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A B S T R A C T

Data clustering is a popular analysis tool for data statistics in many fields such as pattern recognition, data
mining, machine learning, image analysis, and bioinformatics. The aim of data clustering is to represent large
datasets by a fewer number of prototypes or clusters, which brings simplicity in modeling data and thus plays a
central role in the process of knowledge discovery and data mining. In this paper, a novel data clustering
algorithm based on modified Gravitational Search Algorithm is proposed, which is called Bird Flock
Gravitational Search Algorithm (BFGSA). The BFGSA introduces a new mechanism into GSA to add diversity,
a mechanism which is inspired by the collective response behavior of birds. This mechanism performs its
diversity enhancement through three main steps including initialization, identification of the nearest neighbors,
and orientation change. The initialization is to generate candidate populations for the second steps and the
orientation change updates the position of objects based on the nearest neighbors. Due to the collective
response mechanism, the BFGSA explores a wider range of the search space and thus escapes suboptimal
solutions. The performance of the proposed algorithm is evaluated through 13 real benchmark datasets from the
well-known UCI Machine Learning Repository. Its performance is compared with the standard GSA, the
Artificial Bee Colony (ABC), the Particle Swarm Optimization (PSO), the Firefly Algorithm (FA), K-means, and
other four clustering algorithms from the literature. The simulation results indicate that the BFGSA can
effectively be used for data clustering.

1. Introduction

Data clustering is one of the most important and popular data
analysis techniques, which involves the process of classifying an
unlabeled dataset into clusters of similar objects. Each cluster consists
of objects that are similar within the cluster and dissimilar to objects of
other clusters (Barbakh et al., 2009; Jain, 2010; Berikov, 2014).
Clustering has been applied in many applications such as web mining,
text mining, image processing, stock prediction, signal processing,
biology and other fields of science and engineering (Everitt et al., 2011;
Bishop, 2006).

There are many clustering algorithms that have been proposed for
clustering problems in the literature. Traditional clustering algorithms
fall into two main categories: hierarchical algorithms and partitional
algorithms (Everitt et al., 2001; Xu and Wunsch, 2005).

Hierarchical algorithms create a tree structure of clusters in the
absence of any prior knowledge about the number of clusters (Nanda
and Panda, 2014). These algorithms can be carried out through two
modes: agglomerative mode or divisive mode. In agglomerative mode,

each object is regarded as a separate cluster in the beginning and then
two most similar clusters are merged at each step. This process
reoccurs until termination criteria are satisfied. In divisive mode, all
objects are considered as one cluster in the beginning and then each
cluster is divided into two clusters until termination criteria are met.

In partitional algorithms, each cluster is assigned initially a
centroid. Then based on the similarity between each object and each
centroid, all objects will be classified into a corresponding cluster. The
objective of these algorithms is to maximize the similarity within one
cluster while minimizing connectivity among different clusters (Everitt
et al., 2001; Xu and Wunsch, 2005).

Apart from traditional clustering algorithms, there are other
clustering algorithms (Chang et al., 2009). Ensity-based methods
(Ankerst et al., 1999; Ester et al., 1996) and nearest neighbor methods
(Lu and Fu, 1978) are based on the idea that neighbor objects ought to
belong to the same cluster. Bi-clustering algorithms (Madeira and
Oliveira, 2004) make their clustering through row and column
simultaneously. Multi-objective clustering algorithms (Dehuri et al.,
2006) and clustering ensembles approaches (Hong et al., 2008) are
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multi-objective clustering algorithms which optimize different char-
acteristics of the dataset. Overlapping clustering algorithms are differ-
ent from most of clustering algorithms, in which each object belongs to
only one cluster. While in overlapping clustering, each object can
belong to more than one cluster. Fuzzy C-means is one of the most
popular overlapping clustering algorithms (Nanda and Panda, 2014).

In recent years, meta-heuristic algorithms are widely used to solve
clustering problems (Nanda and Panda, 2014). From an optimization
perspective, clustering problems can be formally considered as a
particular kind of NP-hard grouping problem (Falkenauer, 1998).
This type of algorithms includes searching for an optimal solution for
clustering problems and reducing the risk of trapping in local optima.
These algorithms include but not limited to genetic algorithms (GA)
(Maulik and Bandyopadhyay, 2000), simulated annealing (SA) (Selim
and Alsultan, 1991), Tabu search (Al-Sultan, 1995; Glover and Laguna,
1997), Artificial Bee Colony (ABC) (Karaboga and Ozturk, 2011a),
Greedy Randomized Adaptive Search Procedure(GRASP) (Feo and
Resende, 1989), Iterated Local Search(ILS) (Stutzle, 1999), Variable
Neighborhood Search (VNS) (Mladenovic and Hansen, 1997), ant
colony optimization (ACO) (Shelokar et al., 2004), Particle swarm
optimization (PSO) (Chen and Ye, 2004; De et al., 2016), and so on.

