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There is a wide range of publications reported in the literature, considering optimization problems where
the entire problem related data remains stationary throughout optimization. However, most of the real-
life problems have indeed a dynamic nature arising from the uncertainty of future events. Optimization
in dynamic environments is a relatively new and hot research area and has attracted notable attention of
the researchers in the past decade. Firefly Algorithm (FA), Genetic Algorithm (GA) and Differential
Evolution (DE) have been widely used for static optimization problems, but the applications of those
algorithms in dynamic environments are relatively lacking. In the present study, an effective FA introduc-
ing diversity with partial random restarts and with an adaptive move procedure is developed and pro-
posed for solving dynamic multidimensional knapsack problems. To the best of our knowledge this
paper constitutes the first study on the performance of FA on a dynamic combinatorial problem. In order
to evaluate the performance of the proposed algorithm the same problem is also modeled and solved by
GA, DE and original FA. Based on the computational results and convergence capabilities we concluded
that improved FA is a very powerful algorithm for solving the multidimensional knapsack problems
for both static and dynamic environments.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction The authors used a binary encoding technique and a penalizing
The area of evolutionary computation widely focuses on static
optimization where the entire problem related data or variables re-
main stationary throughout optimization procedure. However,
most of the real-life problems are dynamic in nature which means
that a solution approach is expected to be adaptive to environmen-
tal changes. Therefore, tracking moving optima or high-quality
solutions becomes the main purpose rather than optimizing a pre-
cisely predefined system. Evolutionary algorithms which have
been widely studied for static optimization problems attracted
an increasing attention over the past years on dynamic optimiza-
tion problems (DOPs) (Branke, 2002; Jin & Branke, 2005; Morrison,
2004; Weicker, 2003). There are reported research theses (Liekens,
2005; Wilke, 1999) and edited volumes (Yang, Ong, & Jin, 2007) de-
voted to this research area in its infancy.

DOPs can be divided into two major fields as combinatorial and
continuous. Because this study focuses on the combinatorial part,
continuous DOPs are outside of the scope of this paper. However, a
recently published study (Brest et al., 2013) provides a comprehen-
sive research for continuous part. On combinatorial DOP part
Rohlfshagen and Yao (2011) presented an extended work of
Rohlfshagen and Yao (2008) on the dynamic subset sum problem.
procedure to avoid infeasibility. Various stationary extensions of
knapsack problems (Kellerer, Pferschy, & Pisinger, 2004) have been
commonly studied by the researches. Because the dynamic version
of multidimensional knapsack problem (dynMKP) is discussed here,
related work is provided in the following.

Branke, Orbayı, and Uyar (2006) studied the effects of solution
representation techniques for dynMKP. They used three types of
representations which are, binary encoding, permutation encoding,
and real valued encoding with weight-coding. The authors generated
dynamic environments using a stationary environment as a base,
and updated the changing parameters using normal distribution.
A penalizing procedure is also presented in their studies in order
to handle with infeasibilities.

Karaman and Uyar (2004) introduced a novel method which
uses the environment-quality measuring technique which was ap-
plied to 0/1 knapsack problem for detection of the changes in the
environment. Afterwards, Karaman, Uyar, and Eryiğit (2005) classi-
fied the dynamic evolutionary algorithms into four categories and
they proposed an evolutionary algorithm considering the previous
related work for 0/1 knapsack problem.

Kleywegt & Papastavrou, 1998, 2001 reported a stochastic/
dynamic knapsack problem where items dynamically arrive with
respect to a Poisson distribution. A distinctive feature was that
the profit and unit resource consumption values of the items
become visible as they arrive. In their problem the aim was to
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maximize the profit accepting the most appropriate items, reject-
ing rest of the items, where rejection causes a penalty. The same
problem was reported by Hartman and Perry (2006). The authors
utilized linear programming and duality for a quick approximation
particularly on large scaled problems.

Karve et al. (2006) introduced and evaluated a middleware
technology, capable of allocating resources to web applications
through dynamic application instance placement which is a related
problem of dynMKP. Kimbrel, Steinder, Sviridenko, and Tantawi
(2005) reported a similar study.

Farina, Deb, and Amato (2004) proposed several test cases for
dynamic multi-objective problems and the authors addressed the
dynMKP as an appropriate problem for applications and implemen-
tations. For a similar purpose, Li and Yang (2008) proposed a gener-
alized dynamic environment generator which can be instantiated
into binary, real-valued and combinatorial problem domains. As re-
ported in their studies, the proposed dynamic environment gener-
ator could be implemented to knapsack problems as well.

Adaptation of parameters was widely studied in the field of dy-
namic evolutionary algorithms. Thierens (2002) proposed adaptive
mutation rate schemes for GAs, in order to prevent non-trivial
decisions beforehand. Dean, Goemans, and Vondrák (2008) pre-
sented a stochastic version of 0/1 knapsack problem where the
value of the items are deterministic but the unit resource con-
sumptions are assumed as randomly distributed.

As it can be seen from the previous studies related to the dy-
namic version of knapsack problems, compared to well known sta-
tic extensions, there are relatively far less reported publications.
This is one of the main motivations behind the present study as dy-
namic knapsack problems have many practical implications. The
second motivation is to investigate the performance of a relatively
new and promising optimizer FA and its improved version (as pro-
posed in this paper) on this dynamic optimization problem in com-
parison to very well known and widely used evolutionary
algorithms GA and DE.

