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This paper presents a new multi-agent based hybrid particle swarm optimization technique (HMAPSO)
applied to the economic power dispatch. The earlier PSO suffers from tuning of variables, randomness
and uniqueness of solution. The algorithm integrates the deterministic search, the Multi-agent system
(MAS), the particle swarm optimization (PSO) algorithm and the bee decision-making process. Thus mak-
ing use of deterministic search, multi-agent and bee PSO, the HMAPSO realizes the purpose of optimiza-
tion. The economic power dispatch problem is a non-linear constrained optimization problem. Classical
optimization techniques like direct search and gradient methods fails to give the global optimum solu-
tion. Other Evolutionary algorithms provide only a good enough solution. To show the capability, the pro-
posed algorithm is applied to two cases 13 and 40 generators, respectively. The results show that this
algorithm is more accurate and robust in finding the global optimum than its counterparts.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Economic power dispatch (EPD) is the scheduling of the com-
mitted generating unit outputs so as to meet the load demand at
minimum operating costs while satisfying all units and system
equality and inequality constraints. The main aim in the economic
dispatch problem is to minimize the total cost of generating real
power (production cost) at various stations while satisfying the
loads and the losses in the transmission links [1,2]. EPD is thus
one of the most important problems to be solved in the operation
of power system. Since modern unit’s input–output characteristics
are highly non-linear due to valve-point loading, multiple-fuel ef-
fects and other constraints, a continuous search for better solver
is going on [3–5].

A lot of classical methods have been developed and are being
used for optimization problem. Golden section search, Fibonacci
search, Newton’s method and Secant method are some one dimen-
sion search method. Gradient methods, Newton’s method, conju-
gate direction method and neural networks are commonly used
for unconstrained optimization [2]. These methods are problem
specific and use gradients. Consequently they are applicable to a
much smaller classes of optimization problem.

A genetic algorithm (GA) is a probabilistic search technique that
has its roots in the principles of genetics. It gives more emphasis on
natural selection of surviving species and process of reproduction
ll rights reserved.
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of new offspring. The algorithm works on process of mutation
and crossover to create new population [6]. Since its conception,
genetic algorithm has been used widely as a tool in computer pro-
gramming, artificial intelligence and optimization.

Mimicking the behavior of intelligence available in various
swarms a new intelligence comes into existence which is known
as swarm intelligence (SI). Swarm intelligence is artificial intelli-
gence which based on the collective behavior of decentralized,
self-organized systems which mimics natural behavior of organ-
isms. SI systems are typically made up of a population of simple
agents interacting locally with one another and with their environ-
ment. The agents follow very simple rules, and although there is no
centralized control structure dictating how individual agents
should behave, local interactions between such agents lead to the
emergence of complex global behavior [7]. A natural example of
SI includes ant colonies, bird flocking, animal herding, bacterial
growth, and fish schooling. Various algorithms derive from SI are
Ant Colony Optimization (ACO), GA and particle swarm optimiza-
tion (PSO) [6–8].

Particle swarm optimization (PSO) algorithm is based on so-
cial behavior of groups like flocking of birds or schooling of fish.
It is a stochastic, population-based evolutionary computer algo-
rithm for problem solving. It is a kind of swarm intelligence that
predicts each individual solution as ‘‘particles” which evolve or
change their positions with time. Each particle modifies its posi-
tion in search space in accordance with its own experience and
also that of neighbouring particle by remembering the best posi-
tion visited by itself and its neighbours, then calculating local
and global positions. These techniques are free from use of
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gradients hence can be applicable to a wider class of optimiza-
tion problems [8,9].

The bees algorithm is an optimization algorithm inspired by the
natural foraging behavior of honey bees to find the optimal solu-
tion for food as well as next site selection [10]. This algorithm per-
forms a kind of neighborhood search combined with random
search and can be used for both combinatorial optimization and
functional optimization. Bee Colony Optimization (BCO), Bee Sys-
tem (BS) algorithms are some of the examples where algorithms
are based on Waggle dance perform by scouts’ bee to inform other
foraging bees about the nectar site [11].

The practical EPD problems with valve-point effects is repre-
sented as a nonsmooth optimization problem having complex
and non-convex features with heavy equality and inequality con-
straints [2]. This kind of optimization problem is hard, if not
impossible, to solve using traditionally deterministic optimization
algorithms. Recently, as an alternative to the conventional math-
ematical approaches, modern stochastic optimization techniques,
evolutionary algorithms, Tabu search, neural networks, genetic
algorithms, particle swarm optimization and other heuristic ap-
proaches algorithms have been given much attention by many
researchers due to their ability to find potential solutions [2–
6,13].