Gravitational search algorithm (GSA) is one of the newest meta-
heuristic optimization algorithms inspired by the Newtonian laws of
gravity and motion (Rashedi et al., 2009). In GSA, an object in the
search space attracts every other one with a force that is directly
proportional to the product of their masses and inversely proportional
to the square of the distance between them. The GSA has been proved
to be an excellent optimization method for different types of applica-
tions, including data clustering (Dowlatshahi and Nezamabadi-pour,
2014), fuzzy model identification (Li et al., 2012), classification (Han
et al., 2014; Zhang et al., 2013; Li et al., 2015), economic emission load
dispatch (Jiang et al., 2014), wind turbine control (Chatterjee et al.,
2014), and power systems (Shuaib et al., 2015).

Motivated by the success of the GSA with variant optimization
problems, this paper proposes a novel data clustering algorithm based
on a modified GSA (called Bird Flock GSA, BFGSA). The aim of the
modified GSA is to enhance the capability of GSA in exploration
without reducing the capability in exploitation. In the proposed
BFGSA, we introduce bird flock behavior into GSA, which is a collective
response process of how birds flock together. The concept of collective
behavior of birds is inspired by the concept previously proposed
(Hereford and Blum, 2011; Netjinda et al., 2015), which was used to
enhance the original PSO. In their proposed method, the original
velocity and position are updated by new equations which simulates the
collective behavior of starlings. In this paper, we integrate collective
response process of birds into GSA to enhance its performance. In our
work, we maintain the original velocity and position updating equation
of GSA most of the time, except when the global best stops in a local
optimum, the position of objects are updated by the mechanism called
bird flock behavior.

The rest of this paper is organized as follows. The cluster analysis
problem is discussed in Section 2. Section 3 provides a review of
standard GSA. The description of the proposed clustering algorithm is
presented in Section 4. In Section 5, the experiments of the proposed
algorithm for data clustering are given. Finally, a brief conclusion is
offered in Section 6.

2. The data clustering problem

Data clustering is a process of classifying a set of objects into groups
in which similarity in the same group must be maximized and objects
that belong to different groups must be dissimilar as possible (Nanda
and Panda, 2014; Hruschka et al., 2009).

Mathematically, a data set with N objects, each of which has d
attributes, is denoted by X={X1, X2, …, XN}T, where Xi={xi

1, xi
2, …, xi

d}
is a vector denoting the ith object and xi

j is a scalar denoting the jth

attribute of xi. The number of attributes is called the dimensionality of
the data set. Let Xn×d be the profile data matrix, with n rows and d
columns. Given Xn×d, the goal of clustering is to classify X into K
groups or clusters, C1, C2, …, Ck, such that objects in the same cluster
are as similar to each other as possible, while objects in different
clusters are quite distinct. And also the following criteria should be
satisfied (Nanda and Panda, 2014):

C X⋃ =i
K

i=1 (1)

C C i j K i j⋂ = ∅, , = 1,…, ; ≠i j (2)

C i K≠ ∅, = 1,…,i (3)

Eq. (1) and Eq. (2) show that all objects in datasets must be
classified and each object must belong to only one cluster, and Eq. (3)
indicates that each cluster must contain objects.

To find optimal cluster centers with meta-heuristic algorithms, the
objective function should be minimized. In this paper, we use
quantization error formula as objective function and the optimization
problem can be defined as follows:
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(4)

in which |Cij| indicates the number of cluster Cij; d indicates Euclidean
distance between each data vector and the centroid. This Euclidean
distance can be calculated by the following expression:

∑d z m z m( ) = ( − )p j
k

N

pk jk,
=1

2
d

(5)

in which k indicates the dimension; Nd indicates the number of
attributes of each data vector; zp indicates pth data vector and mj

indicates centroid vector of cluster j. The cluster centroid vectors are
recalculated through the following expression:

∑m
n

z= 1
j

j z C
p

∀ ∈p j (6)

in which nj indicates the number of data vectors in cluster j and Cj
indicates the subset of data vectors from cluster j.