The rest of the paper is organized as follows: static and dynamic
versions of MKP is presented in Section 2, solution approaches DE,
GA and FA are discussed in detail in Section 3. Sections 4–5 repre-
sent experimental results and conclusion, respectively.
1 http://people.brunel.ac.uk/�mastjjb/jeb/orlib/files/mknapcb4.txt.
2. Dynamic multidimensional knapsack problem

As reported in the studies of Branke et al. (2006), MKP is in the
NP-complete class and according to Kellerer et al. (2004) knapsack
problems have been widely used as combinatorial benchmark
problems of evolutionary algorithms. In addition, because MKP
has numerous dynamic real-life applications such as cargo loading,
selecting project funds, budget management, cutting stock, etc.,
dynamic version of MKP was used as benchmark environment in
this study. Well known stationary version of MKP was formalized
as follows in the scientific literature:

maximize
Xn

j¼1

pjxj ð1Þ

s:t:
Xn

j¼1

wijxj 6 ci 8i 2 I ð2Þ

xj 2 f0;1g8j 2 J ð3Þ

where J = {1, 2, 3, . . ., n} set of items, I = {1, 2, 3, . . ., m} set of dimen-
sions of knapsack, n is the number of items, m is the number of
dimensions of the knapsack, xj is the binary variable denoting
whether the jth item is selected or not, pj is profit of the jth item,
cj is the capacity of the ith dimension of the knapsack and wij is
the unit resource consumption of the jth item for the ith dimension
of the knapsack and all parameters are assumed to be positive.

Literature includes well known benchmark generators for DOPs
(Morrison, 2004; Rohlfshagen, Lehre, & Yao, 2009; Ursem, Krink,
Jensen, & Michalewicz, 2002; Yang, 2003). Those generators briefly
translate a well-known static problem into a dynamic version
using specialized procedures. Dynamism is adopted here as the
changes of the parameters after a predefined simulation time units
similar to Branke et al. (2006). Simulation time unit represents
number of iterations allocated for each environment. In other
words it represents a frequency of dynamic change. The less num-
ber of simulation time units yields to more frequent changes and
vice versa. In this study, a series of 1000 iterations is adopted as
the frequency of changes.

An initial environment is required as a basis in order to dynam-
ically generate other environments. Therefore, as Branke et al.
(2006), the first instance of mknapcb4.txt1 was used as the basis
environment. This instance includes 100 items and 10 dimensions
with a tightness ratio of 0.25. After a change occurs, the parameters
are updated as stated below.

pj ¼ pj � ð1þ Nð0;rpÞÞ ð4Þ
wij ¼ wij � ð1þ Nð0;rwÞÞ ð5Þ
ci ¼ ci � ð1þ Nð0;rcÞÞ ð6Þ

The standard deviation of normal distributions of each parame-
ter are assumed to be equal and rp = rw = rc = 0.05 which yields to
an average 11 out of the 100 items to be assigned or removed
(Branke et al., 2006).

Distinctly from the other authors, neither lower nor upper
bounds for those dynamic parameters are employed here. It’s
thought that if a change (whether with respect to a probability dis-
tribution or other sources of dynamism) occurs in dynamic envi-
ronment, bounding it might not exactly reflect real-life
applications. Solution approaches for DE, GA and FA are discussed
in the following section.
3. Solution approaches

As stated in the aforementioned sections DOPs considerably dif-
fer from the traditional stationary problems (Baykasoğlu &
Durmus�oğlu, 2011, 2013). In the typical black box optimizations,
a population based algorithm starts from randomly chosen points
in the search space or mapped representations because of the lack
of information. The algorithm is expected to converge through gen-
erations. Like many other factors, complexity of problem has an
apparent impact on the convergence capability of the algorithm.
However, assuming that the changing optimum is around the pre-
vious one, intuition suggests that using the information of the pre-
viously visited points might make a complex problem to be solved.
In other words, once a high-quality solution is reached for a time
period of a DOP then the tracking good solutions might be easier
unless a severe change occurs. This can also reduce the computa-
tional complexity of the problem (Rohlfshagen & Yao, 2011). A ba-
sic approach to solve a DOP might be restarting the algorithm with
its initially set parameters once a change occurs. In other words
DOP can be handled as a sequence of stationary problems.
Conversely, the algorithm can be allowed to run in a continuous
manner and not take any action to changes. Considering those
opposite approaches, it can be seen that, convergence which is a
desirable feature for stationary environments might not be enough
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on DOPs. Diversity is required to be introduced and to be main-
tained on appropriate levels through generations for DOPs.

In the literature, there are published works mainly focusing on
the adaptation of traditional evolutionary algorithms to dynamic
problems. Rossi, Barrientos, and del Cerro (2007) proposed adap-
tive mutation operators for tracking of changing optima. The two
well-known techniques, hyper-mutation (Cobb, 1990) and random
immigrants (Grefenstette, 1992) are mainly based on the adapta-
tion of the population using adaptive parameters. Other recent
adaptation of parameters based approaches jDE and SaDE were re-
ported in the studies of Brest, Greiner, Bošković, Mernik, and
Zumer (2006) and Qin, Huang, and Suganthan (2009) where scaling
factors and crossover rates were used as self-adaptive parameters.

Another widespread technique is exploiting implicit or explicit
memories, where memory is embedded in solution representation
(Goldberg & Smith, 1987; Hadad & Eick, 1997) or is a record of the
previously revealed good solutions (Yang, 2005, 2006).

Additionally, Branke, Kau, Schmidt, and Schmeck (2000) and
Yazdani, Nasiri, Sepas-Moghaddam, and Meybodi (2013) proposed
a multi population based approach where whole population is di-
vided into smaller sized populations. According to this approach
while a subpopulation is tasked with convergence and solution
improvements, some other subpopulations introduce and maintain
diversity.