In this paper, we use our own developed a new algorithm,
which is hybrid version on PSO which mimics its search algorithm
from PSO and modify Nelder–Mead method [12] to find optimal
solution. The decision making technique is mimicked from Bee
decision-making process. The decision-making process is based
on the algorithm used by bees for finding a suitable place for estab-
lishing new colony. The experimental results show the robustness
and accuracy of hybrid PSO over genetic algorithm and PSO. Due to
its hybrid nature this algorithm provides only deterministic solu-
tions. Making use of these agent–agent interactions and evolution
mechanism of PSO in a lattice-like environment, the proposed
method can find high-quality solutions reliably with the faster
convergence characteristics in a reasonably good computation
time.

This paper is organized as follows. The hybrid algorithm is com-
prises of two parts search algorithm and other as decision-making
process. The Section 2 details the economic dispatch problem for-
mulation with valve-point effect. The Section 3 details the standard
PSO and the related issues about accuracy and convergence to opti-
mal solutions. Section 4 describes the basic requirements of MAS.
The development and working of the Hybrid PSO is elaborated in
the Section 5. The decision-making process in the honey bees make
them an interesting swarm research area to work. Section 5 also
discusses the decision making method used by the bees in the pro-
posed algorithm. Section 6 discusses simulation and experimental
results made on some standard test systems and draws inferences
on the convergence characteristics from the results obtained. Final-
ly, Section 7 concludes the paper.
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MWA: Primary Valve                B: Secondary Valve
C: Tertiary Valve                D: Quaternary Valve
E: Quinary Valve

(a) Smooth cost

(b) Non−smooth cost 
with valve−point loading

Fig. 1. Incremental fuel cost versus power output for a five valve steam turbine
unit.
2. Economic dispatch problem formulation

2.1. Basic economic dispatch formulation

The economic dispatch problem is to simultaneously minimize
the overall cost rate and meet the load demand of a power system
while satisfying an equality and inequality constraints [2,13].
Assuming the power system includes N generating units. The aim
of economic power dispatch is to determine the optimal share of
load demand for each unit in the range of 3–5 min. Generally,
the economic power dispatch problem can be expressed as mini-
mizing the cost of production of the real power which is given
by objective function FT
FT ¼
Xn

i¼1

FiðPiÞ ð1Þ

which is subjected to the constraints of equality in real and reactive
power balance

FiðPiÞ ¼ ai þ biPi þ ciP
2
i ð2Þ

where ai, bi and ci are the cost coefficients of the ith generator and N
is the number of generators committed to the operating system. Pi

is the power output of the ith generator.

2.1.1. Real power balance equation
For power balance, an equality constraint should be satisfied.

The generation-demand balance including losses is given by the
following equation

XN

i¼1

Pi � Pl � Pd ¼ 0 ð3Þ

where Pd is the total system demand and is the total line loss. How-
ever, in the case study presented here,we disregarded the transmis-
sion losses (i.e. Pl = 0).

2.1.2. Minimum and maximum power limits
Generation output of each generator should lie between maxi-

mum and minimum limits. The inequalities of real power limits
on the generator output are:

Pmin;i 6 Pi 6 Pmax;i where i ¼ 1;2; . . . ;N ð4Þ

where Pmini and Pmaxi are the minimum and maximum real power
limits of ith generator output in the system.

2.2. Valve-point effects

The generator costs are usually approximated using quadratic
functions. However, it is more practical to consider the valve-point
loading for fossil–fuel-based plants. In this context, a cost function
is obtained based on the ripple curve for more accurate modeling.
This curve contains higher order nonlinearity and discontinuity
due to the valve-point effect as shown in Fig. 1. One way of repre-
senting this effect is to use a rectified sinusoidal function to repre-
sent the valve-point loading in the cost function [13]. In this case
Eq. (2) can be written as



Table 1
Symbols and their meanings.

Symbol Quantity

FT Objective function
Fi Cost of generation of ith generator
N Number of generating units
Pi Generating unit real power output
ai, bi, ci Cost function coefficients of ith generating unit
Pmin, Pmax Minimum and maximum power output limit of ith generating

unit
Pl Overall system real power losses
Pd Total system real power demand
Bij Element of loss function coefficient
ei, qi Fuel cost coefficients of ith generator considering valve-point

effect
p Total number of parameters
hj jth parameter (j = 1 to p)
Wij Initial value of jth parameter
Wfj Final value of jth parameter
nj Number of steps for jth parameter
Sj Step length for jth parameter
Nv Total number of volumes
Xl Optimized point found by lth agent (l = 1–Nv)
XG Global optimized point
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f ðPÞ ¼ ci þ biP þ aiP
2 þ jei sin½qiðPmin � PÞ�j ð5Þ

where ei and qi are fuel cost coefficients of ith generator considering
the valve-point effect and other variables are defined in Table 1.
3. Standard particle swarm optimization and its analysis

Particle swarm optimization (PSO) was proposed by Kennedy
and Eberhart in 1995. It is popularly used in the complicated prob-
lem with non-linear and multi peak values. It is a population-based
search algorithm that exploits a population of individuals to probe
promising regions of the search space. The population here is
called a swarm, and the individuals are called particles. PSO fol-
lows a stochastic optimization method based on swarm intelli-
gence. The fundamental idea is that the optimal solution can be
found through cooperation and information sharing among indi-
viduals in the swarm [14].

