER,-I +~

E.~ -E R QR ER,
(20)

In a similar manner the transmitted wave's electric
field vector, denoted by El, incident at the dipole can be
written as

Eo 1 ET 1
El = ES (21)

E, Ej[TQTJ

where its "amplitude" iS2 ET and its polarization is
determined by QT.

By combining (20) and (21) with (19) we have

E~ ~ ~ I Q*R~~~~ILER2] I + Q12 [RQI4[] [d] [T1] ET.[E]R +IQRI2 QR 1T

(22)

From the Appendix the power in the received fields in the
antenna's preferred polarization is proportional to |ER 12
- (1 + IQRI2)I ER112; the corresponding result for the
orthogonal wave is JER |2 = (1 + IQR 12)I ERRI2. At the

dipole, power in the incident wave is proportional to

|EI 12 = (1 + IQT12)JET12. From (4) and (5), cross
sections become

4-r r2 2(1 + IQR 12) E[IER 121 (23
(1 + QTI2) JET12

447rr22(1 + IQR 2) E[IER2121 (24~X (1 + QT 12) JETI2
Thus by solving (22) we obtain average bistatic cross
sections from (23) and (24); its solution requires that we
first determine matrices [R], [TI, and [d].

A. Determination of Matrices [R] and [Tf
Although we shall omit details because the procedures

are straightforward, it is relatively easy to show that

TI -T2
[T] = (25)

T2, TI

2ET is a complex "amplitude" and contains a factor exp(-j21Tr/rX)
which accounts for incident-path phase.

where

T== sin 02 sin(4)1 - +52)/sin 1

T2 = [sin 0I cos 02 - cos 01 sin 02

cos(4)l - ()2)I/sin 1

and

RI R2
[R] =

-R2

where

(26)

(27)

(28)

(29)RI = sin 01 sin() - +)2)/sin 1

R2 = -[ sin 02 cos 01 - cos 02 sin 01

cos(M) - )2)I/sin 1. (30)

B. Dipole Scattering Matrix [d]

Let the dipole be located as shown in the primed
coordinate system of Fig. 2. Let 0 and 4) be angles in
spherical coordinates locating an arbitrary direction of
interest. Then for a dipole with a sinusoidal current
distribution with current IT in its center (terminal area if it
were a center-fed dipole) the effective lengths in
directions 0 and 4), denoted by ho and h4>, are known [35]
to be
[h0 h<,] = A(0, (h) [-sin 0 cos O,1

+ cos 0 sin 0d cos(4) - 4)~,)
(31)sin Od sin()d- 4))]

where we define

A(0, 4)) A (X/ir) cos[(IrL/X) cos 4] - cos(wrL/X)
sin (1rL/X) sin2 4)

and (32)
cos 4 = cos 0 cos Od

+ sin 0 sin 0d cos(4((4),) (33)

) For the special definition of coordinates we employ, the
two directions of interest, toward the receiver and toward
the transmitter, lie in the x',y' plane so 0 = rr/2 and we
have

[ho h1] = A (w12, 4)

(34)[-COS Od sin Od sin(4)- ))]
where
cos 4) = sin Od cos () - ) - (35)

For a radiating dipole the electric fields are also
known [35, p. 15]. Our dipole radiates toward point R
located at (r2, ir/2, 13/2) from Fig. 2. The fields at point
R become

FEOR 1 jIT hoe(r/2, 1/2)
IEIR = 2Ar exp(-j2Trr2/X) h 2 12) (36)LFJ 2Xr Lh(I/, 13/)
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where r = 120 nr is the intrinsic impedance of our
medium, considered the same as free space. The radiated
fields are due to the current induced into the dipole by
the incident field. This current is the ratio of induced
open-circuit equivalent voltage, denoted by V,, to
antenna impedance, denoted by Zrad, when the load on the
antenna as a receiver is zero (shorted dipole). We have

I = VC / Zrad

= [E ho(ir/2, -1/2)

- E h*(1T/2, 13/2)I/Zrad (37)

By combining (37) and (36) and writing the result in
the form of (16), we have the elements of [d]

dl = BAO(P3/2) cos2 Od

d 2 = BAO (p /2) cos Od sin 0d sin((4d + 13/2)

d21 = - BAO(p3/2) cos 0d sin Od sin(d- 1/2)

d22 = -BAO(13/2) sin2 0d sin(4)d- 1/2)

sin(+dd + 13/2)

where we define

B A [-jT/(2Xzradr2)1 exp(-j2irr2/X)

A0(13/2) A A(Mr/2, ,B/2)A(r/2, -1/2).