3. The gravitational search algorithm

The gravitational search algorithm (GSA) is a newly developed
stochastic population-base heuristic optimization algorithm based on
the law of gravity and mass interactions, which was first introduced by
Rashedi et al. Rashedi et al. (2009), Rashedi (2007), Rashedi et al.
(2007). The algorithm provides an iterative process that simulates
mass interactions, and develops through a multi-dimensional search
space under the influence of gravitation. In GSA, all solutions are called
agents or objects whose performances are evaluated by their masses;
these agents or objects attract each other by gravitational force which
causes a global movement of all objects towards objects with heavier
masses (Rashedi et al., 2007, 2009; Rashedi, 2007).

Assumed there are k objects, the position of the ith object is defined
as Eq. (7):

X x x x i k= ( ,…, ,…, ), = 1, 2,…, ,i i i
d

i
n1 (7)

where xi
d denotes the position of ith object in the dth direction. The

force exerting on the object i from the object j is defined as Eq. (8):

F t G t
M t M t

R t ε
x t x t( ) = ( )

( )× ( )
( )+

[ ( ) − ( )],ij
d i j

ij
j
d

i
d

(8)

where Mj is the mass related to object j , Miis the mass related to object i,
ε is a small constant, and R t( )ij is the Euclidian distance between the
object iand object j. G is a function of the initial value G0and iterationt ,
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which is defined as Eq. (9):

G t G e( ) = α t
T0

− (9)

in which G0 is initial gravitational constant and α is a specified constant
by user, t is the current iteration and T is the maximum number of
iterations. The total force F t( )i

d that exerts on object i in the dth
direction is a randomly weighted sum of dth components of the forces
from other objects:

∑F t rand F t( ) = ( ),i
d

j j i

k

j ij
d

=1, ≠ (10)

where randj is a uniform random variable in the interval [0,1].
The acceleration of the object iin the dth direction at timet is a t( )i

d ,
which is given as Eq. (11):

a t
F t
M t

( ) = ( )
( )

,i
d i

d

ii (11)

where Mii is the inertial mass of the object i. Its next velocity v t( + 1)i
d

and its next position x t( + 1)i
d are calculated according to Eqs. (12) and

(13):

v t rand v t a t( + 1) = × ( ) + ( )i
d

i i
d

i
d (12)

x t x t v t( + 1) = ( ) + ( + 1)i
d

i
d

i
d (13)

where randi is a uniform random variable in the interval [0,1]. This
random number is used to give a randomized characteristic to the
search, v t( )i

d and x t( )i
d are its current velocity and position, respec-

tively.
The masses of objects are evaluated by the fitness function.

Assuming the equality of the gravitational and inertia mass, the mass
M t( )i is updated according to Eqs. (15), (16), (17) and (18):

M M i k= , = 1, 2,…, ,i ii (14)

m t fit t worst t
best t worst t

( ) = ( ) − ( )
( ) − ( )

,i
i

(15)

M t m t
m t

( ) = ( )
∑ ( )

,i
i

j
k

j=1 (16)

best t fit t( ) = min ( ), (for minimization problem)
j k

j
∈{1, …, } (17)

worst t fit t( ) = max ( ), (for minimization problem)
j k

j
∈{1, …, } (18)

where fiti(t) represents the fitness value of the objecti at time t . The
flow chart of GSA is shown in Fig. 1.

4. The GSA based clustering algorithm

Data clustering is one of the NP problems. GSA algorithm is an
effective technique for solving optimization problems that works based
on probability rules and population. So it is feasible to solve clustering
problem using GSA. This view allows us to apply GSA algorithms for
finding a set of candidate centroids and thus determining a near
optimal classifying of the dataset at hand.

4.1. Solution encoding

In order to use GSA to solve clustering problems, the first step is to
encode an appropriate solution encoding to encode cluster centers.
Initially, candidate solutions for clustering problems are created
randomly. Each of these candidate solutions (called mass or agent)
denotes all centroids of datasets. After creating randomly candidate
solutions, they will interact like masses in the universe through
Newtonian gravitational law. The value of mass for each agent will be
computed by objective function for that candidate solution. Good
agents, which have less value for objective function, will have great
masses and vice versa. In order to apply Newtonian gravitational law to
cluster analysis, we have used arrays to encode cluster centers. If Xn×d
is the profile matrix and k is the number of clusters G={C1, C2, …, Ck}
of the set of N data objects X={X1, X2, …, XN}T, each candidate
solution in the population consists of a one-dimensional vector of size
d×k, where k is the number of clusters and d is the number of attributes
for each object in the dataset. Fig. 2 shows an example of a candidate
solution for a problem with k clusters, where every data object has d
attributes.

