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Abstract-An efficient method for small-signal stability as­
sessment of P - f / Q - V droop control methods for mul­
tiple converters in an isolated micro-grid (MG) is proposed 
in this paper. A MG model described with arbitrary number 
of converters is explored first. If there are more number of 
converters in a chosen MG, only dominant eigenvalues related to 
droop control are of primary interest. Therefore, constructing 
a reduced-order model to speed up the small-signal stability 
assessment becomes necessary. By extending the previous work 
of MG with P - f /Q - V droop control, a reduced-order model 
of MG with P - f / Q - V droop control is investigated under mild 
assumptions. Such a simplified model will facilitate to compute 
the poles and zeros of the closed-loop systems and provide more 
physical insight to examine the relationship between dominant 
eigenvalues and each droop control gain. As the mathematical 
analysis of conventional P - f / Q - V droop control provides 
the characteristic polynomials contributed by P - f and Q - V 
droop controls, the P - f / Q - V droop control also provides 
a sim1lar characteristic polynomials contributed by P - f and 
Q - V droop controls. These characteristic polynomials of the 
system helps MG operators for better tuning of each droop gain 
for stable operation of MG. A detailed study of actual plant 
model and the reduced-order plant model are investigated. Both 
simulation and experimental results are presented to validate the 
proposed method. 

Index Terms-Micro-Grid (MG), Droop control, Power Con­
verters, Small-Signal Stability, Characteristic Polynomials. 

I. INTRODUCTION 

With recent advocates of distributed energy resources 

(DERs), the concept of micro-grid (MG) has been widely 

investigated recently as an effective way to integrate DERs 

into the existing AC power grid [1] - [3]. In order to achieve 

robust plug-and-play features, the MG can be operated either 

in the islanded mode or in the gridconnected mode. In the 

islanded mode, DERs interface power converters (DICs) in the 

MG are governed by droop control strategies for autonomous 

operations [3] - [12]. With the P-f droop control, an accurate 

real power sharing can be obtained among the DICs. However, 

with Q - V droop control, the reactive power sharing is highly 

dependent on DICs output filter and power cable impedances 

[13]. The autonomous load sharing with Q-V droop control 
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can be affected by unequal filter and line impedances of DICs 

[14]- [15]. In order to resolve this difficulty, the Q - 11 droop 

control method has been proposed recently to improve the 

reactive power sharing among DICs [16]. Small-signal stability 

analysis of P - f and Q - 11 is first explored in [16]. 

The precise eigenvalue analysis of the MG has been 

achieved and their results show that the dominant eigenvalues 

are due to droop control [17] - [18]. In [19] - [20], it has been 

found that, as the droop control gains of the MG increases 

the stability margin will decrease. In particular, for higher 

values of droop control gains, the closed-loop system becomes 

unstable. However, as there are more number of DICs in MG, 

only dominant eigenvalues related to the droop control are 

of primary interest. Under such condition, it is necessary to 

reduce the order of the MG plant model through mathematical 

analysis and find small signal stability of the reduced order 

plant model. 

In order to lessen the computational complexity and provide 

more physical insight, a reduced-order modeling technique for 

the MG adopting the P - f /Q - V droop control has been 

proposed in [21]. Under mild assumptions, it has been shown 

that the droop control gains of each DIC can be examined 

separately with corresponding characteristic polynomial equa­

tion. Thus dominant poles of the closed-loop system can be 

easily analyzed by the root locus technique. This method has 

provided more physical insight to examine the relationship 

between dominant eigenvalues and each droop gain. 

In this paper, we extend the work of [21] by constructing the 

reduced-ordered dynamic model for a MG with P - f /Q - 11 
droop control. As the mathematical analysis of conventional 

P - f /Q - V droop control provides the characteristic poly­

nomials contributed by P - f and Q - V droop controls, 

the P - f / Q - 11 droop control also provides a similar 

characteristic polynomials contributed by P - f and Q - 11 
droop controls. These characteristic polynomials of the system 

helps MG operators for better tuning of each droop gain for 

stable operation of MG. A detailed study of actual plant model 

and the reduced-order plant model are investigated. 

