
A Survey of SDN Security Research

Michael Coughlin
University of Colorado Boulder

michael.coughlin@colorado.edu

ABSTRACT
Software defined networking (SDN) has established a new
method for creating and administering networks, but has
also changed the attack surface that is presented by net-
works. SDN provides several features that allow for easy
mitigation of certain types of attacks, such as DoS, and al-
lows for mitigation of other attacks with more work. How-
ever, SDN also introduces new vulnerabilities that are not
present in traditional networks, such as a communication
bottleneck between the control-plane and the data-plane.
Many new technologies and techniques have been proposed
to solve SDN security vulnerabilities and some additional
work can be applied address them as well.

Current research in SDN follows several identifiable trends
that are related to the state of deployment of SDN tech-
nologies. As OpenFlow is the most popular implementation
of SDN and is currently used in production settings, much
research has been performed to utilize and improve the pro-
tocol. However, there is another research trend that has pro-
duced work that is applicable to SDN in general, including
architectures that provide more flexibility than OpenFlow.
Future research is likely to follow these trends by improving
the OpenFlow protocol and proposing more general alterna-
tives, and this research will include the further development
of tools for the testing of network designs and the research
of optimizations for OpenFlow when it is used in production
environments. In this paper, I present a survey of current re-
search on SDN security and other work in the field of SDNs
that is applicable to security and a prediction of the direc-
tions of future research in SDN security.

1. INTRODUCTION
Software defined networking (SDN) is a networking design
philosophy that advocates the separation of the network
data-plane from the network control-plane. The data-plane
represents all of the data that is being forwarded through
the network, such as packets and the hardware that is used
to forward it, such as switches. The control-plane repre-
sents all logic and devices that are responsible for decid-
ing how and to where data in the data-plane is to be sent.
Traditional networks combine these two planes on the same
devices, forcing each device to make its own forwarding de-
cisions based on distributed routing protocols. SDN, on the
other hand, allows for the control-plane to have a global
view of the network, allowing for policies to be applied that
take into account all of the network state, rather than what
is exposed to a single device.

This design philosophy evolved from the idea of active net-
works [19], which advocated the ability to embed program-
ming inside of packets, so that computation could occur in
the network along a packet’s path. Active networks allowed
for a large amount of flexibility in how packets are processed
and how they traverse the network, but the system had is-
sues with motivation and deployment, which eventually led
researchers to investigate other fields. Little research is cur-
rently performed directly on active networks, but the active
network concept led to the idea of SDNs. SDNs require
the support of specialized hardware (as do active networks),
but they present clearer motivating issues that exist in tra-
ditional networks, especially the issue of complex and incon-
sistent management [11].

The most popular deployment of SDNs, OpenFlow [15], im-
plements the SDN design by providing a communication
protocol that allows a centralized controller to communi-
cate with and program specialized data-plane hardware. In
essence, an OpenFlow controller writes forwarding rules to
switches that specify actions to be performed on packets
whose headers match a specific pattern associated with the
forwarding rule. OpenFlow switches apply any action spec-
ified by a rule to a packet whose header is matched against
the rule, and forward any packets that do not match an
existing rule to the controller. The controller performs all
necessary forwarding decisions, and the switches only apply
actions that have been specified by the controller. Appli-
cations can also be written to interface with the control to
add extended network-wide functionality, and the use of the
terms controller and application can oftentimes be used in-
terchangeably. This design methodology provides the ability
to mitigate several classes of network attacks, but also opens
the risk of new vulnerabilities, and potentially increases the
risk of existing vulnerabilities in traditional networks [13].

Much of the current research into SDN security had focused
on the OpenFlow protocol, but the vulnerabilities that exist
in OpenFlow are likely to be generalizable to any SDN sys-
tem that uses a centralized controller. The most common
vulnerability that is noted by recent research [8, 13, 18] is the
communication bottleneck that is between the data-plane
and the controller in an OpenFlow network. Due to the
centralized location of a controller in an OpenFlow network,
it is simple to overload the communication path that is used
by switches to communicate with the controller, even during
normal operation of the network. However, as mentioned by
Shine et. al.[18], it is possible for a knowledgeable attacker



to craft packets that will cause a standard OpenFlow net-
work to quickly saturate the control communication channel,
leading to some form of Denial of Service (DoS) attack in the
network, possibly by preventing access to the controller, and
at least preventing the creation of new flow entries. This is-
sue can also manifest as a failure of the controller, and there
has been much research on how to make the controller more
fault tolerant [20, 9]. This work generally attempts to cre-
ate a distributed but logically centralized controller, and the
fault tolerant properties of these solutions would make them
more resistant to a DoS attack.