4.2. Position adjustment

The standard GSA sometimes has the problem of premature
convergence due to rapid reduction of diversity. We introduce bird
flock behavior into GSA to explore a wider range of the search space
and thus escape suboptimal solutions.

In the standard GSA, each object can be specified by its position,
inertial mass, active gravitational mass and passive gravitational mass.
Taking into account the aspects of the above mentioned masses,
Newton's law can be rewritten as follows.

F G t
M M

R
= ( )

×
ij

j i
2 (19)

α
F
M

=i
ij

ij (20)

Considering a system with N agents, the position of the ith agent
can be defined by

X x x x= ( ,…, ,…, )for i = 1, 2, 3,…,Ni i i
d

i
n1 (21)

At a specific time ‘t’, the force acting on mass ‘i’ from mass ‘j’ can be
defined as

F t G t
M t M t

R t ε
x t x t( ) = ( )

( )× ( )
( )+

[ ( ) − ( )]ij
d i j

ij
j
d

i
d

(22)

The position and its velocity of an agent can be calculated as

x t x t v t( +1) = ( )+ ( +1)i
d

i
d

i
d (23)

v t rand v t α t( ) = × ( )+ ( )i
d

i i
d

i
d (24)

Randomized initialization

Fitnesse valuation of objects

Updating best(t), worst(t) and
Mi(t) for i = 1, 2,. . .,k

Computation of the total force in
different directions

Computation of acceleration and
velocity

Updating objects’ position

Meeting end of
criterion

Return best solution

Yes

No

Fig. 1. The flow chart of GSA algorithm. Fig. 2. Examples of a candidate solution encoding with k clusters and d attributes.

X. Han et al. Engineering Applications of Artificial Intelligence 61 (2017) 1–7

3



However the algorithm may be trapped in local optimum because of
the rapid reduction of diversity. To escape the trap, we observe the
value of the global best in each iteration to check whether it changes or
not. If the global best fitness does not change for several subsequent
iterations, we start a process of position movement to avoid the
stagnation, which we call the collective response of object reorienta-
tion. To explore a wider range of position change, we use Eq. (25) to
every object. In the Eq. (25), x̂i is the new position of the object x⎯⇀i after
the collective response of object reorientation. The new position is
obtained by calculating the position mean of its seven nearest
neighbors. The seven nearest neighbors are chosen according to their
distance measure. The selection of distance measure methods has
certain influence on the results of algorithm. Therefore, it is necessary
to select an appropriate distance measure according to the character-
istics of the input data. In clustering analysis field, there are many
widely used distance measure methods such as Euclidean distance,
Manhattan distance, Mahalanob distance, and so on. Euclidean
distance is a simple, widely used distance metric, which measures the
absolute distance between points in a multidimensional space. It does
not consider the correlation between components. In this case, we
choose Euclidean distance as our distance measure method to compute
the distance between different objects. The distances from x⎯⇀ito the
seven objects are the shortest distances among all distances from x⎯⇀i to
other objects. The random number randiis a real number in the interval
[−1,1]. The setNicontains the indexes of the seven nearest neighbors of
object x⎯⇀i.

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑x x rand xˆ = ⎯⇀+ 1

7
⎯⇀

i i i
n N

n
∈ i (25)

This equation is used to update the position of each object. To
increase the opportunity of obtaining a better position adjustment, we
generateALTER_NUMsets of candidate position updating solutions
from the original solutions. ALTER_NUM , which is determined through
many trials, is used to control the number of generated candidate sets.
We select the alternative which yields the best global fitness as a new
set of object positions.

The characteristics of collective response in the orientation change
can be reflected by Eq. (25), in which x∑ ⎯⇀

n N n
1
7 ∈ k

describes the collective
response of a bird's seven closest neighbors. New solutions are formed
after the collective flock behavior of old solutions. The new global best
solution is selected from these new positions. Algorithm 1 gives the
collective response of the position change.

Algorithm 1. Collective response of position change for minimization
problem.