The rest of this paper is organized as follows. In Section II, 

MG plant model in reduced order form has been derived for a 

chosen MG network structure. In Section III, the P - f / Q - 11 
droop controller equations are brought to the convenient form 

to append the droop control equations in to open loop plant 

model derived in Section II. The reduced order plant model 

with P - f / Q - 11 droop control equations is derived to carry 

out small signal stability assessment of the system. Section IV, 
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Fig. 1: Ring Connected Three DICs - MG structure 

presents the simulation and experimental results of proposed 

system. Finally, some conclusions are made in Section V. 

II. OPEN-Loop MG MOD EL 

In this section, we will follow [21]
,
s notion to construct 

the MG. The complete MG model without droop control will 

be considered first. Then, a reduced-order MG model without 

droop control will be derived. For illustration purpose, we 

consider the one-line diagram of a three-phase DIC MG as 

shown in Fig. 1. It consists of three DICs, each DIC consists 

of six IGBTs with anti-parallel diodes, fed with a constant DC 

voltage source. Each DIC consists of L - G low-pass filter at 

the output to filter-out the higher order switching frequency 

components. The output voltage of each DIC is the voltage 

across capacitor G f of the filter. All DICs are operated with 

space vector pulse width modulation (SVPWM) switching 

technique with current and voltage regulation. DIG1, DIG2 
and DIG3 have local balanced linear loads with impedances 

Zl1, Zl2 and Zl3 respectively. Z12, Z13 and Z23 are the 

cable impedances with resistances R12, R13 and R23 and 

inductances L12, L13 and L23 respectively. 

A. Open-loop Plant Model 

Since variations in amplitude and/or phase of phasor vari­

ables in MGs are slow enough in comparison with fast 

transient dynamics of power electronics, the pseudo steady 

state analysis is sufficient for modeling and analysis for MG 

i13 = i13d + ji13q and i23 = i23d + ji23q. The angle em is 
defined as follows [l7]: 

(1) 

Since (1) is a non-linear equation, the following linearized 

form will be utilized for subsequent analysis: 

6.em = (-Vmq6.vmd + Vmd6.vmq)/(V';d + V';q) (2) 

The variable Vm denotes the output voltage magnitude of 

D I Gm defined by 

Vm = V(V;'d + V�q)/(V';d + V�q). (3) 

Its linearized form can be written as: 

6.Vm = (Vmq6.vmd + Vmd6.vmq)/(V';d + V';q). (4) 

Thus, the complex variable Um can be expressed in small­
signal model as follows: 

(5) 

When all three DICs are considered, (5) can be expressed in 

the following matrix form: 

I] [��] = 0, (6) 

where Au = diag[1/ku1, 1/ku2, 1/ku3]. 
By applying load voltage equations, 6.vm = Zlm6.ilm, where 

Zlm = Rlm + SLlm + jwLlm, we get the following matrix 

form: 

[-Al I] [��] = 0, (7) 

where Al = diag[l/Zl1, 1/Zl2, l/Zd. 
Now by applying KCL at all nodes in Fig. 1, we have 

[I -I Ad (8) 

where 

Similarly, by applying KVL for three branches with 

impedances Z12, Z13 and Z23, we have: 

I] [�:] =0 (9) 

droop control problems. It is assumed that all current and where, 
voltage variables are described in the synchronously rotating 

d - q reference frame. Since the system considered is a 

balanced system, all variables in d - q frame are DC-quantities 

under steady-state. Each transformed d - q frame variable 

is expressed in real and imaginary complex variable. The 

following notations are considered for subsequent analysis: For 

m = 1,2 and 3, Vm = Vmd + jVmq is the output voltage of 

the DIGm, icm = icmd + jicmq is the output current of the 

DIGm, ilm = ilmd + jilmq is the local load current of the 

DIGm, and Um = em - jVm is the control signal input of the 

DIGm. Line currents between the DICs are i12 = i12d+ji12q, 

1 

:: :;,]. - Zl2 1 
Z23 
0 Zl3 

where Zmn = Rmn + sLmn + jwLmn for m, n = 1,2 and 3, 
such that m i- n. 