Each particle moves with a given random speed and moves
within the search space and retains in its memory the best position
it ever encountered. The standard PSO can be described here. Let
Xi = [xi1, xi2 , . . . , xin] an n dimensional vector represents the current
position of particle i in a search space S, Xi e S. The current velocity
of this particle is Vi = [Vi1, Vi2 , . . . , Vin] e S. The past optional
position encountered by the ith particle is denoted as
Pi = [Pi1, Pi2 , . . . , Pin] e S. Assume g to be the index of the particle
that attains the best of all particles taken as global best of swarms.
At last, the modified velocity and position of each particle can be
calculated as follows:

Vinðtþ1Þ¼wVinðtÞþc1r1ðÞ � ðpinðtÞ�xinðtÞÞþc2r2ðÞ � ðpgnðtÞ�xinðtÞÞ
ð6Þ

xinðt þ 1Þ ¼ xinðtÞ þ Vinðt þ 1Þ ð7Þ

where C1 and C2 are constants of acceleration, i = 1, 2 , . . . , Np is par-
ticle index, n = 1, 2 , . . . , N is the dimension index and t = 1, 2. . .

indicates the iteration number, w is the weight of inertia and r1

and r2 are random numbers in [0, 1].
The inertia weight w plays a role of balancing the local and glo-

bal search. Proper tuning of C1 and C2 results to an improved per-
formance. Generalized models and techniques for tuning these
parameters are analyzed in [14]. Since PSO is one of probability
optimizer and hence it impossible for PSO to be guaranteed to con-
verge the global optimization solution. Many methods have been
introduced to solve this problem, introducing immunity and
heredity result in loosing character, diversity result to more com-
plex [15]. In this paper, we use an entirely different approach to
improve PSO performance for overcoming curse of probability
and uniqueness in solution to solve EPD problem.
4. Multi-agent system

Multi-agent system (MMS) is computational system in which
several agent works, interact with each other and in unison take
decision to achieve goals. According to [16,17] agent must have fol-
lowing properties: agents live and act in a given environment,
agents are able to sense its local environment, and to interact with
other agents in its local environment, agents attempt to achieve
particular goals or perform particular tasks and agents are able
to respond to changes that if occur in them.

The agents develop a society with collaboration to achieve their
own individual as well as the common goal. The group decision-
making process matches the basic nature of a particle in PSO and
hence MAS provides an opportunity to compute and optimize com-
plex problems. Some issues like the environment of agents, meth-
od of interaction, starting point of search, behavioral rules are to be
addressed when used for optimization problems. These require-
ments and related issues to HMAPSO are addressed in the coming
sections with experimental results and justifications.
5. Hybrid multiagent-based particle swarm optimization
approach (HMAPSO)

In the proposed algorithm different agents are being sent in the
whole search area which is divided into different fragments. The
best solution in each fragment is being searched by its respective
agent through modified Nelder–Mead method (NM method). For
this purpose total range of the independent parameters are divided
into smaller volumes, each of which determines the starting point
for the exploration for each agent. The agent then finds its own
optimized point by a developed optimization technique NM meth-
od. Each agent then passes the information regarding the opti-
mized point by bee waggle dance. When all the information of
optimized points is obtained then the best among these is chosen
by consensus method as in case of honey bee swarms [19].

5.1. Particle search methodology

For optimization of the given objective function we have mod-
ified a very popular optimization technique usually known as Nel-
der–Mead method. The methodology used is deterministic search
methodology but in a sense similar to swarm local search. Let
z = f(x, y) be the function that is to be minimized. For agents this
is food function. To start, we assume that agent considers three
vertices of a triangle as food points for a two variables problem
as z1; z2 and z3. z1 = (x1, y1) represents the initial position of agent
z2 = (x2, y2) and z3 = (x3, y3) are the positions of probable food
points i.e. local optimal points. The movement of agent from its ini-
tial position towards the food position, i.e. optimization point is as
follows. Here we have considered the problem as to generate the
minima of a function zi = f(xi, yi). The function zi = f(xi, yi) for i = 1,
2, 3 is evaluated at each of these three points. The obtained values
of zi are recorded in a way that z1 6 z2 6 z3 with corresponding
agents positions and food points as from the best to worst position.
The construction process uses the midpoint of the line segment
joining the two best food positions z1 and z2 as shown in Fig. 2a.