(38a)

distributed in direction over the sphere, the following
averages of the coefficient products result:

E[ld l*1, ] 0 (44a)

(44b)E[dildd*l = E[d 2d1l] - 0

E[di d2 ]1 = E[d21di*l = 0 (44c)

E[d1 1 d2f*l = E[d22dl =

= E[d21d12*$ 0

E[d12d,f] = E[d-,1d2dl $ 0

E[d12d 2*] = E[d22dl = 0

E[d21 d 2*] = E[d22d2l = 0

E[d22d22] $ 0.

(44d)

(44e)

(44f)

(44g)

(44h)
(38b) The four nonzero quantities in (44) are summarized

(38c) below with appropriate symbol definitions

1
t 4 Tr22E[d11d1*]

(38d)

(39)

(40)

C. Bistatic Cross Sections

Average cross sections can now be found from (23)
and (24) using (22) since matrices [R], [TI, and [d] are
now defined. Considerable detail is involved, so only the
procedure is outlined. If we define two matrices
according to

X1 TI - T2QT
[XI = = (41)

-x2- T2 + Tl QT
and

Wi RI - R2QR
[W] = = (42)

W2- R2 + RIQR

then ER from (22) becomes

ER, - 1 + 2 [W*It[d] [X]. (43)

Here 1 It denotes the matrix transpose.
By forming ER 12 using (43) and expanding out the

matrices, the result is a linear sum of terms involving all
possible combinations of the coefficients of Id] with
themselves conjugated. When the average E[l ER 12] is
formed, assuming angles 0d and 4d are uniformly

- 4irr22j|B 12E[AO(0,1, 4+) cos4 0(4 (45)

cr to Al 4rr22E[d12dl
- 41Tr22jBj2E[A2(0(i, 4f ) cos2 0

sin2 Od, sin2 (41d + 13/2)1 (46)