Now, by combining (6)-(9), the complete open-loop plant 

model of the MG system can be expressed as: 

[A][6.x] = 0 (10) 
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B. Reduced-Order Model 

Equation (11) is the complete open-loop plant model of 
the MG without considering the droop control. However, the 
order of the closed-loop plant model will become extremely 
high as the number of DIe's increase for practical industrial 
applications. In order to reduce the computational complexity, 
the order of the plant model needs to be reduced by eliminating 
variables which does not affect the droop control equations 
significantly. This task can be achieved by pre-multiplying a 
uni-modular matrix [U] with matrix [A]. Since lUI = 1, the 
unimodular matrix [U] is chosen as 

and 

WI � 

[
(A, -fLA

'
) 

[ -A. 

[U][A] = -(AI - �LAz)Au 

0 0 
I I 
0 I 
0 0 

I 
0 

-AI 
Az 

-

�

Ll o ' 
I 

0 0 

�. I 0 
0 I 
0 0 

(12) 

(13) 

Now consider the droop dynamics. Since only the output 

voltage flvm and the output current flicm of each DIC are 

considered for implementing the feedback decentralized droop 

control loop, each droop controller can be implemented as two­

input and one-output linear system of the form: for m = 1,2,3 

-Cimp= Um = Cv=flvm + Cic=flicm. 

where CVm and Cicm define the denominator of the droop 

control transfer function from the output voltage flvm and the 

output current flicm respectively. CimPm is the numerator of 

the droop control transfer function to control input u. Analyt­

ical expressions of Cv=, Cic=, and Cimp= will derived in the 

next section. If we define Cimp = diag[Cimp" Cimp2, Cimp3], 
Cv = diag[CvI l CV2, CV3], and Cic = diag[CicI l CiC2, CiC3], 
the droop control can be expressed in the following block 

matrix form as: 

Cflx = [Cimp Cv Cic 0 OJ flx = O. (14) 

If these droop controller coefficients are appended to the 

matrix in (13), the closed-loop MG plant model is formed as 

follows: 

[Aclosed] [flx] = 0, (15) 

where 

-Au I 0 0 

Schur's complement as, 

where 

-Au I 0 
IAclosed l = -(AI - ALAz)Au 0 I 

Gimp Gv Gic 

1 - Z,2 --L + _1_ + _1_ 
Zl2 Z'I Z23 

Z23 

(17) 

Since the load impedance is much larger than each line 

impedance between DICs, Zl terms can be neglected in 

(AI - ALAz). Thus, (AI - ALAz) can be simplified as 
1 

1 - Zl2 1 
-+-Zl2 1 Z23 

- Z23 
III. REDUCED-ORDER PL ANT MODEL WITH 

P - f /Q - 11 DROOP CONTROL 

In this section, first P-f /Q-11 droop control equations are 

brought to the convenient form to append the equations to the 

open loop plant model derived in Section II and then reduced 

order model with P - f /Q - 11 droop control is derived. 