A considerably different approach was proposed in van Hemert,
van Hoyweghen, Lukschandl, and Verbeeck (2001), Bosman (2005),
Bosman and Poutrè (2007). According to their approaches, the data
of the problem is collected during the optimization process and an
inference is performed in order to predict the future events in a
proactive manner.

In the present study an improved version of FA with an adapta-
tion technique applicable on both stationary and dynamic environ-
ments is proposed. However, for a fair comparison and evaluation
on the base algorithms, any improving procedures such as adaptive
memory, specialized crossover or mutation techniques are not
allowed.

3.1. Differential evolution

DE is a population based approach which uses the differences of
the individuals in the population and like other evolutionary
algorithms. It was originally introduced by Storn and Price
(1995). DE uses crossover mutation and selection operators. Muta-
tion here is assumed as the difference of randomly chosen individ-
uals. There are different schemes of DE reported in the literature
Fig. 1. A pseudo
(Das & Suganthan, 2011) but DE/rand/1/bin is discussed here. The
main steps of DE are given in Fig. 1.

3.1.1. Initialization
Like other population based algorithms, DE starts with a ran-

dom (optionally initial solutions might be improved) population,
comprised of vectors XG

i . A sample representation of XG
i is illus-

trated in Fig. 8.

i ¼ 1; . . . ;NP; j ¼ 1; . . . ;D; G ¼ 1; . . . ;Gmax ð7Þ

where NP is the number of the individuals in the population, D is
the dimension of an individual, G and Gmax are the generation index
and maximum number of generations, respectively. Finally xG

i;j is the
value of the jth dimension of the ith individual at iteration G. Thus,
initial population is generated as follows:

x1
i;j ¼ randj½0;1� � ðubj � lbjÞ 8i 2 ½1;NP� 8j 2 ½1;D� ð8Þ

where ubj and lbj are the upper and lower bounds of the corre-
sponding dimensions if they exist.

3.1.2. Mutation
For each target vector XG

i a mutant vector VGþ1
i is generated

using the equation below:

VGþ1
i ¼ XG

r3
þ F � XG

r1
� XG

r2

� �
r1; r2; r3

2 ½1;NP�; r1–r2–r3–i ð9Þ

where r1, r2, r3 are random integer numbers, illustrating the index of
the randomly chosen individual.

3.1.3. Crossover
The mutant vector is crossed with the target vector in order to

produce trial vector UGþ1
i

uGþ1
i;j ¼

vGþ1
i;j if ðrandj 6 CRÞ

xG
i;j otherwise

(
ð10Þ

where randj [0, 1] is a random number and CR e [0, 1] is the cross-
over rate.

3.1.4. Selection
Finally, fitness of the trial vector UGþ1

i is evaluated and if the fit-
ness of UGþ1

i is better than the target vector XG
i , XGþ1

i is updated as
UGþ1

i , otherwise XGþ1
i is assigned as XG

i . Unlike the selection
code for DE.
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operator as in GAs, selection here gives equal chances to all trial
vectors generated from target vectors.

An illustration of operations in DE is given in Fig. 5a. As can be
seen from the figure summation/differentiation and scaling opera-
tions are applied to r1, r2 and r3. The mutant is crossed with target
(parent). Finally, the trial is replaced with target if it achieves a bet-
ter fitness.
Fig. 2. A pseudo

Fig. 3. A pseudo

Fig. 4. A pseudo
3.2. Genetic algorithm

GA simulates the behavior of evolution of organisms. It’s a
widely used stochastic search technique which can find
solutions to various NP-hard problems (Goldberg, 1989;
Holland, 1975; Lim, 2012; Thengade & Dondal, 2012). GA can
also be considered as a basis of evolutionary algorithms. A
code for GA.

code for FA.

code for FA2.
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pseudo code representing the generic scheme of GA is illus-
trated in Fig. 2.

In this study a single point crossover is used and one offspring is
allowed to be generated. Offspring has a 0.5 chance to take the first
segment from the first parent and second segment from the second
parent; and 0.5 chances to take the first segment from the second
parent and the second segment from the first parent.

Mutation operator assigns a new random number e [0,1] to the
bits. Finally, roulette wheel selection is used as the selection
operator.

A schematic illustration for obtaining new solutions using
crossover and mutation for GA is given in Fig. 5.b. According to this
figure, ch1 is crossed with the ch2 resulting in chtemp. Finally muta-
tion operator is used for generating an offspring.

3.3. Firefly algorithm

FA is a population based metaheuristic algorithm which simu-
lates the flashing and communication behavior of fireflies. It was
originally introduced by Yang (2008, 2009). In a typical FA algo-
rithm the brightness of a firefly means how well the objective of
a solution is and brighter firefly (solution) attracts other fireflies.
As the distance between fireflies increases, the attractiveness de-
creases exponentially because of the light absorption of medium.
A comprehensive survey of this new metaheuristic optimizer was
presented in the studies of Fister et al. (2013a), Fister, Yang, Brest,
and Fister (2013b) and Yang and He (2013).

The application of the FA for dynamic environment is a new
developing research area and there are relatively fewer published
papers on this topic. Abshouri, Meybodi, and Bakhtiary (2011)
hybridized FA with a learning automata for tuning the parameters
of FA. Farahani, Nasiri, and Meybodi (2011) used a multi-popula-
tion based FA by splitting the whole population into interacting
sets of smaller swarms. Additionally each swarm was allowed to
interact locally and globally through an anti-convergence operator
to prevent an early convergence circumstance. Nasiri and Meybodi
(2012) adopted an elitist approach within FA by keeping the best
solution through generations. All these FA applications were tested
on the well known multi-modal dynamic moving peaks problem
(Branke, 1999) and the efficiency of the proposed FAs were shown
by the authors.