The value of function decreases as bee moves along z3 to z1 or z3

to z2. Hence it is feasible that f(x, y) takes smaller value if bee
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Fig. 2. Agents search movements with the proposed optimization algorithm. (a) Starting of the motion in search of solution, (b) extension in the direction of good optimal
point, (c) contraction of the movement in case optimal point quality is not good, and (d) shrinking of the space towards optimistic solution.
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moves towards z12. For the further movement of the bee a test
point zT is chosen in such a way that it is reflection of the worst
food point i.e. z3 as shown in Fig. 2a. The vector formula for zT is

zT ¼ 2� z12 � z3 ð8Þ

If the function value at zT is smaller than the function value at
z3, then the bee has moved in the correct direction towards mini-
mum. Perhaps the minimum is just a bit further than the point
zT. So the line segment is extended further to ze through zT and
z12 .The point ze is found by moving as additional distance d/2
along the line as shown in Fig. 2b. If the function value at ze is less
than the function value at zT, then the agent has found a better food
point than zT.

ze ¼ 2� zT � z12 ð9Þ

If the function value at z12 and z3 are the same, another point
must be tested. Two test points are considered by the bee on the
both sides of z12 at distance d/2 as shown in Fig. 2c.

The point of smaller value will frame a new triangle with other
two best points. If the function value at the two test points is not
less than the value at z3, the points z2 and z3 must be shrunk to-
wards z1 as shown in Fig. 2d. The point z2 is replaced with z12,
and z3 is replaced with the midpoint of the line segment joining
z1 and z3. Fig. 3 shows the path trace by the agents (bees) and
the sequences of triangles {Tk} converging to the optimal point
for the objective function

f ðx; yÞ ¼ x2 � 4xþ y2 � y� xy ð10Þ
Fig. 3. Movement of the agents for a given problem.
5.1.1. Choice of starting point of searching in a volume
The solution of the Nelder–Mead method depends upon the

starting location of the search in any volume. The algorithm is
deterministic metaheuristic algorithm and leads to find out unique
solution as compared to stochastic algorithms. The starting point is
an important factor in such algorithms to find out global solution
and experiment has been made to find the effect over optimal solu-
tion with change in starting point of exploration of agents in a vol-
ume. We have tested the algorithm on many standard functions
and found the centre as the best point as starting point [19].
5.1.2. Choice of number of agents for searching
During the experiments it is found that small number of agents

gives fast and give accurate result for simple problem having lower
number of parameters whereas for more number of parameters
more number of agents should go for exploration which in turn
gives result with high accuracy but on the cost of time [19]. It is
also observed that the centre of the lattice is a good starting point
to get better optimal solution and 30–50 agents in number are suf-
ficient to generate optimal solution.
5.2. Exploration

In MAS, all agents live in an environment [7]. An environment is
organized in a structure as shown in Figs. 3 and 4. In the environ-
ment, each agent is fixed on a lattice-point and each circle repre-
sents an agent; the data in the circle represent the position of
agent and the evaluated value of the function. The size and dimen-
sion of the lattice depends upon the variables and PSO.

The value of the objective function depends on p number of inde-
pendent parameters. Let the range of jth parameter e [Wij, Wfj], -
where Wij and Wfj represent the initial and final value of the
parameter. Thus the complete domain of the objective function
can be represented by a set of p number of axis. Each axis will be in
a different dimension and will contain the total range of one
parameter.

The next step is to divide each axis into smaller parts. Each of
these parts is known as a step. Let the jth axis be divided in nj num-
ber of step each of length Sj where j = 1 to p. This length Sj is known
as step size for the jth parameter. The relationship between nj and
Sj can be given as
Fig. 4. Domain of the objective function with one independent parameter.
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nj ¼ Wfj �Wij

Sj
ð11Þ

Hence each axis is divided into their corresponding branches. If we
take one branch from each axis then these p number of branches
will constitute a p dimensional volume. Total number of such vol-
umes can be calculated as

Number of volumes; Nv ¼
Yp

j¼1

nj ð12Þ

The number of volumes indicates the number of scout bees going
out for exploration. One point inside each volume is chosen as the
starting point for the optimization, which in our approach is the mid-
point of that volume, the reason for same is also being discussed
here. The midpoint of total cluster can be calculated as follows

Wi1 þWf 1

2
;
Wi2 þWf 2

2
; : . . . ;

Wip þWfp

2

� �
ð13Þ

For an objective function having one independent parameter,
the complete domain will be given by single axis represented as
h1. Here each step will give us one volume. Let us take the follow-
ing values

p ¼ 1; W1i ¼ 1; Wf ¼ 6; S1 ¼ 1

Therefore n1 = 5 and Nv = 5. Thus five agents are sent for explora-
tion. The starting point for each agent is the midpoint of each step
as shown in Fig. 4.