1: N: the number of objects; Gbest: the optimal value; Lbest: the
optimal solution;

2: for i=1:N
3: Find the nearest seven neighbors of object i using Euclidean

distance and keep the index of neighbor (n) in the set Nk;
4: Compute the new position through Eq.(25);
5: End
6: Gbest=the minimal fitness of all object fitness; Lbest=the best

solution of all solution;

4.3. The proposed clustering approach

Based on the above description, the main steps of our proposed
BFGSA clustering algorithm are as follows:

Step 1: Generate randomly an initial population P which includes S
candidate solutions: P={P1, P2, …, PS}, in which each candidate
solution Pi={Z1, Z2, …, Zk} includes k centroids, and each centroid

has d attributes. Zj= z z z{ , ,…, }j j j
d1 2 is the jth centroid for ith agent

(i=1, 2,…, S and j=1, 2,…, K). S is the number of masses or agents or
candidate solutions; K is the number of centroids; d is the number of
attributes of each centroid.
Step 2: Calculate the fitness values according to Eq. (4) for all
agents (candidate solutions). Choose the best candidate solution as
the a final solution, which has the minimal fitness value. And choose
the worst candidate solution with the maximal fitness value to
calculate the individual masses. At a specific iteration t we have:

best t min fit t

j S worst t max fit t j S

( ) = { ( )},

∈ {1, 2,…, }; ( ) = { ( )}, ∈ {1, 2,…, }
j

j

(26)

Step 3: Calculate the masses of agents based on the fitness function
and Gworst:

M t
fit t worst t

fit t worst t
i S( ) =

( ) − ( )
∑ ( ( ) − ( )

, = 1, 2,…,i
i

j
S

j=1 (27)

Step 4: Calculate the resultant force of selected agent from all other
agents using gravity law. And then calculate the acceleration of each
agent.

∑F t rand G t
M t M t

R t ε
x t x t( ) = ( )

( )× ( )
( )+

[ ( ) − ( )]i
d

i j
j

i j

ij
j
d

i
d

≠ (28)

α t F
M t

i S( ) = (t)
( )

, = 1, 2,…,i
i

i (29)

where Rij is Euclidian distance between two agents and xi and xj are
the positions of ith and jth agents, respectively. ε is a very small
constant to avoid division by zero.
Step 5: Update the velocity of agent and then update the position of
agent which indicates the cluster centers by adding the new velocity.

v t rand v t α t i S( +1) = × ( )+ ( ), = 1, 2,…,i
d

i i
d

i
d (30)

x t x t v t i S( +1) = ( )+ ( +1), = 1, 2,…,i
d

i
d

i
d (31)

Step 6: Check if stagnation has occurred for a minimization
problem. If the stagnation situation happens, then the population
calls the collective response of the position change.
Step 7: If the termination criteria are satisfied, then the best
individual as a final solution, which has the minimum value for
objective function is returned. Otherwise go to step 2 and repeat.

The proposed BFGSA clustering algorithm is summarized in
Algorithm 2.

Algorithm 2. The proposed BFGSA clustering algorithm.

1: Define initial parameters.
2: Initialize each agent with K random cluster centers.
3: for Iteration_count=1 to maximum_iterations do
4: for all agents i do
5: for all pattern Xp in the dataset do
6: calculate Euclidean distance of Xp with all cluster

centroids;
7: assign Xp to the cluster that have nearest centroid to Xp
8: end for
9: calculate the fitness function based on Eq.(4); calculate

Gbest and Gworst based on Eq.(17) and Eq.(18);
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10: calculate mass value for all agents based on Eq.(27);
11: calculate the acceleration and velocity of agents based on Eq.

(29) and Eq.(30);
12: calculate the position of each agent based on Eq.(31);
13: if stagnant_count > STAGNANT_NUM % check if

stagnation has occurred for minimization problem
14: call the process of collective response of position change
15: End
16: end for
17: find the global best position
18: update the cluster centroids according to velocity updating

and coordinate updating formula of GSA
19: end for

5. Experiments

In this section, the BFGSA clustering algorithm is evaluated on 13 real
benchmark datasets from the UCI databases (Blake andMerz, 1998), which
is a well-known database repository. The selected benchmark problems
include examples with low, medium, and high dimensions.

The structure of this section is as follows. First, we describe the
characteristics of the 13 selected standard classification datasets. Then,
we present the comparison results of the BFGSA clustering algorithm
with the other nine clustering algorithms.