Another dynamic optimization application of FA was presented
by Chai-ead, Aungkulanon, and Luangpaiboon (2011). A compari-
son of FA and bees algorithm was performed on the various types
of noisy continuous mathematical functions with two variables.
According to the findings of the study, authors concluded that
the FA outperformed Bees algorithm.

Due to the structural properties (i.e. using floating numbers in
its bits) of FA, this new optimizer is expected to perform more effi-
ciently particularly on continuous environments and as it can be
seen from above, whole literature of dynamic optimization for FA
was focused on this domain. However, the performance of FA on
dynamic combinatorial problems still remains as a question mark.
Additionally the most of real-life problems are combinatorial in
nature. To the best of our knowledge this paper constitutes the first
study on the performance of FA on a dynamic combinatorial opti-
mization problem.

FA has three main assumptions:

i. All fireflies are unisexual and every firefly attracts/gets
attracted to every other firefly.

ii. The attractiveness of a firefly is directly proportional to the
brightness of the firefly (The brightness decreases as the dis-
tance increases).

iii. They move randomly if they do not find a more attractive
firefly in adjacent regions.
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The distance between two fireflies (i and j) can simply be eval-
uated as the Euclidean distance as stated below in Eq. (11), where
D is the dimension, xik is the kth dimension of the ith firefly.

rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

k¼1

xik � xjk
� �2

vuut ð11Þ

The attractiveness of a firefly decreases exponentially as the dis-
tance increases. The attractiveness of a firefly at a distance cr is for-
mulated as given in Eq. (12), where c is the light absorption
coefficient, m is number which modifies the distance metric and
b(0) is the attractiveness at 0 distance usually accepted as 1.
Fig. 5. (a) Obtaining a new proposal in DE (ri: ith randomly chosen individual) (b) Obtaini
schema of pair-wise comparison and movement in FA (fi: firefly with the ith rank).

Fig. 6. A visual illustration of n for the co
bðrÞ ¼ bð0Þe
�cm

r m P 1 ð12Þ

Finally, movement of a firefly, i is attracted to another more
attractive (brighter) firefly j, is determined by Eq. (13)., where
a e [0, 1] is a user supplied scaling factor of randomness and
w e [0, 1] is a random number.

xik ¼ xik þ bð0Þe
�cr2 ðxjk � xikÞ þ aðw� 0:5Þ ð13Þ

A pseudo code for FA is given below in Fig. 3.
Fig. 5c represents a schematic movement of fireflies. f1, f2 and f3

are assumed to have the 1st 2nd and 3rd rank, where the 1st rank
represents the fittest firefly. According to this figure, f2 is only
ng a new solution in GA (chi: ith chromosome; chtemp: temporary chromosome) (c) A

rresponding rank though iterations.
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moved in the direction of f1, where f3 is moved to the positions of
both f1 and f2. The fittest firefly f1 is allowed to fly randomly.

As it can be seen from the Fig. 3, FA performs a full pair-wise
comparison which can be time consuming. As a result the search
might suffer from the computations of full pair-wise comparison.
Another issue is that the exponential move function might deteri-
orate the performance of FA unless the parameters are precisely set
to their appropriate levels (Eq. (13)). It is widely reported in the lit-
erature that c is assumed to be equal to 1; however, as the distance
between fireflies increases, bð0Þe�cr2 approaches to zero which
means that such an assumption might cause fireflies be stucked
at a single position through generations. In order to prevent this
circumstance, c can be set to very small values, however, obtaining
the appropriate level of c is not an easy task. Considering these two
drawbacks, an improved modification of FA called FA2 is presented
in this study.
Fig. 7. A pseudo code to obtain a solution from an encoded individual.
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Fig. 8. An example for solution encoding.

Table 2
Parameters of the algorithms.

GA DE FA FA2

Maximum generation 10,000 10,000 10,000 10,000
Frequency 1000 1000 1000 1000
Population size 100 100 100 100
Crossover rate 1.0 0.5 Na Na
Mutation rate 0.09 Na Na Na
F (scaling factor) Na 0.8 Na Na
a Na Na 0.9 0.9
b(0) Na Na 1.0/0.35 1.0/0.35
c Na Na 0.001 Na

Table 3
Experimental results on stationary environments.

GA DE b(0) = 1.0

FA

# Best CPU (s) Best CPU (s) Best CPU (

Env1 3087,80 120,19 1776,80 110,37 1127,20 240,9
Env2 3340,10 127,46 1877,05 107,45 1249,53 236,5
Env3 3432,54 125,98 2112,76 115,21 1422,46 193,4
Env4 3208,21 122,54 1859,10 99,64 1172,12 225,6
Env5 3669,24 130,53 2233,41 112,98 1680,68 260,4
Env6 3469,43 138,14 2000,46 107,56 1378,80 224,8
Env7 3272,27 126,73 1858,90 102,64 1554,08 183,1
Env8 3121,18 122,52 1565,68 109,49 1051,17 238,3
Env9 2971,64 119,26 1442,65 103,52 1546,54 281,1
Env10 3257,68 125,62 1888,60 101,71 1152,78 215,1
3.4. Improved firefly algorithm

According to FA2 a full pair-wise comparison is replaced with a
specialized comparison. The parameter 1 is changed from zero to
approximately one through iterations by using the Eq. (14), where
t is the iteration counter and maxGen is limit of iterations. It must
be noted that maxGen is replaced with frequency in dynamic envi-
ronment. Because 1 must be re-initialized as the dynamic change is
detected and then it adapts itself though the generations where the
new environment remains stationary.