Other recent work in SDN security research has sought to
leverage the programmability and visibility that is provided
by SDN in order to increase security against traditional at-
tacks [17, 16, 14]. These solutions are not solely restricted
to OpenFlow, but they do take advantage of SDN tenets.
These technologies allow for the implementation of com-
mon mitigation strategies, including the use of middleboxes,
detection algorithms and classification algorithms that are
used to secure traditional networks. These solutions are use-
ful for ensuring that SDNs are not vulnerable to known net-
work susceptible, especially attacks targeted at hosts.

In this paper, I present a review of the current research
into SDN security technologies, as well as some technologies
that are directly applicable to SDN security. I also present
a short overview of the evolution of SDN and a prediction
of future SDN security research. Current security research
in the field of SDN can be separated into OpenFlow-specific
and general solutions, and specific to OpenFlow, can be split
into research on protocol-specific and traditional network
vulnerabilities.

Finally, I present an analysis of the trends in SDN secu-
rity research and a prediction of the paths that future re-
search will follow. Current research has placed a large focus
on addressing the shortcomings of OpenFlow and there has
also been an emphasis on the creation of network designs
that incorporate flexibility that OpenFlow is not capable of.
In terms of security, research trends show that the benefits
provided by new network designs oftentimes introduce new
vulnerabilities in the very features that differentiate them
from the existing systems, as is illustrated by the OpenFlow
control-plane communication bottleneck. To summarize my
predictions that are detailed in Section 6, I predict that re-
search will continue to be performed that attempts to ad-
dress the shortcomings of OpenFlow due to its adoption by
industry, including the creation of simpler development tools
and the optimization and change of several of the protocol’s
features. I also predict that tools used to test SDN alterna-
tives to OpenFlow, such as software switches and field pro-
grammable gate arrays (FPGAs), will be improved so that
OpenFlow alternatives and hardware-side improvements to
OpenFlow can be tested.

This paper continues in Section 2 by first presenting a brief
overview of the evolution of SDN. In Section 3, I review
several recent works in SDN security and how these spe-
cific works relate to different aspects of SDNs. In Section
4, I present a more detailed discussion of OpenFlow specific
security technologies, and in Section 5, I detail the remain-
ing technologies that are applicable to SDN in general. In

Section 6, I present an analysis of trends in SDN security
research and predixt how SDN research will progress in the
future, and I conclude the paper in Section 7.

2. EVOLUTION OF SDN
Software defined networking has evolved from several differ-
ent research tracks, starting with research into active net-
works. Although some of these tracks were unsuccessful,
they were all motivated by the challenges faced by manag-
ing a growing Internet and the desire to have more flexible
and programmable networks.

2.1 Active Networks
Research into SDN was first motivated by the field of ac-
tive networks. Active networking provided an ability to
embed computation into packets and network devices, al-
lowing for the computation to occur inside the network as
a packet traveled through the network [19]. An illustration
of the operation of an active network is shown in Figure 1.
This system provided a SDN-like interface to programmers
and allowed for interesting classes of applications, such as
the ability to modify packet headers at different points in a
packet’s flow or implement common network functions, in-
cluding firewalls or proxies, inside of the network without
the need for extra hardware. However, active networking
introduced some fundamental challenges that proved to be
difficult to solve.

The largest of these issues was a lack of a single clear moti-
vation for deployment. Although many applications for the
technology could be described, none of the them provided a
compelling reason for deployment of the system [10]. With-
out this reason, network operators had no incentive to de-
ploy the extensive hardware upgrades that would have been
required to support the system.

2.2 Early SDN
Active networks, despite their limitations, represent a de-
sign thats attempts to provide the flexibility that current
SDN strategies strive for. Learning from the motivational
issues that prevented the adoption of active networks, re-
searchers focused on narrower and more clearly defined prob-
lems, which led to a focus on a separation between the con-
trol plane and the data plane. This focus was prompted
by the increase in traffic volumes as the Internet grew in
size, leading to network administrators to search for a new
control interface for their networks. Early technologies at-
tempted different methods of creating a separation between
the control and data planes [10]. However, many of these
technologies proposed the use of standard APIs for control of
the data-plane, while leaving the operation of the data-plane
essentially unchanged. These designs left little incentive for
adoption by hardware vendors [10], as they would have al-
lowed new competitors access to their products.