(A=, 44STr2 E[d1ld22*]
= -4wr22|B 12E[A02(0d1, (ft1) cos2 0d

sin2 0d sin(4)d - 3/2) sin(¢,1 + 1/2)1

II to A_ 4iTr22E[d22d2*]
= 47Tr22iB12E[A02(0di, M) sin4 0d

sin2(kd - 1/2) sin2(k( + 1/2)1

where the spherical average is defined by

J12

~~~E[-]= [1 ]sin Od dHdd,d+.4,n *=(, d,= o

(47)

(48)

(49)

With these definitions, E[I ER 12I from (43) reduces to a
reasonable number of terms, and when substituted into
(23) we finally obtain the cross section ai; it equals (6)
with N set equal to unity.

By repeating the above procedure, the average bistatic
cross section U.. for the orthogonal receiver polarization is
obtained; it is equal to (7) with N set equal to unity.

The use of (6) and (7) in a given problem amounts to
use of specified transmitter and receiver antenna
polarizations (determines QT and QR)X specified geometry
(determines X1, X2, W,, and W2), and finding the
functions (X1 to 13,1 to 11, crQ,, and Ull to 1 - We next
determine these functions.
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D. Scattering Plane Cross Sections

It is easy to show that if transmitter, dipole, and
receiver all lie in the x,y plane of Fig. 1, then 5, t 1 is
the bistatic cross section when both transmitter and
receiver antennas have linear polarization perpendicular to
the scattering plane. Similarly, (Til to 11 applies when both
are linear and parallel to the scattering plane, while
U 1 to is the cross section when both are linear with one
parallel and the other perpendicular. Which is which in the
last case is not important since it can be shown that
(J 1 to = (r1 to 1. We also show below that -U,, is one-
half of the difference between (x and (Xx when the
transmitter and preferred receiver polarizations are linear
and tilted 450 from the horizontal axis.

Since the four cross sections given by (45)-(48) are
difficult to analytically solve in general, it is fortunate that
they depend only on ,B and the dipole's length relative to
K.3 This fact allows (45)-48) to be computed by digital
computer for various values of 3 for selected dipole
lengths and the results used for any general scattering
problem through (6) and (7). Computed results are plotted
in Figs. 3-6 for dipoles of resonant lengths of X/2, A,
and 3A/2. The numerical data used in the plots are given
in [361. Four L = X/2 the well-known value Zrad = 73.0
Ql was used. For L = 3A/2 the impedance procedure of
Kraus [34, p. 1431 was extended to obtain Zrad = 105.4
Q. For L = K our model contains an indeterminate form
since sin(QrL/K) = 0 in (32) while Zrad = x in (37),
theoretically; in this case it is reasonable that the form of
the scattering determined by (36) and (37) remains valid
except for unknown scale. Scale was arbitrarily set to
Chu's value of 0.166K2 for the backscatter point 1 = 0;
this operation was equivalent to assuming Zrad sin2('rLL/X)
= 224.6 Ql in the model.

0.20

0.15

H

0

-1It)

0.10

0.05

0 30 60
8 (DEGREES)

Fig. 3. Spherically averaged bistatic cross sections for linear
transmitting and receiving polarizations perpendicular to scattering
plane. Cross sections have even symmetry about P3 =- -/2 (90°) and

B =- ( 1 800).

3Zrad required in (39) is set once L/I is chosen.
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Fig. 4. Spherically averaged bistatic cross sections for linear
transmitting and receiving polarizations, one perpendicular to and one
parallel with scattering plane. Cross sections have even symmetry about

= 1T/2 (900) and 3= Tr (180°).

0 30 60 90
8 (DEGREES)

Fig. 5. Spherically averaged bistatic cross sections for linear
transmitting and receiving polarizations parallel to scattering plane.
Cross sections have even symmetry about P = 1/2 (900) and P=13

(1800).
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Fig. 6. Plots of the function (FA/2 versus bistatic scattering angle 13.
The function has odd symmetry about P =IT/2 (900) and even symmetry

about B = 7r ( 1800).
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Data for L = X/2 agree well with those of Mack and
Reiffen [211. Data for L = A do not agree with those in
[211 because of an error recently confirmed by Reiffen
[37]; the error appears to stem from an erroneous
equation [21, (10)] used in computer simulation. The
error has apparently never been corrected in the literature
and it has been propagated [6, p. 302].

E. Relationship to Stokes Parameter Method

As mentioned above, the analysis of Dedrick et al.
[30] using Stokes parameters showed that only four
parameters denoted by (crM11), (crM12), (orM22), and
(uM33) are needed to find cross sections for any
polarizations of transmission and reception.
Unfortunately, their work related to polarizations defined
with respect to the scattering plane, and general relations
for geometry such as in Fig. 1 were not developed. Also
their evaluations of the four functions were not done for