1 ¼ modððt � 1Þ;maxGenÞ=maxGen ð14Þ

Another parameter n represents the probability of a firefly to be
moved or not. Differently from the original FA, with the use of
parameter n the movement of a firefly not only depends on the
brightness of a more attractive firefly but also depends on a check
that a random number s 2 [0,1] must satisfy the threshold value of
n as illustrated in pseudo codes of FA2 (given in Fig. 4). Thus, move-
ment of a firefly now depends on both the rank of the more attrac-
tive firefly and iteration counter of the run. Calculations and values
of n for 1000 iterations/frequency and adaptation of n through iter-
ations for the corresponding rank of firefly for a sample swarm of 8
fireflies are illustrated in Table 1 and Fig. 6, respectively.

Another critical issue here is that the fittest firefly is never
missed, because any power of 1 is always 1 which is the upper
bound for s 2 [0,1]. As a result, although complexity of the compar-
ison procedure (which is O(n2)) is not reduced and the algorithms
FA and FA2 perform exactly the same number of inner loops, an
improvement for the required CPU time is obtained due to lesser
calculations performed in FA2. A simple test on the average of 30
runs show that, move function is called 89.548.283 times in FA
and 66.555.939 times in FA2. Moreover, early convergence of the
swarm is attempted to be prevented by using this technique.

In Fig. 6, each individual curvei with different colors and types
correspond to the firefly of ranki in increasing order from top to
bottom. The y-axis values of each individual curve at any genera-
tion index of x-axis represent the probability of a firefly of the cor-
responding rank, to attract another firefly of greater ranks. For
example the firefly of the 1st rank (the uppermost curve) is always
allowed to attract any other fireflies of greater ranks regardless of
the generation index. However, for the firefly of 2nd rank, the prob-
ability of attraction of firefly of this rank is decremented trough
generations. Assuming that, although it has a better objective va-
lue, at generation 500, that firefly has a chance of approximately
0,708 (see Table 1) to attract any other firefly of greater ranks. This
chance (n) is systematically decreased through generations for all
ranks as given in Fig. 6 and Table 1. A point should be given atten-
tion that at the initial generation, any brighter firefly has a chance
of 1.00 to attract others with greater ranks.
b(0) = 0.35

FA2 FA FA2

s) Best CPU (s) Best CPU (s) Best CPU (s)

2 197,20 112,48 404,60 227,51 34,20 115,21
2 298,83 102,32 441,54 242,28 175,70 107,34
1 201,55 104,08 535,63 156,37 154,40 116,24
3 181,15 111,61 511,33 168,42 75,61 120,12
2 376,47 114,82 684,96 198,72 276,22 101,84
5 222,48 105,50 598,21 201,29 192,14 107,93
2 313,89 103,16 800,57 156,41 158,61 114,52
7 366,18 108,19 444,79 134,25 220,57 117,51
4 306,67 121,13 679,29 194,21 190,29 104,25
4 294,53 102,52 608,01 178,97 163,20 124,46
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Due to the second drawback as mentioned before, the exponen-
tial move function is replaced with a move function which is sim-
ilar to Rahmaniani and Ghaderi (2013) in FA2. This function is given
in Eq. (15):

xik ¼ xik þ bð0Þð1=ðXþ rÞÞðxjk � xikÞ þ aðw� 0:5Þ ð15Þ

where X is very small number like 0.000001 in order to prevent the
division by zero.

3.5. Solution representation

Although GA supports binary or permutation representation, it’s
obvious that direct use of DE and FA to discrete search spaces yields
a. Env1

c. Env3

e. Env5

g. Env7

k. Env9

Fig. 9. (a-l) Convergence of GA, DE, FA and FA2
to illegal solutions. In other words using difference of vectors as in
DE or moving operations as in FA is not appropriate in binary, per-
mutation or other similar representation techniques. A mapping
procedure is required here in order to show that an item is assigned
in the knapsack or not. Therefore in this study, priority based
encoding technique (Chitra & Subbaraj, 2012; Lotfi & Tavakkoli-
Moghaddam, 2012) is used in order to represent a solution.

According to this representation technique, an individual has
bits as many as the number of items considered in the problem.
The bits of the individuals simply hold unbounded continuous
numbers, representing the priority of each item to be included in
the knapsack. Additionally, the initial population is comprised of
random numbers bounded within the interval [0,1]. A pseudo code
b. Env2

.d Env4

.f Env6

.h Env8

l. Env10

on each stationary environment (b(0) = 1.0).
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for constructing a solution and a sample encoded solution are
presented in Figs. 7 and 8, respectively.

This technique always constructs feasible solutions and
prevents infeasibility for both stationary and dynamic environ-
ments. Thus, any repairing procedure is not required.

As it can be seen from Fig. 8, there are items indexed in a range
from 1 to 10 (2nd row), associated with random priorities (1st
row). A higher number in 1st row provides a higher priority to
the corresponding item to be assigned unless it violates capacity
constraints. According to the priorities, items 5, 8, 2, 9, 6, 10, 1,
7, 4, 3 are attempted to be assigned in sequence. Obviously, assum-
ing that an assignment is performed, remaining capacities of
dimensions are updated. For instance, let item5 be assigned. Then
the capacities of the knapsack dimensions are decreased as much
a. Env1

c. Env3

e. Env5

g. Env7

k. Env9

Fig. 10. (a-l) Convergence of GA, DE, FA and FA2
as the resource requirements of item5. Suppose that remaining
capacities are not enough for item8. This yields item8 to be dis-
carded and the same procedure is carried out for the rest of the se-
quenced items. Finally the fitness of the solution is evaluated by
summation of the assigned items.