New technologies were soon proposed that created clean-
slate designs for centralized control of networks [11, 7] . Such
technologies allowed for entirely new methods for control
while still using existing protocols in the data-plane, such as
IP, ARP, TCP and others. In addition, these designs allowed
for easier deployment as they could be deployed alongside ex-
isting traditional networks. In particular, the work proposed



(a) An active network transmitting data with active contents. The
data will cause computation to occur in the network based on its
contents.

(b) An active network that is transmitting non-active data. The
packet is transferred as if the network is not active.

Figure 1: Two examples of active network operation. Red elements represent network elements and data that are active
network enabled.

by Ethane included a full-scale deployment of an SDN sys-
tem that supported end hosts and existing network devices
unmodified, which provided clear example of a functioning
system. These works proved to be the first attempts at SDN
designs, and led to the design of the OpenFlow protocol [10].

2.3 OpenFlow
Early work in SDN research encountered a basic issue of de-
ployment scale, which led to different trade-offs between the
level of programmability in the network and the ease of de-
ployment. However, work such as Ethane proved that SDN
networks were deployable, and campus networks were often-
times used to implement new network designs, along with
tools like Emulab, PlanetLab and the GENI project[10]. The
OpenFlow protocol was designed to be deployed inside of
these networks, with a trade-off designed to ease distribu-
tion while still providing network programmability.

The protocol allows for a centralized controller to control
special OpenFlow-enabled devices using a specific commu-
nication protocol, but the messages inside of the data-plane
are transmitted using existing protocols (IP, TCP, etc...).
Furthermore, existing traditional network devices can be
used alongside OpenFlow enabled hardware due to the sup-
port of existing network protocols. The OpenFlow controller
controls OpenFlow-enabled devices by writing instructions
directly to device forwarding tables, which act on informa-
tion encoded in protocol headers (IP addresses, TCP ports)
in order to determine the correct forwarding action. The
protocol defines a number of actions that can be performed
on a packet, and when a packet is received by an OpenFlow-
enabled device, the device checks the flow table, which is
populated with rules sent from the controller, for a match
for the packet. If any of the defined rules match information
in the packet header, then the rule’s actions are applied to
the packet. Some actions that are defined by the protocol
include actions to forward, drop, or modify a packet, and
the protocol allows for devices to match rules against the
headers of packets for most existing network protocols.

The OpenFlow protocol was initially designed for deploy-
ment on campus networks, but as the utility of the protocol

was demonstrated, hardware vendor interest increased. In
addition, the protocol began to see deployment in datacen-
ters, and along with the promotion of the protocol by its
developers, hardware vendors began to create network de-
vices that have hardware support for the protocol. Work
on software switches, such as Open vSwitch [1] allowed for
researchers to quickly create new applications, and then use
vendor hardware to deploy them.

With the data-plane provided by both software and hard-
ware switches, the door was opened for the development of
control-plane architecture. There have been many controller
architectures proposed, such as NOX, Floodlight, POX, Ryu
and others, and all of these are capable of communicating
to switches using the OpenFlow protocol. In addition, these
architectures do not need to be run on specialized hardware,
allowing for commodity hardware to be used to implement
controllers.

Despite the combined support for OpenFlow by both the
research and industry communities, it should be noted that
OpenFlow is not synonymous with SDN. OpenFlow is cur-
rently the most popular implementation of SDN, but other
implementations could exist, such as private designs from
industry entities like Cisco, Microsoft or Google. It should
also be noted that OpenFlow is not a perfect solution. Re-
search has identified several security issues in the protocol,
which are detailed in Section 4. The protocol itself has also
seen difficulties in deployment of new updates to the protocol
specification. Only the first protocol specification, version
1.0, is commonly supported by vendors, despite the large
amount of community support, but the most recent spec-
ification has gone through several revisions [2]. Adoption
rate is much slower than other hardware protocols, such as
WiFi.

3. SURVEY OF SDN SECURITY
For this survey of current SDN research, I discuss eleven
distinct works that have a direct bearing on SDN security.
Some of these works are historical, but they serve to illus-
trate the trend of security research during the development
of SDN. Security research in active networks, in particular,



Figure 2: Relation between different papers that address SDN

was not a priority, which may help to explain some of the
security issues that have been noted in modern SDN. An
illustration of how the papers discussed in this review relate
to different SDN elements is shown if Figure 2. Each num-
bered paper that is defined in the figure is listed below, as
well as in the description of each paper in this section. The
work presented by Tennenhouse, et. al. is not indicated on
this figure, as this figure specifically list SDN technologies
based of the design paradigm presented by Greenberg, et.
al. and discussed in Section 3.1.2.