the usual resonant dipole lengths. Furthermore, their
numerical work relied on a computer integration method
that produced significant error (observe fluctuations in
their plotted data). We can show that these difficulties are
all overcome by use of the present results. The procedure
is simply to show how the four functions of [30] are
related to the four cross sections found here to be
required for the general problem.

Parameters U1 to 11, to 1, and U,, to 1 = 51 to here
and the respective parameters aIl to 1, ( to 1, and or,, to 1
of [30] are defined identically. Thus, we use the
equalities and solve equation (19) of [30] to obtain

(uJM1) = -(U,, to 11 + 2U1 to 11 + U1 to 1)2

(0M22) = 1(U,, to 11- 2U1 to 11 + U1 to 1)2

(urM12) = -(U11 to Ii- U1i to )2

However, some reasonable assumptions will greatly
simplify the developments. Let us assume the dipoles
viewed by the transmitter are either far enough away or
are of sufficiently small range and angular extent that
their incident waves are all of the same polarization and
all of about the same field strength (l/rl factor about the
same for all dipoles). These assumptions allow IETI, QT.
and [T] to all be approximately independent of i. By
making similar assumptions about the cloud-receiver
path, [R] is approximately independent of i. These
assumptions basically make (4) and (5) valid provided
JER 12 and JERI12 are properly determined; alternatively,
(23) and (24) are equivalent valid forms.

The, now total, received field "amplitude"
components, denoted again by ER and ER, from (22) are

now5

ER

ER21

[1 Q*1 [11
1 + IQRI2 [-QR J [R] [D] [T] LQ ETI

where all terms are defined as before except

[D,, D12
[DI D22

LD21 D22

(54)

(55a)

(50)

(51)

(52)

where
N

Dmn = E dm,i exp(-j2nrl i/X),
i=1

mandn = l, 2. (55b)
To show the remaining relationship, let )/to/ denote

the value of Uf corresponding to linear transmitted and
received preferred polarizations tilted 450 from the
respective XT and bR axes when T, D, and R all lie in the
x,y plane of Fig. 1. For the same conditions denote the
value of Ux by U/to\. Then it can be shown that

(oM33) = U/to/ -(/to\ 2UA. (53)

IV. MULTIPLE DIPOLE SCATTERING

When scattering is due to many, say N, dipoles in a
cloud the received fields are the sums of fields caused by
individual dipoles.4 For a typical, say ith, dipole, (22)
again applies, where now all the parameters of [R], [d],
[TI, QT, and even ET may in general depend on i.

'We shall assume that scattered fields due to multiple reflections
between dipoles are negligible.

Parameters dmni for m and n = 1, 2, are now given by
(38) with variables Od and d replaced by Odi and 4di'
respectively. Variable r2 in the exponent of (39) is
replaced by r2i, but, because of the above assumptions, r2
in the factor 1 1r2 remains the nominal distance to the
cloud and does not depend on i.

The procedure for finding Uf and U-x proceeds exactly
as above for one dipole; we expand (54) and obtain
IER 12 and jERI|2 so that substitution into (23) and (24)
can be made. The expansions again lead to 10 functions
as given in (44) except where Dmn replaces dmn, m and n
= 1, 2. Expectations now must include the randomness
of dipole positions because positions affect the phases of

'The phase of ET has been incorporated into the definition of [D].
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the parameters D,.,,, through factors exp[ -j2,n(rli + r1,)/
Xl. By making the reasonble assumption that the phases
21T(rl; + r,i)/X are uniformly distributed on (0, 2I) and
that dipole phases are independent, due to independent
positions, we find the important result that the 10
functions of (44) involving D,.... are individually equal to
the 10 functions of (44) involving d, ,. for a single dipole
multiplied by N. Thus all cross sections based on
scattering from the N dipoles are equal simply to N times
the cross section of a typical dipole. Dipole cloud cross
sections are simply N times the results for one dipole
which leads finally to (6) and (7).

from (57).
Example 2. Transmit H, receive H: From Table I,

QT - QR - X. From (56) cross section, 5HH iS

(60)AVHH=- U = 1V1l to 11 -

Cross polarization (rHV' from (57) becomes

(61)UHV =- ir = NQ to 11 = NU,, to 1

Example 3. Transmit V, receive H: Here QT = 0,
QR = X. Cross sections from (56) and (57), denoted by
5VH and avv, become

U(VH A U = NU , to 11 (62)

V. SCATTERING EXAMPLES

A. Transmitter-Cloud-Receiver in x,y Plane

Several examples serve to illustrate the physical
meanings of 1 to 11(,J to 11'1 to 11, and 5a* These
examples assume the transmitter, the receiver, and the
cloud's centroid to lie in the x,y plane (Fig. 1). Thus 01
= 'T/2, 02 =i/2, 3 = 02 -l- Tr and, from (8)-
(15), wefindTI = 1, T2 = 0,R = 1, andR2 = Oso
XI = 1, X2 = QT, WI = 1, and W2 = QR. The reduced
forms of (6) and (7) become

N {

(1 + IQTI2) (1 + Q1)Qto I