A. Droop Control Mechanism 

The P - f / Q - 11 droop control with voltage restorations 

can be described as follows: for m = 1,2,3, 

Wm = s8m = Wo - kpm(Pm - POm), (18a) 

11m = sVm = 110 - kqm(qm - qOm), (18b) 

QOm = sqOm = KresQrmevOm - 11m), (18c) 

where Wm is the angular frequency of converter output voltage; 

Wo is the nominal grid frequency; Vm is the magnitude of the 

converter output voltage; 110m is the nominal value of 11m; 
Pm is the active power generated by the converters; POm is 

the nominal active power; qOm is the reactive power; kpm is 

the droop control gain for P - f droop control; kqm is the 

droop control gain for Q - 11 droop control; Kres is the 11 
restoration gain; Qrm is the rated reactive power capacity. Pm 
and qm can be expressed analytically as 

Pm = Vmdicmd + vmq icmq 
qm = Vmqicmd - Vmdicmq 

By linearizing (19), we have 

!:;;.Pm = Icmd!:;;.vmd + Icmq!:;;.vmq + Vmd!:;;.icmd 
+Vmq!:;;.icmq 

!:;;.qm = Icmd!:;;.vmq - Icmq!:;;.vmd + Vmq!:;;.icmd 

(19a) 

(19b) 

(20a) 

-Vmd!:;;.icmq (20b) 

Ado •• ' � [ 

-(AI - ALAz)Au 0 
Gimp Gv 

0 -AI 
0 Az 

I 
Gic 
0 
0 � 1 

0 
0 
I 
0 

1cmd and 1cmq are the values of icmd and icmq output 
(16) currents of converter m respectively. At an equilibrium point, 

the linearized droop control equations can be described as: 

The determinant of Aclosed provides the characteristic poly- sfl8 = -kpmflPm (2Ia) 

nomial of the closed-loop system, so that the stability can be sfl Vm = -kqmflqm + kqmflqOm (2Ib) 
analyzed. Since the matrix Aclosed is of higher order, the de-

)fl k K Q fl (21 ) terminant of the Aclosed can be examined by its corresponding (s + kqmKresQrm qOm = qm res rm qm C 
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By substituting terms C:.pm and C:.qm obtained in (20) into the 
linearized droop control equations in (21), we have 

sD.8m = -kpm(IcmdD.vmd + 1cmqD.vmq + VmdD.icmd 
+ VmqD.icmq) (22a) 

sD. Vm = kqm (IcmqD.Vmd - 1cmdD.vmq - VmqD.icmd 
+ VmdD.icmq) + kqmD.qOm (22b) 

(s + kqmKresQrm)D.qOm = -kqmKresQrm(IcmqD.vmd 
- 1cmdD.vmq - VmqD.icmd + VmdD.icmq) (22c) 

The droop control for m DIes can be generalized and can be 

represented in the following matrix form: 

where 

E =diag(kqm), 
El =SI + diag(kqm)KresQrm, 
E2 =DvdKresQrm, 
E3 =DvqKresQrm, 
E4 =DidKresQrm, 
E5 =DiqKresQrm, 

83], 8 = [81 82 
Vm = [-VI -V2 -V3], 

q0 2 q0 3], 
Vmd = [Vld V2d V3d], 
Vmq = [Vlq V2q V3q], 
icmd = [icld ic2d ic3d], 
icmq = [iclq ic2q ic3q], 
kpm = [kpl kp2 kP3], 
kqm = [kql kq2 kq3], 
GVd = [diag(kpm) x diag(Icmd)] , 
Gvq = [diag(kpm) x diag(Icmq)] , 
Gid = [diag(kpm) x diag(Vmd)] , 
Giq = [diag(kpm) x diag(Vmq)] , 
DVd = [diag(kqm) x diag(Icmq)] , 
Dvq = [-diag(kqm) x diag(Icmd)], 
Did = [-diag(kqm) x diag(Vmq)], 
Diq = [diag(kqm) x diag(Vmd)] . 

Note that Vm is chosen as negative sign to remain in 

accordance with the definition of Um = em - jVm. Taking 

one matrix as example: Cvq = diag[kp1lcl q, kp2Ic2' kp3Id. 
The Matrices Cvd, Cvq, Cid, Ciq, Dvd, Dvq, Did and Diq are 

defined in a similar form. 