Papers indicated in Figure 2

1. Towards an Elastic and Distributed SDN Controller [9]

2. Kandoo : A Framework for Efficient and Scalable Of-
floading of Control Applications [20]

3. DevoFlow: Scaling Flow Management for High-Perfor-
mance Networks [8]

4. AVANT-GUARD: Scalable and Vigilant Switch Flow
Management in Software-Defined Networks [18]

5. Enabling Fast, Dynamic Network Processing with
clickOS [14]

6. Towards Secure and Dependable Software-Defined Net-
works [13]

7. Public Review for A Clean Slate 4D Approach to Net-
work Control and Management [11]

8. Programming Protocol-Independent Packet Processors
[6]

9. Revisiting Traffic Anomaly Detection using Software
Defined Networking [16]

10. FRESCO: Modular Composable Security Services for
Software-Defined Networks [17]

3.1 Early SDN Research
Software defined networking research can trace its roots to
active networking and research into 4D architectures, as pre-
sented in [11, 19] and discussed above. These two works,
in particular, are representative works of the early research
in SDN-related fields. Although security was not the focus



of these two works, several security considerations are pre-
sented.

3.1.1 Active Networks
The work presented by Tennenhouse, et. al. is a survey of
active network that existed at the time of publication, 1997.
In this survey, two approaches to active network research
are defined: a discrete approach, by using programmable
network switches that act to data packets and packets con-
taining code differently; and an integrated approach, by en-
capsulating all data inside of a program packet, which would
require network hardware to perform computation on each
packet. The paper also presents strategies for interoperabil-
ity between these two design philosophies, including different
programming language choices and use of common primi-
tives and encoding schemes to ensure interoperability. The
paper concludes with a list of current research topics in ac-
tive networking from various institutions. It should be noted
that there are many projects listed in this survey, but very
little work was done on related projects by these institutions
past the year 2000.

In this particular work, the researchers present a single se-
curity consideration of active networks for future research.
The authors present active networks as a simpler platform to
implement per-user authentication in the network, as com-
pared to methods that existed at the time. As active net-
works allow for computation to be performed in the network,
it was a logical extension to propose authentication in the
network. However, this work does propose an implementa-
tion of such an authentication mechanism. The paper does
highlight research performed at the University of Pennsylva-
nia on the SwitchWare project [3], which had a direct focus
on security. However, work on the SwitchWare project ef-
fectively ceased in 1999.

3.1.2 The 4D Project
The second work, from Greenberg, et. al., is a publication of
a review of the original work, “A Clean Slate 4D Approach
to Network Control and Management”. The original work
advocated the creation of networks based on four planes,
the decision, dissemination, discovery and data planes. This
work follows a trend at the time to create network designs
that separate the control-plane from the data-plane, which
was a more focused research problem then the architec-
tures proposed by active networks. The separation of the
control- and data-planes provided a set of well-defined ben-
efits, included a much-simplified administration interface,
which would be beneficial to network operators faced with
the ever-increasing size of the Internet.

The four planes presented by the 4D approach perform this
separation by placing the control functionality into the de-
cision plane and using the dissemination plane to commu-
nicate between the decision and data planes. The discov-
ery plane is used by the decision plane in order to create
a network wide view of all connected devices. By provid-
ing a network wide view to a separate control plane, the
authors present the 4D approach as having better potential
for simple implementations of network-wide security poli-
cies, as the decision plane has the ability to place security
measures wherever is necessary in the network.

However, the 4D system was a theoretical design that was
not implemented for the paper. In addition, the authors note
several challenges to the architecture, including a number of
inherent security issues in the system that do not exist in
traditional networks. These security issues, especially that
of attacks on the centralized decision plane, are still a topic
of SDN security research today.

3.2 Recent SDN Research
Recent research into SDN security follows two specific tracks,
that of OpenFlow specific research, and general SDN re-
search. As OpenFlow is the most prominent SDN deploy-
ment, there is great interest in mitigating security problems
in the protocol, as it is used in many production settings.
However, other security research in general SDN strategies
allow for progress towards new protocols beyond OpenFlow.

3.2.1 General SDN Security
OpenFlow, despite its popularity, is not the only method of
implementing SDNs. There are many limitations of Open-
Flow, with the limitations relating to security detailed in
Section 4. The work presented in this section lists research
that has security applications towards SDNs in general, in
contrast to those limited to the OpenFlow specification.