+ 1 tol (IQR + IQTI2)
+ 1l to 1IQR 2I QTI2

+ 45,A Re(QR) Re(QT)j (56)

N (

( 1 IQT 12) (1 + IQR I2) l' tO

+ IQTI2 IQRI2) + U1 to 1 IQRI2
+ 511 to 11 IQTI2

- 45A Re(QR) Re(QT). (57)

A transmitter or receiver having vertical (V) linear
polarization has its electric field vector perpendicular (I)
to the scattering plane, while horizontal (H) linear
corresponds to a field vector parallel (11) to the scattering
plane.

Example 1. Transmit V, receive V: From Table I,
QT = 0, QR- = 0. From (56), the cross section, denoted
by 5vv, for the preferred receive polarization is

Uvv =_ = NQ1 to 1

The cross polarization corresponds to reception of H:

(58)

=vvA (j: = N-, to 1

Example 4. Transmit H, receive V: Here QT = X,
QR = 0. Similarly, to Example 3, we get

UHV A C = N _1 to 11 = N5,1 to 1

( 1HH- = N t~~VHH = 11~~~~~~Ito 11 -

(63)

(64)

(65)

Example 5. Transmit linear tilted from horizontal by
450, receive is the same. Here QT - 1, QR = 1.
Denote by N-rltol the total cross section applicable to
the preferred receiver polarization given by (56). It is

N(X to/ _ =-4 [U1 to 1 + 2(T 1 to H

+ 11 to 11 + 4A]. (66)
The cross section, denoted by NM/to\, for the receiver
cross polarization given by U, is

N5lto\ -A i5r = (NI4) [_, to 1 + 2U 1 to I

+ ±fil to 11 - 4UA]. (67)
By subtracting (67) from (66), we get

(Z1= (U/to /to\)/2. (68)

Thus -TA is half the difference in cross sections (per
dipole) seen by the receiver in preferred and orthogonal
polarizations when transmit and preferred receiver
polarizations are linear and tilted 450 with respect to the
scattering plane.

By retracing this example, we also find

(JA = (i\to' - 0\to/)/2. (69)
Example 6. Transmit right circular, denoted by OR,

receive right circular. Here QT = -j, QR = -j, and

to OR - == (±1 to 1 + 2, to|

+ Jll to 11) N/4 (70)

(59) (OR to OL -
= uOR to OR5VH =-1 (x = NU1 to II (71)
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where OL denotes left circular. Here we see that a
circularly polarized receiver sees the same cross section
regardless of choice of rotation sense. Similarly, it results
that

(O to O (C to 1 + 2U 1 to

+ (Jl to 11) N14 (72)

OLto OR (OL to OL' (73)

Thus bistatic cross section is the same when both
transmitter and receiver have circular polarizations,
regardless of combinations of rotation senses.

B. Cloud-Receiver Not in x,y Plane (Example 7)

As a final example, let the transmitter have linear
polarization in the 01 direction (QT = 0) and the receiver
preferred polarization be linear in the 02 direction (QR
0). Let the centroid of a cloud of half-wave dipoles be
located at 01 = 25wT/180 (or 25°) and4l = 75iT/180
(or 750) at a distance rl = 5(103) m. The receiver is at a
distance r2 = 104 m from the cloud centroid and a
distance of 12.5(103) m from the transmitter. The
receiver has an elevation angle of 50° from the x, v plane
as seen from the transmitter. We find bistatic cross
sections c/(NA2) and U,/(NX2).

From simple geometry as in Fig. 1, we find that ,B =
108.217r/180 (or 108.210), 02 = 59.71rr/180, 4)2 =
321.657T/180, and o)l - 4)2 = 113.351T/180. From (8)-
(15) we calculate X1 = T= 0.835, X2 = T2 = 0.551,
W, = R = 0.408, and W2 = = -0.913. From
Figs. 3-6 or the tables in [36], at scattering angle 71.790
[90.00 - (108.210 - 90.00)1 we find Ur11 to 1i/X2 =

0.04918, c to10/X2 = 0.15116, U1 to 11/A2 = 0.04464,
and fA/X2 = 0.01 151. Finally, from (6) and (7), we
calculate 5/(NX2) = 0.0503 and 5/(NX2) = 0.1146.
Note for this problem's geometry the antenna with
preferred polarization would receive less power than one
with the orthogonal polarization.

VI. SUMMARY AND DISCUSSION

In this paper the spherically averaged bistatic cross
sections applicable to a cloud of randomly positioned and
randomly oriented resonant dipoles have been found. For
a transmitting antenna of arbitrarily specified polarization
(set by parameter QT as discussed in the Appendix), a
receiving antenna of arbitrarily specified (by parameter
QR) polarization, and geometry shown in Fig. 1, the
cross section is given by If of (6). Cross section
applicable to the corresponding orthogonal receive
antenna polarization is given by U. of (7).

Parameters XI, X2, W1, and W2 depend on the
geometry of the problem and are found from (8)-( 15).
The functions IO 1 , (J1 to li, '51 to jj, and Ul depend on
the length of the resonant dipole chosen (half-

wavelength, full-wavelength, etc.) and on the scattering
angle 0 of Fig. 1; they are plotted in Figs. 3-6 and
tabularized in (361.

Our results agree well with [211 for half-wavelength
dipoles, correct erroneous results in [211 for full-wave
dipoles, give new results for three-halves wavelength
dipoles, and have produced explicit expressions for cross
sections for any geometry. The relationships to another
analysis method using Stokes parameters 1301 has been
shown, and, by proper use of the parameters given in this