B. Reduced-Order Model with P - f /Q - 11 Droop Control 

To obtain the reduced-order model with P- f /Q- 11 droop 

control, the reduced-order plant model equations obtained in 

(17) are appended with the droop controller equations derived 

in (23). Henceforth, the following matrix representation can 

be obtained: 

where 

-A� Ai 
u 0 I 0 0 0 

-A� -A� 0 0 I 0 0 
-Aimp Aimp 0 0 0 I 0 

Ad = -Aimp -Aimp 0 0 0 0 I 
sl 0 0 GVd Gvq Gid Giq 
0 sl E DVd Dvq Did Diq 
0 0 El E2 E3 E4 E5 

and 

C:.x =  [C:.e, C:. V, C:.qom, C:.Vmd, C:.vmq, C:.icmd, C:.icmq] T 

and Aimp = (Al - ALAz)Au. Note that Au can be expressed 

in complex real and imaginary components as A� and A� 
respectively. Similarly, Aimp can be expressed in complex real 

and imaginary components as Aimp and A�mp respectively. 

The determinant of Ad gives the characteristic polynomial 

of the closed-loop system. In order to reduce the computa­

tional complexity, the order reduction techniques developed 

in Section II is applied once again for matrix Ad. Let matrix 

Ad be pre-multiplied by a uni-modular matrix U defined by 

I 
o 
o 

Ud = 0 

o 
I 
o 
o 

o 
o 
I 
o 

-Gvd -Gvq -Gid 
-Dvd -Dvq -Did 
-E2 -E3 -E4 

the product UdAd becomes 

where, 

-A� 
-A� 

-Aimp 
-Aim 
Grw 
D't°d 
D��� 

A� 
-A� 
Aimp 

-Aim 
G\7° 
D'\7od 
D��� 

o 
o 
o 
o 

o 
o 
o 
I 

-Giq 

0 0 0  
0 0 0  
0 0 0  
0 0 0  
1 0 0  
0 1 0  
0 0 1  

-Diq 
-E5 

I 0 0 0 
o 1 0 0  
o 0 I 0 
o 0 0 I 
o 0 0 0 
o 0 0 0 
o 0 0 0 

Grod =sl + GvdA� + GvqA� + GidAimp + GiqA;mp, 
G\7od = - GvdA� + GvqA: - GidAimp + GiqAimp, 
Drod =DvdA: + DvqA� + DidAimp + DiqAimp, 
D\7od =sl - DvdA� + DvqA: - DidA�mp + DiqAimp, 

(25) 

D��f =KresQrm( -DvdA: + DvqA� + DidAimp + DiqA;mp), 
D��g =KresQrm( -DvdA� + DvqA: - DidA;mp + DiqAimp). 
By Schurs complement, we have 

Grod 
IAdl = D't°d 

D;?!�� 

G\7od 0 
D'\Jod E 
D��� El 

(26) 

lAd I can be further simplified if the following three assump­

tions are made: 

1) The output voltage phase angle difference between the 

DIes is small. 

2) The output voltage magnitude difference between the 

DIes is very small. 

3) At an equilibrium point chosen, V1d ;::::; V2d ;::::; V3d=:Vd. 
and V1q ;::::; V2q ;::::; V3q=:Vq. 

(24) Under these three assumptions, matrices 
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cmod Cmod Dmod Dmod Dmod and Dmod are simplified Ii , v , Ii , V , resl res2 as follows: 
1) Crod 

= sf + diag(kpm)[-Q + (Vl + Vq2)X], 
where Q = diag(Ql,Q2,Q3) and 

Xmn = wLmn/IZmnl2 and 
IZmnl2 = (Rmn + sLmn)2 + (wLmn)2. 

2) CV"°d 
= diag(kpm)[-P - (Vl + Vq

2)yJ, where P 
diag[H, P2, P3] and 

Ymn = (Rmn + sLmn)/IZmnI2. 
3) Drod 

= diag(kq m)[-P + (Vl + Vq
2)y]. 