3.6. Detecting dynamic changes

As mentioned in Yazdani et al. (2013), dynamic changes can
occur in two different ways as globally and locally. Keeping any
random point (test_point) from solution space and comparing its
current fitness value with the fitness value of the previous
generation detects the global changes. If a difference between
two consecutive fitness values of test_point is observed, it means
b. Env2

.d Env4

.f Env6

.h Env8

l. Env10

on each stationary environment (b(0) = 0.35).
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that the environment has changed. It must be noted that such
detection test is only appropriate for global changes. However,
when a small local change occurs out of the vicinity of the
test_point, there’s a probability that the algorithm cannot detect
the change. Assuming that the change has occurred in the neigh-
borhood of the optimum, then optimum solution of the previous
generation can be used as the test_point. Yazdani et al. (2013) pre-
sented a multi-swarm approach to evaluate fitness of the
global_best_solutions of each swarm at the end of each iteration
in order to detect such changes by making use of the advantage
of multi-swarm based approaches.

In the present work, dynamic changes are assumed to occur for
all of the objective’s and constraints’ coefficients similar to Branke
et al. (2006). Therefore, both solution vector which is constructed
by using test_point and fitness value of the solution are expected
to change subsequent to dynamic event. However, it should be
noted here that there is a probability for the solution vector to
remain stationary. For this reason, at the end of each iteration, a
check on both solution vector and fitness value was performed as
a detection test in this study. As a result, if a change is detected
between consecutive generations’ solution vector or fitness value
of the test_point, then algorithms react to that change as partial
re-initializations to introduce diversity. Additionally, FA2

adapts the parameter n to increase ‘‘moving chance’’ of fireflies in
the new environment during the initial generations. It is shown by
the results that this approach has detected the changes at each run.
Table 4
Experimental results on dynamic environment.

# GA best DE best FA best FA2 best

0.00 Re-initialization Env1 2495,10 1296,03 155,67 64,23
Env2 2749,95 1224,54 288,59 300,15
Env3 2731,41 1182,60 349,19 328,01
Env4 2605,79 1119,09 447,14 411,19
Env5 2797,49 1278,89 630,18 578,85
Env6 2667,22 1191,80 502,85 485,89
Env7 2519,34 1100,96 616,87 503,87
4. Experimental results

4.1. Experimental setup

As mentioned earlier, 10 different environments were gener-
ated using the first test problem of mknapcb4.txt as a basis. The
best error to optimum was used as the performance measure.
According to this measure, the average values of the best solution
achieved for each of the environments on 30 runs are considered.
The optimum of each environment was obtained using GAMS
CPLEX solver. The parameters of DE, GA, FA and FA2 are set as
shown in Table 2. Additionally, as the step size for FA is a critical
issue, b(0) is assumed to be equal to 1.0 and 0.35 separately, which
provides a faster and slower convergence, respectively.

All tests were performed on a PC with hardware of 3.4 GHz pro-
cessor and 4 GB RAM. Before representing the performance of the
algorithms on dynamic environment, experimental results on sta-
tionary environments are discussed in the following subsection.
Env8 2734,75 1151,88 504,57 500,99
Env9 2568,34 1106,50 709,11 652,72
Env10 2553,12 1181,20 643,96 599,57

0.30 Re-initialization Env1 2499,10 1269,70 134,63 103,57
Env2 2710,47 1235,21 336,65 330,56
Env3 2747,88 1225,12 376,16 381,11
Env4 2646,27 1158,47 456,20 391,05
Env5 2778,76 1328,24 545,43 526,82
Env6 2765,77 1288,36 509,54 514,92
Env7 2607,60 1140,58 549,13 542,09
Env8 2674,39 1226,11 456,16 488,97
Env9 2551,32 1215,30 636,89 620,53
Env10 2572,43 1263,64 543,16 531,78

0.70 Re-initialization Env1 2526,60 1277,60 147,73 74,83
Env2 2735,42 1317,27 267,84 264,52
Env3 2706,70 1359,98 270,08 251,71
Env4 2589,56 1214,60 332,48 316,83
Env5 2859,46 1438,12 466,20 405,06
Env6 2813,77 1366,02 408,60 440,24
Env7 2569,63 1223,63 408,68 388,43
Env8 2715,51 1295,66 374,35 365,65
Env9 2552,87 1314,21 471,37 514,24
Env10 2586,08 1285,55 400,16 357,67
4.2. Results on stationary environment

Each of the dynamic environments is assumed as stationary
environments here. In other words, algorithms are assumed to be
reinitialized with a random initial population for each of the dy-
namic environments, and they are not allowed to gather and use
the information from the predecessor environment. Results in
terms of average of the best error from optimum are illustrated
in Table 3.

Columns of Table 3 represent the name of the environment (#),
the minimum error from the optimum in terms of average of five
runs (best) and required CPU time (CPU) of the corresponding algo-
rithm, respectively. The best performance among the algorithms
on each environment is denoted in bold.