For an objective function having two independent parameters,
the complete domain will be given by a set of two axis represented
as h1 and h2. Let us take the following values

p ¼ 2; W1i ¼ 1; W1f ¼ 5; S1 ¼ 1 and W2i ¼ 1; W2f ¼ 5; S2 ¼ 1

Therefore n1 = 4, n2 = 4 and Nv = 16. Thus 16 agents are sent for
exploration as shown in Fig. 5a. The starting point of each bee is
the midpoint of each volume which is two dimensional rectangles
in this case.

For an objective function with three independent parameters,
the complete domain will be given by set of three axis represented
as h1, h2 and h3. Let us take the following values

p ¼ 3; W1i ¼ 1; W1f ¼ 5; S1 ¼ 1; W2i ¼ 1; W2f ¼ 4; S2 ¼ 1 and
W3i ¼ 1; W3f ¼ 4; S3 ¼ 1

Therefore n1 = 4, n2 = 3, n3 = 3 and Nv = 36. Thus 36 agents are
sent for exploration. The starting point for each bee is the midpoint
of corresponding volume which is 3-dimensional cuboid in this
case as shown in Fig. 5b. Objective functions with more than three
independent parameters can also be solved in the similar manner.
Fig. 5. Domain of the objective function with (a)
5.3. Bee swarms based decision process

The honey bee swarms have a highly distributed decision-mak-
ing process which they used for finding out their next hive or find-
ing out new source of foods. Few hundreds of bees out of
thousands work as scout bees to start a search for next possible site.
Upon finding the site, scout informs other bees by waggle dance
[11]. Discovered nest sites of sufficient quality are reported on
the cluster via the scouts’ waggle dance. Depending on the waggle
dance by scout bees quiescent bees get activated and decided to re-
cruit or explore for nest site. If an uncommitted bee is not satisfied
with any of the scout sites then she can go for exploring new sites.
When a bee advertises a site more than once then in every next
turn she decreases the strength of her dance by about 15 dance cir-
cuits. Once the quorum threshold reaches for any one of the sites,
the bee start piping signals that elicit heating by the quiescent bees
in preparation for flight. There are two methods used by bee
swarms decision for finding out the best nest site as consensus
and quorum [18]. In consensus widespread agreement among the
group is taken into account whereas in quorum the decision for
best site happens when a site crosses the quorum (threshold) value.
In the present paper, the consensus algorithm is used for finding out
the optimum solution i.e. best food site.

5.3.1. Waggle dance
As bee after returning from search perform waggle dance to in-

form other bees about the quality of site or food. Here in the pro-
posed algorithm the agents after collecting their individual optimal
solution give to the centralized systems that choose the preferable
solution from the searched one. For optimal minimum cases it se-
lects the best optimal solution which can mathematically stated as

Wdi ¼minðfiðXÞÞ ð14Þ

where fi(X) represent the different search value obtained by an
agent. Each of these points is recorded in a table known as optimum
vector table X. X is a vector containing p number of elements. These
elements contain the value of parameters at that point. So both the
optimal solution value and the corresponding variable values are
recorded. This record is known as Personal Best i.e. Pbest in PSO.
The function value gets change according to the objective function
requirement i.e. if objective function is to be minimized then the
min function is used and if we have to find maximize in an objective
function it will switch over to maximize function.

5.3.2. Consensus
As bee swarms use consensus method to decide the best ob-

tained or search value. The authors mimic this event and behavior
by comparing the results obtained. Once exploration and waggle
two and (b) three independent parameters.
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dance (transmission of data) is finished the global optimized point
is chosen by comparing the fitness values of all the optimized
points in the optimum vector table i.e. global best, gbest as in case
of PSO. For minimization problems the point with the lowest fit-
ness value is selected as the global optimized point. The global
optimized point XG is found by

f ðXGÞ ¼min ½f ðX1Þ; f ðX2Þ; . . . ; f ðXNv Þ� ð15Þ
Algorithm 1.