4) D\Jod 
= sf + diag(kq m)[Q + (Vl + Vq2)X]. 

5) D��� = KresQrmdiag(kq m)[-P + (Vl + Vq
2)y]. 

6) D��� = KresQrmdiag(kq m)[Q + (Vl + Vq2)X] 
The variable w represents the value of the angular frequency 

of the MG at the operating point when the frequencies of all 
DIes become equal. Usually, the variation of the frequency 
w is sufficiently small if P-I droop control is activated, w � 
Woo Similarly, the variation of the output voltage magnitude 
is also sufficiently small if Q - V droop control is activated, 
(Vl + Vq

2) � V02, where Vo be the rated voltage of the system. 
Since elements of matrix (25) are simplified, the determinant 

of Ad can also be simplified. Since droop gains kpm and kqm 
are quite small, two or more products of such terms are very 
small and can be neglected. Thus, only the product of the 
diagonal terms in Ad would contribute for the determiant of 
Ad, since other terms have a product of two or more droop 
gains. Under this situation, 

IActl � (C,?od)(D'V°d)E1 

� (C,?od)(D'V°d)(sI + diag(kqm)KresQrm) 
� l(s1)[sI + diag(kpm)( -Q + V02 X)] 
x lsi + diag(kqm) (KresQrm + Q + V02 X)l l  (27) 

If three DIes are considered, the characteristic polynomial 
for the closed-loop MG system can be expressed as 

IActl = S3 x [s + kpl(-Ql + Vo\�.�;12 + V021��:12 ] 
x [s + kp2 ( -Q2 + V02 I��; 12 + Vo2 1��;r2 ] 

x [s + kp3 ( -Q3 + V02 1��;12 + V02 1��:12 ] 

x [s + kql(KresQrm + Ql + V021��;r2 + Vo21��1r2 ] 
x [s + kq2(KresQrm + Q2 + V021��;12 + V021��:12 ] 
x [s + kq3(KresQrm + Q3 + V021��;12 + V021��:12 ] 

(28) 

s corresponds to the action of time-derivative respect to V. 
Therefore, the small-signal stability of the closed-loop system 
can be examined by examining each polynomial independently 
with a single droop coefficient. For example, consider the 
following polynomial: 

[s + kpl (-Ql + Vo2wLl2/IZl212 + Vo2wLl3/IZd2)] = 0 

which relates one dominate pole of the closed-loop system 
with respect to the P-I droop gain of the first DIC The above 
equation can also be rewritten as 

SlZ12121Zd2 + kp1( -QI IZ1212 IZd2+ 
Vo2wL12 IZ1312 + V02WL13 IZ1212) = 0, (29) 

which is expressed in the standard root locus form den( s) + 
k.num(s) = 0 of closed-loop system. den(s)/num(s) is open 
loop transfer function. 

Since the computational complexity of evaluating a single 
polynomial is far lesser than the computation of the determi­
nant of the entire system model, the computational speed has 
been enhanced significantly. Thus, in order to ensure stable 
operation of all DIes for a chosen MG, a common kp and kq 
limit values can be found such that all the six polynomials in 
(28) are satisfied simultaneously. 

If we compare the characteristic polynomial of the closed­
loop system of the proposed P - I / Q - V droop control 
with the conventional P - I/ Q - V droop control, some 
observations can be made. 

• Individual real-power droop characteristic polynomials 
have identical formulation in both droop controllers since 
both methods use same P-I droop control law. However, 
the reactive power droop characteristic polynomials are 
different from each other, since both methods use differ­
ent reactive power droop control law. 

• If P- I /Q-V droop control is applied, the characteristic 
polynomials of the closed loop system contributed by p­
I and Q - V droop controls have the same number with 
that of P - I / Q - V droop control. This means that 
both real power droop and reactive power droop play a 
dual role in the droop control. This subtle property will 
facilitate tuning the droop gain. 