5.1. Datasets description

In this paper, we use 13 benchmark classification datasets which
are well-known and well-used datasets in the machine learning
community. Table 1 provides the characteristics of these datasets
including the number of instances, the number of features, and the
number of classes. We select randomly 75% of each dataset and use it
as a training set in the process of training. The remaining 25% of each
dataset is used as a test set in the process of testing. Table 1 also offers
the number of the training and testing sets. After training phase, we
obtain the cluster centers as an extracted knowledge form training set,
that can be used for classifying the test set.

5.2. Results and comparisons

In this section, the performance of the proposed BFGSA clustering
algorithm is investigated by applying the proposed algorithm to solve
different benchmark datasets. The proposed BFGSA clustering algo-
rithm was implemented in MATLAB language and run on a PC with an
Intel Core i5-4440 CPU @3.10 GHz and 8 GB memory. The population
size was 50 and the max-number of iterations was set to 500. For the
BFGSA clustering algorithm, the stagnant count_ (the number of the
global best fitness not changing at continuous iterations.) was set to 2

and the number of candidate populations (ALTER NUM_ ) in collective
response was set to 14. The values of stagnant count_ and ALTER NUM_
were set based on a large number of trials and the stopping criterion is
satisfied after 500 iterations. The algorithm was tested on a set of 13
well-known benchmark datasets. we compared the BFGSA results with
a standard version of GSA (Bahrololoum et al., 2012), Artificial Bee
Colony(ABC) (Karaboga and Ozturk, 2011b), K-means (Nanda and
Panda, 2014), PSO (De Falco et al., 2007), NM-PSO (Fan et al., 2004),
K-PSO (Kao et al., 2008), K-NM-PSO (Kao et al., 2008), CPSO (Chuang
et al., 2011), and Firefly Algorithm (FA) (Senthilnath et al., 2011).

For each dataset, we report the error rate and the sum of the intra-
cluster distances.

1. Error rate: the percentage of misclassification on the test set. The
error rate is calculated as follows: first, the number of misclassifica-
tions is counted after the test data is classified. It is possible because
the actual class label of each data instance is known in the test data
set. Second, the number of misclassified instances is divided by total
number of instances in the test set. The error rate is calculated
through the following Eq. (32):

Error Rate = 100 × Number of misclassified instances
Total size of test set (32)

2. Sum of the intra-cluster distances: the distances between data
vectors within a cluster and the centroid of the cluster, as defined
in Eqs. (33) and (34). The less the sum of the intra-cluster distances
is, the higher the quality of clustering results is.

∑D x z x z( − ) = ( − )p j
i

d

pi ji
=1

2

(33)

∑z
n

x= 1
j

j x c
p

∀ ∈p j (34)

In which zj denotes the center vector of cluster j; xp denotes the pth
data vector; the d subscript represents the number of features of each
center vector; nj is the number of data vectors in cluster j, and Cj is the
subset of data vectors that form cluster j.

Table 2 summarizes the intra-cluster distances obtained from the
10 clustering algorithms for the datasets in Table 1. The values
reported are the averages of the sums of intra-cluster distances over
25 simulations. From Table 2, it can be seen that the test results of
Cancer, Credit and Diabetes datasets indicate that K-PSO and K-NM-
PSO outperforms the K-means method. K-PSO is a hybrid of the K-
means and PSO algorithm. K-NM-PSO is a hybrid of the K-means,
Nelder–Mead simplex search (Nelder and Mead, 1965) and PSO. CPSO
has better results than NM-PSO, except for a tiny slight loss for
Balance, Cancer-Int, and Dermatology datasets. As can be seen from
these results, PSO offers better results than ABC and FA for Diabetes,
E. Coli, Glass, Heart, and Iris datasets. For all experimental datasets
except Horse, Thyroid, and Wine datasets, CPSO outperforms standard
GSA, PSO, ABC, FA, and K-means. For Cancer, Cancer-Int,
Dermatology and E. Coli datasets, the averages of CPSO are smaller
than those of K-PSO and K-NM-PSO. In the Credit, Glass, Heart, and
Horse datasets, the averages obtained with standard GSA are smaller
than the ones obtained with ABC and K-means. For all experimental
data sets, the BFGSA outperforms the other nine methods in terms of
the averages of intra-cluster distances, which indicates that the BFGSA
can be used as an efficient algorithm for data clustering.