Programming Protocol-Independent Packet Processors.
The work presented by Bosshart et. al. advocates the cre-
ation of switch hardware that can support any arbitrary pro-
tocol using a parser and a series of match-action processors
[6]. This work is motivated by the ability of OpenFlow-
enabled hardware to match rules to packets based on differ-
ent header fields in existing protocols, which allows for rules
to be to be enacted on any possible permutations of these
fields. However, this work is also motivated by the fact that
OpenFlow can only be perform match-actions on protocols
that are supported by the specification, such TCP or IP,
rather than any arbitrary protocol that a developer desires
to support.

This work proposes a method to match rules to header fields
that are defined by the programmer, which allows the sys-
tem to support new protocols that have headers that are
differently sized then existing protocols. In addition, the
system advocates the use of a parser that reads programs
that are written in the domain-specific language provided by
the authors of the paper, which can be compiled to various
hardware platforms. This allows for various different hard-
ware implementations to be supported so long as a compiler
can be written for each platform. This ability has several
implications for creation of new security measures, which is
explored further in Section 5.

ClickOS. The work presented by Martins, et. al. is a
method for creating virtualized middleboxes that are capa-
ble of operating at line rate [14]. This work is motivated by
the Click Modular Router [12], which allows for the creation
of varied packet processing datapaths that can implement
various network functions. The researchers note that Click
can be used to implement middleboxes in hardware, but the
Click software is only implemented inside Linux operating



systems, which have a very high system footprint compared
to the functionality that is created by a middlebox imple-
mented in Click. The researchers instead use MiniOS, a min-
imalistic operating system provided by the Xen hypervisor
[4], and run the Click software inside of instances of this op-
erating system. By using MiniOS, the researchers are able
to create new virtual machine instances very rapidly, with
each potentially implementing different middlebox function-
ality. This system presents software-defined middleboxes
and presents several interesting security opportunities for
different SDN technologies, as is discussed in Section 5.

3.2.2 OpenFlow Security
As previously stated, the OpenFlow protocol is the deploy-
ment of SDN that has received the largest amount of sup-
port from the research community and industry. Due to
the popularity of the protocol, security issues that were not
addressed by the original specification are now priorities of
focus, as the protocol is being used in production systems.
Kreutz et. al. present in [13] a list of security vulnerabili-
ties that exist in SDNs, especially the OpenFlow standard.
The authors of this paper recognize that many of these vul-
nerabilities are not unique to SDNs, but these vulnerabil-
ities are oftentimes changes and sometimes exacerbated in
SDNs. The authors also present several mitigation strategies
for these vulnerabilities that the selected research, detailed
below, can be seen attempting to implement. The specific
threat vectors detailed in[13] are listed in Section 4.

Towards an Elastic Distributed SDN Controller. In this
work, Dixit et. al. present a distributed SDN controller
that is compatible with OpenFlow [9]. This work makes
significant use of OpenFlow specific mechanisms, especially
specific OpenFlow switch management functions. The ar-
chitecture allows for switches to be migrated between dif-
ferent controllers, and for a pool of available controllers to
be resized based on the demand seen in the network. This
work is differentiated from others in its use of a distributed
data store to store state about the network, and its safety
properties that are ensured by the switch migration proto-
col. This work, along with Kandoo (detailed below), and
other distributed controllers, can help to mitigate certain
classes of attacks, such as DoS attacks on the control plane,
as explained in Section 4. However, the intention of this
technology, along with other distributed controllers, is to
increase fault-tolerance and scalability of the control-plane,
rather than to address security issues.

Kandoo. In this work, Yeganeh and Ganjali present an-
other distributed controller compatible with OpenFlow, which
differs from other work in its use of a controller hierarchy
[20]. The authors present Kandoo as a system of controllers
that establish a hierarchical structure of responsibly, with
only the controllers at the top of the hierarchy having re-
sponsibly for the entire network. Controllers that exist lower
in the hierarchy are responsible only for local decisions, and
defer any decisions outside of their scope to the next level,
just as the data-plane forwards all decisions to the control
plane. The authors only describe a low-level hierarchy with
a local and global layer, but they claim that the system can
be extended to larger hierarchies if necessary. This system

is also useful for defenses against certain types of attack on
the control-plane, but its attack surface and response are
different than those presented by [9]. It should be noted
that security was not one of the primary goals of this work.