Initialize the number of parameters, p initialize the length of
steps, Sj (j = 0 to p)

Initialize the range of each parameter as [Wij, Wfj] where j = 0,
1 , . . . , p

Calculate the number of steps nj ¼ Wfj�Wij

Sj

Calculate the total number of volumes Nv =
Qp

j¼1nj

For each volume, take the starting point of the exploration as

the midpoint of the volume Wi1þWf 1
2 ;

Wi2þWf 2
2 ; . . . ;

WiPþWfP

2

h i
Record the value of optimized point obtained corresponding

to each volume in optimum vector table in following way
½X1; X2; . . . ;XNv ]

After the exploration is being completed, the global optimized
point in the following manner
FðXGÞ ¼min½FðX1Þ; FðX2Þ; . . . ; FðXNvÞ�
6. Results and discussions

The efficiency and robustness of the proposed HMAPSO has
been tested. The algorithm has been applied to both smooth and
nonsmooth functions. The objective function with valve-point ef-
fects is represented as a nonsmooth NP hard optimization problem
with constraints. The results obtained from HMAPSO are compared
with other similar methods: particle swarm optimization (PSO),
personal best oriented particle swarm optimization (PPSO), mean
personal best base oriented particle swarm optimization (MPPSO),
adaptive personal best bas oriented particle swarm optimization
(APPSO), and decisive personal base oriented particle swarm opti-
mization (DPSO) [13].

(1) Test Systems: The HMAPSO is applied to EPD problems, one
with 13 generators and another with 40 generators with
valve-point effects in both the cases. The first test system
has 13 units and details of this test system are listed in
Table 2 [11]. The demanded load of this problem is
Table 2
Generators data for case 1 (13 units).

G Pmin (MW) Pmax (MW) a b c e q

1 0 680 0.00028 8.10 550 300 0.035
2 0 360 0.00056 8.10 309 200 0.042
3 0 360 0.00056 8.10 307 200 0.042
4 60 180 0.00324 7.74 240 150 0.063
5 60 180 0.00324 7.74 240 150 0.063
6 60 180 0.00324 7.74 240 150 0.063
7 60 180 0.00324 7.74 240 150 0.063
8 60 180 0.00324 7.74 240 150 0.063
9 60 180 0.00324 7.74 240 150 0.063

10 40 120 0.00284 8.6 126 100 0.084
11 40 120 0.00284 8.6 126 100 0.084
12 55 120 0.00284 8.6 126 100 0.084
13 55 120 0.00284 8.6 126 100 0.084
1800 MW. The second test system consists of 40 generators
[13]. The details of this test system are given in Table 5. The
load demand is 10,500 MW. The global solution for the 13
and 40 generator system is not discovered yet. The best solu-
tion reported until now is 17971.01 and 121,788.22 [$] [13]
for 13 and 40 generator system respectively.

(2) Parameter Settings for the Experimental Setup: During PSO
experiments the constants are set at c1 = c2 = 1.5 and the
velocity of particles are confined in [�20, 20] for 13 genera-
tor system. Modifications have been made for 40 generator
system as the system is larger than the previous one. The
velocity of particle is now confined within [�40, 40]. In the
proposed algorithm there is scope only for the step length
(Sj) to be tuned. The appropriate selection of the Sj is done
according to the sensitivity of the objective function to a par-
ticular parameter. For e.g.: Consider an objective function
which is more sensitive to p1 than p2 then the step length
selected for former will be lesser than the latter parameter.
The selection is done on a relative basis and accordingly
number of agents to be sent to search in the search space
is determined according to the Eq. 13. Various simulations
have been made to find out the optimal number of agents
for HMAPSO as shown in Fig. (6). It is seen that 30 number
of agents is sufficient for the problem and the same has been
verified the authors earlier [19]. Hence for HMAPSO number
of agents kept 30.

(3) Numerical Results: The obtained results for the 13-generator
and 40-geerator systems are given in Tables 3 and 4 respec-
tively and are compared with particle swarm optimization
(PSO), personal best oriented particle swarm optimization
(PPSO), mean personal best base oriented particle swarm
optimization (MPPSO), adaptive personal best bas oriented
particle swarm optimization (APPSO), and decisive personal
base oriented particle swarm optimization (DPSO) [13]. It
clearly shows that the proposed algorithm has succeeded
in finding better solution than its counterparts.

For each experiment the simulation records the mean value,
worst value and optimal value obtained in each parameter. In each
experiment the simulation run 30 times. Table 3 shows the mean,
maximum and minimum cost acquired by different algorithms.
Fig. 7 illustrates that all other algorithms generate different solu-
tions on different run whereas HMAPSO generates unique opti-
mum solution as the randomness is removed from the algorithm.
The same has been explained and tested on benchmark optimiza-
tion problem [19]. It is worth mentioning that HMAPSO improved
significantly in terms of uniqueness and optimal solution for both
the cases. The optimum dispatch of each generator is also recorded
in order to see it in permissible limit and presented in Table 4.

The convergence rate and the solution time depend largely on
the step size and number of agents employed in HMAPSO. The step
size and number of steps are related according to the Eq. (13). Since
each step volume is assigned to an agent, number of steps is equal
to agents. An increase in number of agents decreases the step
length thus decreasing the search space per agent. This improves
Table 3
Comparison of simulation results for 13 units (load = 1,800 mw).