IV. SIMUL ATION AND EXPERIMENTAL RESULTS 

In order to verify the analytical results developed in the 
previous section, both simulation and experimental results 
of a MG with P - I/ Q - V droop controlled DIes will 
be presented in this section. For illustration purpose, a MG 

with two DIes and a load, as shown in Fig.2, is studied. 
SimulinkIMATLAB simulations are provided to show the 
movement of poles of the controlled system for varying droop 
gains. Hardware experimental results are reported to show the 
transient response of the proposed P - I / Q - V droop control. 
The system parameters are listed in Table I. 

The effect of each individual droop gain can be examined 
through examining each polynomial in IAdl = O. Each DIe 
appears to be transformed into an equivalent network with the 
interconnecting impedances connecting it to other DIes taken 

A. Simulation Results into account. The droop control are then applied to this equiv-
alent network providing two polynomials for each DIe, one Since only two DIes are considered in this example, only 
for P-I droop and the other for Q-V droop. The polynomial four polynomials will appear in the characteristic polynomial 

978-1-4799-8397-1/16/$31.00 © 2016 IEEE 
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TABLE I: Parameters of Hardware System 

Parameter Value 

DIC rated power lkW 
DIC terminal voltage 110 VL-LCrms) 
System frequency, f 60 Hz 
Inductance of DIC filter 2 mH 
Capacitance of DIC filter 10 J-lF 
Load resistance, R 12 ohm 
Load inductance, L 30 mH 
Resistance of transmission line, R23 0.25 ohm 
Inductance of Transmission line, L23 2 mH 
DC bus voltage, Vvc 400V 

Fig. 2: The MG for experimental study 

as shown below: 

The closed-loop system stability is decided by the stability of 
each individual polynomial. 

The polynomials Gpj2(S), Gpj3(S), GQv'2(s) and GQv'3(s) 
contain the gains kp2' kp3, kq2 and kq3 respectively. Table II 
lists expression for each polynomial and their corresponding 
zeros and poles. When the roots of the polynomials are plotted 
for varying positive droop gains, as per theory of root locus 
plots, the loci originate from the poles for zero gain and 
terminate at the zeros as gain tends to infinity. 

Figures 3 - 6 shows the movement of roots of each polyno­
mial as their respective control gains are varied. The arrows 
indicate the direction of movement of the roots as the control 
gains increases. In all the plots, the roots move into the right 
half of the s-plane for large values of the control gain. The 
zero on the right half of s-plane implies that the controlled 
system is unstable for large gains with root loci moving closer 
towards it. The value of the control gains kp2 = kp3 = kp 
and kq2 = kq3 = kq for which the controlled system 
becomes unstable is found to be 6.5 x 1O-3(rad/(Ws)) and 
6.5 x 10-3 (V/(V AR.s)) respectively. If the control gains are 
smaller than above mentioned values, the controlled system is 
stable, as the roots are on the left side of the imaginary axis. 

B. Experimental Results 

We provide a hardware prototype platform to verify above 
mentioned simulation results. The parameters of the hardware 
experiment are listed in Table I. This hardware experiment is 
proceeded by the following two steps: 

• DIC3 is started with its drop controller and it generates 
output 110V (RMS (L-L), 60 Hz) to the load. During 
this step, DIC2 is only locking the phase of the voltage 
output from DIC3 but does not generate the power. 