DevoFlow. In this work, Curtis et. al. detail several short-
comings of the OpenFlow protocol that degrade its perfor-
mance in high-performance networks, and then present an
architecture for a protocol similar to OpenFlow that ad-
dresses these shortcomings [8]. The problems noted in Open-
Flow by the authors are related to the fact that the control-
and data-planes must communicate in order to gather infor-
mation about flows due to their separation. In smaller-scale
networks, this communication is tolerable, but in higher-
performance networks, the amount of communication can
seriously degrade the performance of the network, which is
not just a performance issue, but also a potential security
risk. The architecture presented by the authors returns a
degree of responsibility to network devices to make local de-
cisions, such as making quick routing decisions, and allows
for more efficient collection of statistics in order to reduce
communication. In this architecture, the control-plane is
only consulted for unknown flows and flows that have been
designated for specific traffic engineering goals, such as qual-
ity of service (QoS). This is another attempt at reducing the
load on the control plane, similar to the previous two works.
However, security considerations were made by the authors
during the design of the system.

AVANT-GUARD. In this work, Shin et. al. present a sys-
tem that is directly focused on security vulnerabilities that
exist in OpenFlow [18]. The system is motivated by two
specific vulnerabilities in the protocol, namely the bottle-
neck in control-plane and data-plane communication and
the slow response rate of the controller to changes in the
data-plane. These vulnerabilities are an inherent flaw in
the separation of the data- and control-planes, as the con-
troller has to initiate communication to interact with the
data-plane, and therefore experiences an unavoidable delay.
The researchers propose two mechanisms for the OpenFlow
protocol in order to address these issues, which are imple-
mented in the data-plane. The first of these mechanisms
is the addition of an ability for network devices to directly
respond to TCP connection requests and to filter out illicit
connections using SYN cookies [5] and a special TCP hand-
shake procedure. In this method, the network switch acts
as a proxy for the destination of a TCP request and filters
connection requests until it is determined whether these con-
nections will be accepted by both endpoints. Only when it
is determined that a connection will be accepted by both
endpoints is the control-plane informed of the connection
request. The second mechanism is an extension to the flow
table rule specification to allow for rules to be triggered by
events, such as a threshold number of packets/second. This
mechanism also provides the ability for packet payloads and
event notifications to be sent to the controller, which is not
supported by current OpenFlow specifications. Further dis-
cussion of these mechanisms is presented in Section 4.



Figure 3: SDN Threat Vectors. Figure originally appeared
in work from Kreutz et. al. [13].

FRESCO. In this work, Shin et. al. present a framework
specifically for the development of security applications for
OpenFlow [18]. The researchers note the useful features of
the protocol, especially the visible that is given to the con-
troller, but also note that creating applications that run on
top of controllers entails use of various low-level functions,
including the direct writing of flow rules to switches. In
order to promote the creation of more OpenFlow-enable se-
curity applications, the authors created a framework that
provides an abstraction of the OpenFlow protocol that al-
lows for applications to focus on security policies, rather
than low-level OpenFlow operations. In order to create this
abstraction, the system provides a scripting language and
interpreter that allows for applications to compose elements
in a fashion similar to Click, and provides an API so that
new modules can be written in Python to implement new
functionality. This API also allows for non-OpenFlow appli-
cations to access the FRESCO abstraction layer. The sys-
tem also implements a Security Enforcement Kernel that is
used to resolve conflicts between different applications based
on user privileges, and to ensure that non-security applica-
tions do not override or circumvent security applications.
The implications of this framework are discussed further in
Section 4.

Revisiting Traffic Anomaly Detection using Software
Defined Networking. In this work, Mehdi et. al. present a
security application that utilizes OpenFlow to detect anoma-
lies in home and small office networks [16]. This work rep-
resents a use of OpenFlow to implement a security solu-
tion that exists in traditional networks, one easier to ad-
dress using SDN rather than previous detailed works that
address specific security vulnerabilities introduced by the
OpenFlow protocol. The researchers implement four differ-
ent anomaly detection algorithms, and using several features
of the OpenFlow specification, are able to achieve the effec-
tiveness of these algorithms using SDN while still operating
at line rates. Further discussion of the OpenFlow features
that enable this performance improvement are detailed in
Section 4.

4. OPENFLOW SECURITY
Many of the recent works in SDN security research utilize or
are concerned with the OpenFlow protocol. Of the research
presented here, there are three categories of research that re-
late to OpenFlow security. The first of these is research that
attempts to solve the scalability and fault-tolerance issues
that exist in OpenFlow controller design. These issues are
not directly motivated by security concerns, but are directly
applicable as they improve the durability of the network un-
der load, as may be seen during a DoS attack. The second
category is research that directly addresses security vulner-
abilities that exist in the OpenFlow specification. The chief
of these issues is the communication bottleneck between the
data- and control-planes that can be easily be inundated
with control traffic in many situations. The third category
is research that uses OpenFlow to solve existing security
vulnerabilities. Due to the visibility of the network that
is proved to the controller, applications are able to utilize
the protocol to create network-wide policies that are more
effective than what is available in traditional networks.