Method Minimum cost Maximum cost Mean cost

PSO 18014.16 18249.89 18104.65
PPSO 17971.01 18246.70 18106.33
MPPSO 17976.19 18210.59 18087.12
APPSO 17978.89 18291.92 18014.61
DPSO 17976.31 18310.43 18084.99
HMAPSO 17969.31 17969.31 17969.31
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Table 4
The best solutions found for case 1.

G PSO PPSO MPPSO APPSO DPSO HMAPSO

1 538.561 538.618 448.803 538.557 448.799 538.5611
2 299.355 149.831 300.211 299.201 224.645 224.4831
3 75.037 224.390 300.031 224.460 226.539 150.0622
4 159.734 109.951 109.862 60.066 159.733 109.8862
5 60.078 109.837 60.033 110.019 109.867 109.9902
6 109.864 109.985 109.869 109.866 109.867 109.8666
7 109.913 109.998 60.014 60.121 109.867 109.9903
8 159.753 109.830 109.882 110.083 109.867 109.8688
9 60.069 109.917 109.947 60.075 109.867 109.8668

10 40.035 77.412 40.770 77.415 40.418 40.0000
11 77.561 40.155 40.461 40.105 40.494 77.4247
12 55.042 55.075 55.117 55.029 55.039 55.0000
13 55.000 55.000 55.000 55.001 55.000 55.0000
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the convergence characteristics at the expense of computational
time. The convergence characteristics have been illustrated in the
Fig. 6.

Studies have also been made to analyse the computation time
taken to obtain the optimal value. Fig. 8 illustrates the time taken
by similar algorithms along with HMAPSO. For more comprehen-
sive analysis both 13 and 40 generator system have been studied.
It is seen that the time taken by HMAPSO is less than its counter-
parts also it is to be noted that in other techniques we take 10–30
runs and then take the average of solution obtained. So if we con-
sider this also in calculations then time taken by HMAPSO is really
very small to similar algorithms. From Fig. 8 it can also be con-
cluded that the increase in the complexity and size of the system
put an effect on the computation time but again time taken by
HMAPSO is less than other algorithms.

The generation dispatch of each generator is also calculated and
shown in Table 6. As seen in Tables 3, 6 and 7 the HMAPSO has pro-
vided the better solution in comparison with other similar algo-
rithms, exactly satisfying the equality and inequality constraints.
It is also concluded that the proposed algorithm is more robust
than the other algorithms as it generate a unique and optimal
solution.
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7. Conclusions

In this paper a new optimization algorithm known as hybrid
multi agent particle swarm optimization is employed to solve the
economic power dispatch problem. The paper first analyzed the
standard PSO algorithm and discusses its known problems of con-
sistency in solution and of premature phenomenon. The upshot of
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Table 5
Generators data for case 2 (40 units).

G Pmin (MW) Pmax (MW) a b c e q

1 36 114 0.00690 6.73 94.700 100 0.084
2 36 114 0.00690 6.73 94.705 100 0.084
3 60 120 0.02028 7.07 309.54 100 0.084
4 80 190 0.00942 8.18 369.03 150 0.063
5 47 97 0.0114 5.35 148.89 120 0.077
6 68 140 0.01142 8.05 222.33 100 0.084
7 110 300 0.00357 8.03 287.71 200 0.042
8 135 300 0.00492 6.99 391.98 200 0.042
9 135 300 0.00573 6.60 455.76 200 0.042

10 130 300 0.00605 12.9 722.82 200 0.042
11 94 375 0.00515 12.9 635.20 200 0.042
12 94 375 0.00569 12.8 654.69 200 0.042
13 125 500 0.00421 12.5 913.40 300 0.035
14 125 500 0.00752 8.84 1760.4 300 0.035
15 125 500 0.00708 9.15 1728.3 300 0.035
16 125 500 0.00708 9.15 1728.3 300 0.035
17 220 500 0.00313 7.97 647.85 300 0.035
18 220 500 0.00313 7.95 649.69 300 0.035
19 242 550 0.00313 7.97 647.83 300 0.035
20 242 550 0.00313 7.97 647.81 300 0.035
21 254 550 0.00298 6.63 785.96 300 0.035
22 254 550 0.00298 6.63 785.96 300 0.035
23 254 550 0.00284 6.66 794.53 300 0.035
24 254 550 0.00284 6.66 794.53 300 0.035
25 254 550 0.00277 7.10 801.32 300 0.035
26 254 550 0.00277 7.10 801.32 300 0.035
27 10 150 0.52124 3.33 1055.1 120 0.077
28 10 150 0.52124 3.33 1055.1 120 0.077
29 10 150 0.52124 3.33 1055.1 120 0.077
30 47 97 0.01140 5.35 148.89 120 0.077
31 60 190 0.00160 6.43 222.92 150 0.063
32 60 190 0.00160 6.43 222.92 150 0.063
33 60 190 0.00160 6.43 222.92 150 0.063
34 90 200 0.0001 8.95 107.87 200 0.042
35 90 200 0.0001 8.62 116.58 200 0.042
36 90 200 0.0001 8.62 116.58 200 0.042
37 25 110 0.0161 5.88 307.45 80 0.098
38 25 110 0.0161 5.88 307.45 80 0.098
39 25 110 0.0161 5.88 307.45 80 0.098
40 242 550 0.00313 7.97 647.83 300 0.035