Table 3 shows the mean error rate from the 25 simulation runs. For
all data sets except the Balance, Cancer, Cancer-Int, Thyroid, Iris, and
Wine data sets, CPSO exhibits a significantly smaller mean error rate
compared to ABC, FA, K-means, PSO, NM-PSO and K-PSO. For the
Credit, Dermatology, Diabetes, and Horse data sets, the mean error
rate of CPSO is smaller than those of K-NM-PSO, standard GSA. For E.

Table 1
Main characteristics of the 13 used benchmark datasets.

Dataset # of data
objects

# of training
data

# of testing
data

# of
attributes

# of
classes

Balance 625 469 156 4 3
Cancer 569 427 142 30 2
Cancer-Int 699 524 175 9 2
Credit 690 518 172 15 2
Dermatology 366 274 92 34 6
Diabetes 768 576 192 8 2
E. Coli 327 245 82 7 5
Glass 214 161 53 9 6
Heart 303 227 76 35 2
Horse 364 273 91 58 3
Iris 150 112 38 4 3
Thyroid 215 162 53 5 3
Wine 178 133 45 13 3
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Coli, Glass, and Heart data sets, it is equal to those of ABC and FA. For
all the data sets except Cancer-Int, Heart, and Credit data sets, the
BFGSA exhibits a significantly smaller mean error rate compared to
ABC, FA, standard GSA, K-means, PSO, NM-PSO, K-PSO, K-NM-PSO,
and CPSO. Again, the BFGSA is superior to the other nine algorithms
with respect to the intra-cluster distance. Although the BFGSA in the E.
Coli and Heart data sets does not obtain the best error rate, the intra-
cluster distance is the smallest (Table 2). It should be noted that the
intra-cluster distance is not proportional to the error rate (Kao et al.,
2008). The actual data distribution is not regular and therefore a
smaller intra-cluster distance does not necessarily indicate a lower
error rate.

To be able to make a good comparison among ten clustering
algorithms, The ranking of the BFGSA and the other nine clustering
algorithms based on their error rates is reported, which can be seen in
Table 4. This table shows the average error rates of all datasets
obtained by the BFGSA and the other nine clustering algorithms. The
ranking is ordered through the ascending sequence of average error
rates.

To statistically compare the performance differences among the
BFGSA and the other 9 clustering algorithms, A Wilcoxon signed-rank
test (Derrac et al., 2011) is conducted. Table 5 shows the resultant p-
values of comparing the BFGSA with the other 9 clustering algorithms
on the 13 benchmark datasets. From Table 5 therefore, it can be seen
that the BFGSA is better than the seven clustering algorithms with a
level of significance of α = 0.05. It also can be seen that the BFGSA has
an improvement over the six clustering algorithms with a level of
significance of α = 0.01.

Table 2
Average intra-cluster distances of each of the ten clustering algorithms BFGSA, standard GSA, PSO, ABC, FA, K-means, NM-PSO, K-PSO, K-NM-PSO, and CPSO executed on 13 UCI
datasets.

Dataset BFGSA Standard GSA PSO ABC FA K-means NM-PSO K-PSO K-NM-PSO CPSO

Balance 10052.32 131293.30 61987.01 66329.16 37640.44 20137.76 57313.68 10966.71 17153.45 18167.91
Cancer 21.38 34.89 169.88 107.39 126.67 90.25 163.94 29.62 195.20 22.10
Cancer-Int 38.34 260.61 230.30 170.08 117.52 148.82 267.76 272.94 150.33 149.38
Credit 1569.90 1398.57 5090.77 4256.66 4036.46 3349.21 2773.60 1973.18 4194.19 2037.86
Dermatology 102.78 654.98 1862.78 796.85 1448.48 442.87 210.33 742.20 555.49 183.03
Diabetes 113.93 6747.03 3140.59 8210.04 5488.42 156.52 947.84 5148.62 9525.25 131.90
E. Coli 32.93 571.97 40.37 276.32 57.78 675.21 617.95 408.93 566.36 33.34
Glass 107.84 166.49 169.76 477.17 376.69 167.91 317.16 208.42 289.04 120.22
Heart 1371.61 4350.15 2298.83 8043.72 9095.10 10284.16 5707.29 2144.42 6693.52 2100.27
Horse 6.41 14.85 8.42 71.92 94.37 19.69 66.58 15.10 70.41 63.92
Iris 67.04 520.79 138.98 265.43 651.34 631.04 100.22 126.58 332.60 90.25
Thyroid 1124.65 8255.67 4577.00 5635.12 1432.76 2385.84 3251.74 4995.94 2668.91 2923.22
Wine 70.89 234.58 175.93 151.61 264.25 118.10 73.54 85.44 272.69 211.75

Table 3
Average error rate of each of the ten clustering algorithms BFGSA, standard GSA, PSO, ABC, FA, K-means, NM-PSO, K-PSO, K-NM-PSO, and CPSO executed on 13 UCI datasets.