As previously stated in Section 3.2.2, Kreutz et. al. have
outlined a list of vulnerabilities that exist in SDNs [13].
The researchers note that the main benefit of SDNs, that
of the separation of the control-plane and the data-plane,
creates many of the vulnerabilities that they identify. The
researchers also note that there has been little work done
to address these vulnerabilities, and as such, they propose
several possible solutions to these vulnerabilities. The dif-
ferent threat vectors are identified by the researchers are
summarized below, and are depicted graphically in Figure
3.

1. Falsified traffic flows: Flows created by faulty or
duplicitous devices in the network, that can be used to
deny resources from other devices, in either the control
plane or the data plane.

2. Switch vulnerabilities: Attempts to exploit vulner-
abilities in switches in order to compromise these de-
vices. Such attacks can lead to the exploit of other
weaknesses in the network.

3. Control plane communications: Any attack that
can compromise the security of the communication
channel between the data plane and the control plane
can disrupt or even halt network operations. Other
attacks can simple attempt to overwhelm the commu-
nication channel in order to prevent the network from
functioning.

4. Controller vulnerabilities: Similar to attacks on
switch vulnerabilities, but much more severe. Once a
controller is compromised, an attacker potentially has
complete control over the network.

5. Trust between controllers and applications: Most
controllers do not establish rules of trust for applica-
tions, and mechanisms do not exist in order to estab-
lish trust. Applications run on controllers must be
trusted, as a controller application has the same view
of the network as the controller.

6. Vulnerabilities in administration stations: Just
as the controller must be protected from attacks by



the network, so must the means of controller program-
ming. If this system is compromised, then an attacker
can reprogram a controller, rather than attempt to
compromise it.

7. Lack of trusted forensics resources: OpenFlow
does not provide resources to understand many of the
problems that may occur in the network and it does
not provide any authentication mechanisms to verify
the source of the statistics that are provided by the
specification.

Items 1, 2, 6 and 7 are not unique to SDN, but these prob-
lems manifest in different ways in SDN and OpenFlow. Sev-
eral of these issues are addressed by some of the work re-
viewed in this paper.

The work presented in Section 4.1 addresses subclasses of
attacks that are related to item 3, where a DoS attack at-
tempts to overload the communication path between Open-
Flow switches and controllers. By making the controller
more fault-tolerant and distributed, it is significantly more
difficult to create sufficient load to prevent the controller
from being able to respond to information from the data
plane. In addition, this work also helps to mitigate attacks
related to item 4, as anomaly detection could be applied to
the controller layer in order to detect when a controller is
potentially compromised, and a new controller can be tasked
with the misbehaving controller’s responsibilities.

Work in Section 4.2 is mostly applicable to the first three
threat vectors due their focus on two OpenFlow-specific lim-
itations. The only work that is applicable to vulnerability 5
is presented in Section 4.3, and no presented work is appli-
cable to threat vectors 6 and 7. However, these two vectors
are not exclusive to SDNs, and there exist several possible
existing solutions to these issues [13].

4.1 Performance and Fault Tolerance
By enabling a more fault-tolerant network, the system be-
comes resistant to brute force attacks such as DoS. By in-
creasing performance, the controller is better able to quickly
response to events that occur in the data plane. The work
presented by Dixit and Yeganeh create distributed controllers
that allow for both increased performance by load balanc-
ing over a set controllers, and controller fault-tolerance, as
the pool of controllers is capable of recovery from the loss
of controllers. In terms of the above defined threat vectors,
a distributed controller helps to mitigate the third vector,
as control communication can be balanced across the pool
of distributed controllers in order to reduce the overall load.
A distributed controller can also be adapted to address the
fourth threat vector, since an anomaly detection algorithm
can be deployed in the controller to detect any misbehaving
controller instances.

In terms of the two works that are discussed in this review,
both define valid distributed architectures that can solve
these issues. However, the architecture presented by Dixit,
et. al. provides some very clear safety and liveness guar-
antees , whereas the architecture presented by Kandoo pro-
vides an interesting hierarchical design that allows for the

distribution of decision responsibility, allowing lower lay-
ers to make local decisions, and higher layers to rule on
global policy. Both of these aspects are desirable in an
SDN, so a hybrid approach of these two designs should be
implemented. However, it should be noted that these two
works specifically define distributed OpenFlow controllers,
and particularly the liveness and safety guarantees provided
by [9] are made possible by OpenFlow mechanisms.