Root Locus 
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3000 

�:; 2000 

-g 1 1000 

" " 
[ ·1000 

� .E -2000 

·3000 

.. o�oo 5000 10000 
Real Axis (seconds·1) 

Fig. 3: Root locus of Gpj2(s) 
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Fig. 4: Root Locus of Gpj3(s). 
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Fig. 5: Root locus of GQV2(S). 
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Fig. 6: Root Locus of GQV3(s). 
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TABLE II: Zeros and Poles of the Polynomials 

Polynomial 

Gpf2(s) = [SIZ2312 + kp2( -Q21Z2312 + VO:LWL23)] 
Gpf3(s) = [SIZ2312 + kp3( -Q31Z2312 + VO"WL23)] 
GQv2(s) = [SIZ2312 + kq2(KresQrmlZ2312 + Q21Zd2 + VO:LWL23)] 
GQv3(s) = [SIZ2312 + kq3(KresQrmlZ2312 + Q31Z2312 + VO:LWL23IZd2)] 
S6 

TABLE III: Control gains of two cases 

Control gain Case 1 Case 2 

kp(rad/ (w.s)) 1 x 10 - 5 1 x 10 · 5 

kq(V/(V AR.s)) 1 x 10 -4 1 x 10 .;0 

• DIC2 is started with its droop controller and it generates 

output 1l0V (RMS (L-L), 60 Hz) to share its power along 

with DIC3 to the load. 

Zeros 

-6480.4,6230.4 

-7069.5,6819.5 

-125 ± j3589 

-125 ± j5204 
-

Poles 

-125 ±j377,0 

-125 ±j377,0 

-125 ± j377, ° 
-125 ±j377,0 

0,0,0 

44U9191rHl 
4l1,7'� 

In order to verify the control gain values obtained by root 

locus method, two cases of different control gains are chosen 

as tabulated in Table III. Since paramters of two DICs are 

identical, droop control gains are set as kp2 = kp3 = kp and 

kq2 = kq3 = kq . 
Fig. 7: Active power sharing between two DICs in Case 1. 

The experimental results in Figures 7 - 10 show the corre­

sponding active power and the reactive power outputs of two 

DICs. From Figure 7 and 8, it is clear that the P - f /Q - 11 
droop control method is feasible for regulating the power 

sharing between two DICs in practice. At first, the active 

power and the reactive power is supported by DIC3 solely and 

DIC2 does not generate any power. When the droop control 

for D I C2 is enabled, D I C2 starts generating power and the 

power outputs of the two DICs are redistributed. 

I DIC3:503.1VAR 

I DIC3:377.4VAR I 

\ 

I 
I OIC2:12S.7VAR I 

7 

In case 1, as the control gains are small enough, the two 

DICs share active power evenly under steady-state (approxi­

mately 267 Watts). Since restoration mechanism for the term 

11 is applied, the reactive power is not been shared evenly 

by the two DICs under steady-state (DIC3 = 377.4V AR, 
DIC2 = 125.7V AR). In case 2, as one of the control gain 

kq is nearer to the value of 6.5 x 10-
3, it is to find that 

the power sharing between the two DICs has weak damping 

behavior. This weak damping behaviour indicates that the roots 

are very nearer to the imaginary axis of the complex plane. 

Fig. 8: Reactive power sharing between two DICs in Case 1. 

V. CONCLUSION 

In this paper, a model for multiple DICs connected in 

a MG is presented first. An efficient method for construct­

ing a reduced order MG has been extended for DICs with 

P -f /Q - 11 droop control. The closed-loop transfer function 

characteristic equation is obtained under mild assumptions and 

this the poles and zeros of the plant model are be obtained. 

These line impedances between the DICs and droop control 

gains produce a high impact on the location of poles and zeros 

on the complex plane and thereby the stability of the entire 

system. The root locus method is explored for proper tuning 

of the droop gains. By observing root locus of varied control 

I DIC3:534.3W I 

I OIC,:OW 

J.l1.903100H! 
.11.� 

Fig. 9: Active power sharing between two DICs in Case 2. 
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I DIC3:503.1VA 

=�l 1::mJ� �;=:�l 110.� I 
Fig. 10: Reactive power sharing between two DICs in Case 2. 

gains, the stability limits of the plant model are examined. 

Both simulation studies and experimental results show the 

correctness of the proposed analysis. 
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