According to the results presented in Table 3, DE, FA and FA2

shows a better performance than GA. Additionally, except for
Env9, both FA and FA2 are found to be superior to both DE and
GA which demonstrates the success of FA under those parameters.
Moreover, the most surprising results are obtained by FA2. Using a
simpler move function, imposing additional restrictions not only
reduced the required CPU time but surprisingly increased the solu-
tion quality. As it can be seen from Table 3, FA2 achieves near
optimal results. This circumstance can be explained as early
convergence phenomenon which may deteriorate the overall per-
formance of any optimizer. Considering the behaviors of fireflies
from the viewpoint of real-life, those fireflies might not always
precisely and correctly adjust their positions according to the posi-
tions of all other brighter fireflies. In other words, like other intel-
ligent swarms, fireflies must be behaving in deterministic, random
and adaptive manner simultaneously which is satisfied by FA2.
Thus, considering the improvements in CPU and solution quality,
it can be said that the effectiveness of FA2 is far better than other
algorithms under the given parameters.

Another issue is that the parameter b(0) might affect the perfor-
mance of FA crucially. As it can be seen from the corresponding col-
umns of Table 3, compared to FA2, results of FA are improved more
steeply, which means that level of b(0) has a more significant role
on the performance of the FA than it has on FA2. In other words,
compared to FA, FA2 is found to be presenting a more robust
performance.

Computational results demonstrate the effectiveness of FA2 on
stationary environments of MKP. In addition, convergence graphs
of GA, DE, FA and FA2 are illustrated in Figs. 9 and 10 for
b(0) = 1.0 and b(0) = 0.35, respectively. Another surprising result is
obtained according to those figures.

Compared to GA, DE, and FA; FA2 has a significantly fast conver-
gence capability on each of the stationary environments. As it can
be seen from Figs. 9 and 10, FA2 achieves near optimal results,
approximately in 80 iterations. As stated before, for a fair compar-
ison, none of the local search or solution improvement methods
are used during the tests. Therefore, it’s clear that, using such tech-
niques might allow FA2 to achieve optimal results in earlier
iterations.
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Following subsection is devoted to the analysis of the perfor-
mances of GA, DE, FA and FA2 on dynamic environments.

4.3. Results on dynamic environment

Computational results for stationary environments demon-
strate the effectiveness of FA2. However, these results might be
misleading for dynamic environments possibly because of lack of
the capability of tracking the changing optima. For dynamic
a

b

c

Fig. 11. Convergence of GA, DE, FA and FA2 on dynamic env
environments, an effective algorithm is expected to quickly adapt
to new environments and track the changing optima. Moreover,
diversity must be introduced or maintained through evaluations
for adaptation to dynamic changes. Particularly just after the
dynamic event is triggered, an effective algorithm is expected to
detect the change and react to it. For this reason, tests on dynamic
environments are performed by reinitializing and randomly
restarting 0%, 30% and 70% of the population when a dynamic
change is detected. This approach can be considered as partial
ironments with (a) 0% (b) 30% (c) 70% re-initialization.
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random restarts, which is a trade-off between keeping the
gathered evolutionary information through generations and
employing some random scouts in the swarm to explore the new
environment by allowing them to reinitialize their individual
memories. Additionally, FA2 adjusts the parameter n when a
dynamic change is detected and readapts it through generations
of the new environment. Thus, two common concepts of dynamic
optimization namely, introducing and maintaining diversity are
simultaneously implemented in FA2.

As demonstrated in the previous subsection, both FA and FA2

achieves betters results for b(0) = 0.35. Therefore tests on dynamic
environments are performed using this assumption. Results, in
terms of the best average of errors of 30 runs for each algorithm
with 0%, 30% and 70% restarts are presented in Table 4.

According to Table 4 where the algorithms are not allowed to be
reinitialized, DE, FA and FA2 are found to be more effective than
GA. Additionally, FA2 achieves the best results although an incre-
ment in the error from optimum is apparent compared to the re-
sults on stationary environment. However, if the algorithms are
allowed to use the 0.30 and 0.70 of the previously gathered infor-
mation, another surprising result is obtained.

It’s obvious that results are improved for both FA and FA2 which
means that the performances of both algorithms increase as the
rate of introduced diversity is increased. As a result, FA becomes
competitive with FA2. However, apparently this is not valid for
GA and DE. It can be seen that GA performs an insensitive behavior
to the rate of the diversity introduced whereas a slight decrement
for the performance of DE is observed based on the results repre-
sented in Table 4.

Convergence graphs of the GA, DE, FA and FA2, for the tests with
0.00, 0.30 and 0.70 restarts of the population are illustrated in
Fig. 11a–c, respectively. It is apparent from this figure that, as
the introduced diversity increases, an obvious increment for the
severity of the deviance just after a change is observed for both
FA and FA2.

4.4. Statistical verification

In this subsection, a statistical verification is performed to prove
what intuition suggests in the findings of the Sections 4.2 and 4.3.
Therefore an initial analysis is scheduled to see whether a mean-
ingful difference among algorithms exists. Friedman Test
(Friedman, 1937, 1940) which is a non-parametric test, applicable
to multiple classifiers is performed for this purpose. Subsequent to
initial results, a paired t-test analysis is carried out between each
pair of algorithms.