paper, the parameters of [30] may be computed with
better accuracy.

Equations (6) and (7) were derived assuming perfectly
conducting, thin dipoles of resonant length, having a
sunusoidal current distribution along their length. Such a
distribution is reasonable for shorter wire lengths; it
becomes questionable for longer lengths. The model used
is therefore probably not applicable for lengths longer
than about three-halves wavelength.

APPENDIX. POLARIZATION CONSIDERATIONS

A general, elliptically polarized plane wave
propagating in the r direction has electric field
components EH and E, in the 0 and 4) directions at the
origin of a spherical coordinate system given by [341
Eo = A cos w t = Re(A eJw') (Al)
Ed, = B cos(wt + oa) = Re(B ei`t+io). (A2)
Here A and B are peak amplitudes (positive quantities), ax
is a phase angle, w is angular frequency, and t is time.
The wave is completely specified by the three quantities
A, B, and cx. For an observer at the origin looking in the
direction of propagation, the instantaneous electric field
vector appears to rotate in a counterclockwise direction
for 0 < ox < rr regardless of the relative amplitudes of A
and B; this is defined as left-elliptical polarization by
IEEE standards. For - i* < cx < 0, rotation is clockwise
and we have right-elliptical polarization. If A = B the
locus of the tip of the electric field vector is a circle
when ox = + -rr/2; rotation is counterclockwise for x =
wr/2 and the wave polarization is called left circular, for
ox = - r/2 we have clockwise rotation and right-circular
polarization.

Polarization Ellipses

The ellipse traced by the electric field vector is
illustrated in Fig. 7 (note that positive 0 and 4) directions
are downward and left, respectively).

Polarization can also be defined by the three
quantities shown: a and b are ellipse minor and major
axes half-lengths, respectively; 8 is the tilt of the major
axis from the 4) axis. It can be shown that A, B, and ox
are related to a, b, and 8 by

a2- 2A2B2 sin2 aL
(A2 + B2)- V(A2+B2)2 _4A2B2 sin2a (A3)
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0

Fig. 7. Locus of tip of electric field vector for elliptical polarization.

If (A 1) represents electric field vector E, the
magnitude squared of E is

IEl2 = [E* E+] LE1 = IE01 + lE 12
= 1A12[1 + 1Q121.

Next, let E represent an arbitrarily polarized field
given by (A1) and let two other elliptically polarized
waves be described by

El=

[ A1Q,j
FA31

LA2J

b2 2A2B2 sin2 (x
(A2 + B2) + (A) + B2)2 4A2B2 sin2 (

tan 26) = 2AB cos a. (A
B2-A2

The ratio alb is often called axial ratio and is usually
specified as a number greater than unity. Thus if alb <
1, the axial ratio becomes bla.

The reverse relationships are

A2 = a2 sin2 6+b2cos2 8 (A

B2 = a2 cos2 8 + b2 sin2 8 (A

2ab
tan -x= (a2

-
b2) 28 (A8)

Complex Fields and Wave Decomposition

In the text, fields are represented by complex
quantities. The complex field components are the
exponential extensions of (Al) and (A2), that is, EO is
represented as the complex quantity A exp(jwt). Usually
the common factor exp(jwt) is suppressed since this
carries through all steps in analysis. The remaining factor
is called the complex envelope of the field. With these
points in mind, fields in the text are complex with
components

EO = A

E,, = B ela.

We show that E can be decomposed into the sum of E,,
4) having an arbitrary (selected) elliptical polarization set by

Q,, and E2, having an elliptical polarization orthogonal to

5) that of E,. Since E, and E2 are to be orthogonal, their
inner product is zero and

AEE, * E2 = [A* A* 1]A

= AlA3 + A,Q A2 = 0

= A2Q* any A
L6) require

1
an

2. Thus we

require
0)

(A15)

E = []= El + E2 = L +[ ]AQ A, QI A2
A, -LA2A

AIQ + A2

1 -Q A[
= Q11A2 ~~~~~~(A16)

After solving (A 16) for A, and A2 we have

A(1 + QQf )
1 + 1Q,12

(A9)
A(Q - Q,)

(AIO) A2 1 + 1Q112

(A17)

(A18)

In vector (matrix) notation these components give

[221 = A (All)
where we define a field component ratio,6 denoted by Q,
as

Q = E -EO= B ejo/A. (A12)

Table 1 illustrates values of Q for some typical wave

polarizations.

6This ratio has also been called a -polarization factor- in [38] and
given a symbol different than Q.

These results show that any elliptically polarized wave

can be decomposed into the sum of one elliptically
polarized field of specified polarization and amplitude
given by (A17) and another wave with amplitude given
by (A18) with polarization orthogonal to the specified
wave. This means any received wave can be separated
into the component to which a given antenna responds
plus another component to which it does not respond.

Finally, we note that the powers in the two received
waves are proportional to E,12 and 1E212
|E, 12 = IA1 12(1 + IQ1 12)

1E212 = IA212(1 + 1Q, 12).

(A19)

(A20)
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