Dataset BFGSA Standard GSA PSO ABC FA K-means NM-PSO K-PSO K-NM-PSO CPSO

Balance 2.96 3.38 11.34 24.47 2.59 15.11 11.86 36.87 24.19 24.48
Cancer 5.84 12.72 13.74 9.19 29.44 14.62 18.76 6.37 11.77 34.38
Cancer-Int 39.00 10.09 8.41 34.23 7.92 26.06 24.87 5.76 25.86 23.06
Credit 30.63 14.66 18.05 17.78 24.09 27.67 36.87 36.16 33.33 14.21
Dermatology 3.35 34.29 14.39 22.61 25.37 40.47 9.17 27.51 5.13 4.54
Diabetes 1.98 7.59 12.47 22.14 31.54 38.30 39.85 2.62 30.76 2.01
E. Coli 2.54 7.15 38.82 8.71 8.71 15.51 18.95 21.71 26.31 2.90
Glass 4.00 21.43 16.30 35.90 35.90 8.70 32.77 36.30 19.25 4.05
Heart 15.51 25.01 16.82 19.46 19.46 37.81 22.87 16.26 38.20 1.44
Horse 1.88 7.22 24.56 2.70 16.90 12.31 14.06 12.91 4.06 2.53
Iris 2.14 26.26 3.05 18.40 14.63 23.31 18.64 10.61 24.55 39.13
Thyroid 8.43 34.51 9.26 23.01 23.01 37.34 29.32 9.09 10.40 30.54
Wine 6.05 32.21 29.58 26.07 12.31 9.66 37.64 16.62 6.75 31.85
Average 9.56 18.19 16.67 20.35 19.37 23.60 24.27 18.36 20.04 16.54
Rank 1 4 3 8 6 9 10 5 7 2

Table 4
Ranking of the BFGSA and 9 clustering algorithms based on their error rates.

Rank Clustering algorithms Average (%)

1 BFGSA 8.90
2 CPSO 16.54
3 PSO 16.67
4 Standard GSA 18.19
5 K-PSO 18.36
6 FA 19.37
7 K-NM-PSO 20.04
8 ABC 20.35
9 K-means 23.60
10 NM-PSO 24.27

Table 5
Wilcoxon signed-rank test between BFGSA with other 9 clustering algorithms on
benchmark datasets.

BFGSA vs. p-value

Standard GSA 4.62–02
PSO 4.31–04
ABC 2.29–03
FA 5.07–03
K-means 1.17–03
NM-PSO 6.72–03
K-PSO 1.08–03
K-NM-PSO 8.91–02
CPSO 8.42–02
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6. Conclusions

Clustering algorithms have emerged and rapidly developed as an
alternative powerful meta-learning tool to undertake a broad range of
applications because it is particularly useful for segmenting large
multidimensional data into distinguishable representative clusters. In
this paper, we propose a data clustering algorithm based on a modified
gravitational search algorithm. The proposed clustering algorithm is
called Bird Flock Gravitational Search Algorithm (BFGSA), inspired by
the collective response of birds. In our work, we maintain the original
position equation of GSA most of the time, only when the global best
stops in a local optimum will we call the mechanism of bird flock
response. The use of the position updating of bird flock response is to
solve the problem of premature convergence of standard GSA due to
rapid reduction of diversity. We employ the BFGSA for evolving a set of
candidate cluster centroids and thus determining robust data cluster
centers in a multi-dimensional Euclidean space. The performance of
the proposed algorithm is evaluated in terms of the error rate and the
sum of the intra-cluster distances over 13 well-known benchmark data
sets. Its performance is compared with the K-means, the Particle
Swarm Optimization, the standard GSA, the Firefly Algorithm, and the
other five clustering algorithms from the literature. The experimental
results confirm the effectiveness of the proposed algorithm and show
that it can successfully be applied to data clustering.
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