For tests on stationary and dynamic environments data set is
comprised of mean errors from optimum on 5 and 30 runs,
Table 5
Significance (p-values), t-values and hypothesis check results of paired t-tests analysis for

GA–DE GA–FA

Stationary env. b(0) = 0.35 p = 0.0000 p = 0.0000
t = 736.38 t = 958.88

Ho = reject
b(0) = 1.00 Ho = reject p = 0.0000

t = 951.10
Ho = reject

Dynamic env. 0.00 re-init. p = 0.0000 p = 0.0000
t = 748.48 t = 849.77
Ho = reject Ho = reject

0.30 re-init p = 0.0000 p = 0.0000
t = 880.64 t = 984.88
Ho = reject Ho = reject

0.70 re-init p = 0.0000 p = 0.0000
t = 846.16 t = 1072,99
Ho = reject Ho = reject
respectively. Additionally, a data set has 10000 entries due to the
maximum number of generations is defined as 10,000. It should
be noted that tests can also be applied using the best values of
the environments given in Tables 3 and 4. However, because of
the convergence capability of an algorithm is an important perfor-
mance measure for dynamic optimization, all of the 10,000 entries
are used here. For both Friedman Test and paired t-test, illustrative
examples can be found in the studies of (Demsar, 2006).

Using the data set, FF is calculated as 207600,05 via Excel. With
4 algorithms and 10,000 data entries, FF distributed according to F
distribution with (4 � 1)(10000 � 1) = 29997 degrees of freedom.
The critical value of F0.05,3,29997, for a = 0.05 is 2.6049. As a result,
the assumption under null-hypothesis (Ho) imposing equal average
ranks is rejected. Therefore we can conclude that a significant dif-
ference from mean rank exists which proves that performances of
algorithms significantly differ from each other.

Now we have the statistical prove that the performances of GA,
DE, FA and FA2 differ from each other. However, a further analysis
is required to prove the superiority of any algorithm. Therefore, a
paired t-test analysis is performed for each pair of algorithms as gi-
ven in Table 5.

The paired t-test on stationary and dynamic environments is
performed for mean of 5 and 30 runs, respectively as in Friedman
Test. Each data set here again has 10,000 entries. MATLAB is used
to calculate the p-values and t-values of each paired tests with
the assumption of ‘‘a difference does not exist between the mean re-
sults of each algorithm’’ defined under null-hypothesis. As it can be
seen from Table 5, each of the null-hypothesis is rejected according
to their t-values. Additionally, p-values 0.0000 which gives us a
probability of observing a test statistic as extreme as, or more ex-
treme than the observed value under the null hypothesis shows
the significance of the results.

Finally we can conclude that, due to the experimental results
and statistical verification for both dynamic and stationary envi-
ronments, FA2 outperforms other three algorithms. These results
demonstrate the effectiveness of FA2 under the given parameters.

An evolutionary optimizer performing on dynamically changing
environments needs to have some particular features as given
below:

� A successful detection capability of dynamic events.
� Fast convergence capability overcoming the problem of stuc-

king in local optima traps.
� Self adaptive capability when a change is detected.
� Not completely ignoring the gathered evolutionary information.

According to the findings of the present study, FA2 is found to be
meeting these requirements at satisfactory levels. Finally, based
each data set (a = 0.05, DF = 9999).

GA–FA2 DE–FA DE–FA2 FA–FA2

p = 0.0000 p = 0.0000 p = 0.0000 p = 0.0000
t = 977.11 t = 379.91 t = 440.43 t = 324.87
Ho = reject Ho = reject Ho = reject Ho = reject
p = 0.0000 p = 0.0000 p = 0.0000 p = 0.0000
t = 272.57 t = 227.43 t = 482.97 t = 497.17
Ho = reject Ho = reject Ho = reject Ho = reject

p = 0.0000 p = 0.0000 p = 0.0000 p = 0.0000
t = 909.08 t = 307.42 t = 324.41 t = 109.77
Ho = reject Ho = reject Ho = reject Ho = reject
p = 0.0000 p = 0.0000 p = 0.0000 p = 0.0000
t = 994.49 t = 396.12 t = 397.60 t = 40.26
Ho = reject Ho = reject Ho = reject Ho = reject
p = 0.0000 p = 0.0000 p = 0.0000 p = 0.0000
t = 1061,12 t = 521.26 t = 509.78 t = 47.32
Ho = reject Ho = reject Ho = reject Ho = reject
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upon the experimental results, it can be concluded that FA2 can be
considered as an effective optimization algorithm on both static
and dynamic environments.
5. Conclusions

This paper presents a comparative analysis of the performances
of GA, DE and FA on both static and dynamic multidimensional
knapsack problems. To the best of our knowledge this paper con-
stitutes the first paper on the combinatorial dynamic optimization
of FA.

One of the important contributions of the study is the develop-
ment of FA2, which is designed for a more realistic reflection of the
behaviors of fireflies. FA2 requires less computational time; more-
over it achieves significantly superior results on both static and
dynamic multidimensional knapsack problems. Particularly on
stationary environments, FA2 obtains near optimal results with a
significantly faster convergence capability. Thus, it can be said that
FA2 was found to be more effective compared to GA, DE and FA for
the problems studied in this paper.

Because it’s a relatively new metaheuristic algorithm, the per-
formance of pure FA along with the performances of pure GA and
DE is also presented through this paper. In other words, any
enhancement procedure is avoided as far as possible for a fair anal-
ysis. However, a research for the effects of such procedures might
be scheduled as a future work. Additionally, the performance of
FA2 might be analyzed through different dynamic problems. Partic-
ularly, continuous dynamic optimization where moving peaks
exist might be an appropriate candidate for such an analysis.

As another future work, a comparative study with the sate-of-
the-art algorithms such as jDE, SaDE, ‘‘HyperMutation GA’’ and
‘‘GA with Random Immigrants’’ which were designed particularly
for dynamic optimization problems can be carried out.

References

Abshouri, A., Meybodi, M., & Bakhtiary, A. (2011). New firefly algorithm based on
multi swarm & learning automata in dynamic environments. In IEEE proceedings
(pp. 73–77).
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