Table 6
Comparison of simulation results for 40 units (load = 10,500 mw).

Method Minimum cost Maximum cost Mean cost

PSO 122323.97 125103.28 123690.62
PPSO 121788.22 124998.23 123639.53
MPPSO 122225.73 126646.46 124723.59
APPSO 122044.63 126259.11 123985.15
DPSO 122159.99 125295.98 123647.81
HMAPSO 121586.90 121586.90 121586.90

Table 7
optimal dispatch of the 40 generators system.

G PSO PPSO MPPSO APPSO DPPSO HMAPSO

1 113.116 111.601 112.903 112.579 111.917 111.136
2 113.010 111.781 112.802 111.553 112.338 111.135
3 119.702 118.613 117.515 98.751 118.922 120.000
4 81.647 179.819 181.442 180.384 179.928 177.221
5 95.062 92.443 95.876 94.389 48.998 088.699
6 139.209 139.846 139.856 139.943 139.931 140.000
7 299.127 296.703 299.452 298.937 299.610 260.157
8 287.491 284.566 298.277 285.827 298.206 284.723
9 292.316 285.164 299.043 298.381 285.372 285.523

10 279.273 203.859 130.886 130.212 130.701 130.000
11 169.766 94.283 243.530 94.385 94.849 168.805
12 94.344 94.090 94.768 169.583 244.086 168.689
13 214.871 304.830 215.033 214.617 214.739 304.123
14 304.790 304.173 304.739 304.886 304.504 304.678
15 304.563 304.467 304.694 304.547 304.744 304.317
16 304.302 304.177 215.146 304.584 304.501 304.317
17 489.173 489.544 497.407 489.452 489.515 489.187
18 491.336 489.773 489.459 497.472 489.534 489.455
19 510.880 511.280 511.867 512.816 511.567 512.097
20 511.474 510.904 548.400 548.992 511.374 511.349
21 524.814 524.092 523.396 524.652 525.246 523.247
22 524.775 523.121 525.206 523.399 523.979 523.515
23 525.563 523.242 524.971 548.895 548.599 523.454
24 522.712 524.260 523.660 525.871 523.314 523.453
25 503.211 523.283 523.624 523.814 523.259 523.492
26 524.199 523.074 527.932 523.565 524.360 523.307
27 10.082 10.800 10.474 10.575 10.388 10.000
28 10.663 10.742 11.074 11.177 10.552 10.000
29 10.418 10.799 10.582 11.210 10.082 10.000
30 94.244 94.475 96.403 96.178 96.422 88.691
31 189.377 189.245 189.338 189.999 189.692 190.000
32 189.796 189.995 189.849 189.924 189.820 190.000
33 189.813 188.081 189.739 189.714 189.954 190.000
34 199.797 198.475 199.808 199.284 199.427 164.218
35 199.284 197.528 199.994 199.599 199.905 200.000
36 198.165 196.971 199.749 199.751 199.229 200.000
37 109.291 109.161 109.917 109.973 109.565 110.000
38 109.087 109.900 109.410 109.506 109.741 110.000
39 109.909 109.855 109.728 109.363 109.575 110.000
40 512.348 510.984 512.053 511.261 511.554 511.009
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the proposed algorithm is that it generates better optimal solutions
as compared to its counterparts. The algorithm is based on Multi-
agent system with collaboration of natural swarm group decision
method by bees to find next site. The proposed algorithm performs
well on different objective functions with any number of parame-
ters, LPT equation and also performs well on unconstrained optimi-
zation problems. Experimental results prove the robustness and
accuracy of HMAPSO over other PSO models. The results also show
that HMAPSO removes the randomness in the algorithm and im-
proves significantly in global optimization performance. A study
is done on the convergence time with respect to the number of
agents was done and it was seen that as the number of agents in-
creased the convergence time increased. Since the number of
agents is inversely proportional to the step length it can be inferred
that the convergence is poor if the step length is small. The solution
of HMAPSO shows consistency in the solution and hence it gives a
better option to optimize real-time and on-line optimization
problems.
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