4.2 Vulnerabilities in OpenFlow
The work presented by Curtis and Shin specifically address
different limitations of OpenFlow. These two works inde-
pendently identify the same two limitations in the OpenFlow
protocol.

• Controller communication bottleneck: Due to
the inherent imbalance between the number of net-
work devices in the data-plane and the number of con-
trollers, even in a logically centralized controller, there
is the potential for a bottleneck when devices send con-
trol messages to the controller. An attacker could at-
tempt to exploit this vulnerability by inducing a large
number of control messages to be sent to the controller
by sending a large number of packets to the network
that do not correspond to existing flow rules. Under
normal OpenFlow operations, each of these new mes-
sages must be stored by the switch and the controller
must be informed of the messages existence with the
dispatch of a PACKET IN message. If enough of these
messages are generated in a short time, the communi-
cation path to the controller, and possibly the con-
troller itself, could be overloaded, leading to the drop-
ping of some messages that could correspond to le-
gitimate traffic and a general slowing of the network.
If this issues persists for long enough, then it is even
possible to create a DoS in the data-plane, as switch
buffers are filled with traffic that does not match flow
rules, which will prevent any new legitimate traffic that
does not match a flow rule from using the network.

• Lack of timely data-plane monitoring functions:
The OpenFlow specification provides several mecha-
nisms for accessing statistics about flows from switches,
but these statistics must be requested by the controller.
Furthermore, there is no defined method for aggregat-
ing these statistics or batching them to reduce link
usage. As the request for statistics and the response
from switches must traverse the control communica-
tion link, the communication link bottleneck issue is
worsened and any timely response by the controller to
events in the data-plane is limited by the frequency of
requests for information and the delay in their delivery.

4.2.1 DevoFlow
The first work that specifically addresses these issues, De-
voFlow, proposes the return, or devolvement, of some deci-
sion functionality from the control plane to the data plane
in order to reduce the number of messages that are sent to
the controller. The functions that are returned to the data
plane allow switches to make local decisions on routing for
similar flows, based on rules defined by the controller, and
allow for multi-path calculations and quick re-routing in the



face of failures. This allows the controller to essentially“pre-
register” flows with the data-plane, and requires a smaller
number of flow entries to support multiple routes. In ad-
dition, DevoFlow also defines additional statistics options,
including sampling, trigger-based reporting and approxima-
tion, in order to decrease the amount of statistics informa-
tion that needs to be reported to the controller and allows
for timely updates to be provided to the controller based on
events that occur in the data plane.

DevoFlow addresses the third threat vector defined above
by decreasing the use of the communication path between
the data plane and the controller. However, this issue is
not totally mitigated, as an attacker can still initiate a DoS
and overwhelm the controller communication link by craft-
ing packets that do not match flow entries. DevoFlow also
addresses the first and second threat vectors by allowing the
controller to register for event-triggered statistics updates
that allow it to perform timely anomaly detection in the
data plane.

4.2.2 AVANT-GUARD
The second work that addresses OpenFlow vulnerabilities,
AVANT-GUARD, proposes a similar return of functionality
to the data plane as is proposed by DevoFlow, but in a more
effective manner.

AVANT-GUARD first proposes a method for switches to
intercept TCP connection attempts and implement a hand-
shake protocol using SYN cookies [5] before involving the
destination host or the controller. This handshake is in-
tended to filter illicit requests that would not be accepted
by the destination host or that would not be maintained
by the source host. The system only informs the controller
of the connection request once the handshake is complete,
allowing the controller to establish a flow rule, if required.
This method significantly decreases the control-plane traffic
that would be seen by an average port scan attack, and also
prevents the propagation of control messages for connects
that do not match flow rules in terms of TCP packets. As
such, this method makes great strides in addressing threat
vector three.

The second method proposed by AVANT-GUARD is sim-
ilar to the statistics options that are introduced by De-
voFlow, with several additional features. AVANT-GUARD
introduces the concept of event-triggers that can initiate a
number of actions to be performed by a device in the data-
plane. Such actions can be the activation of a flow rule
based on some condition such as a traffic rate threshold, or
the delivery of statistics to the controller. The system also
allows the controller to register for the delivery of packet
payloads in addition to header information, which is not
currently supported by OpenFlow. These capabilities allow
AVANT-GUARD to address the first and second vulnera-
bilities defined above in a much more effective manner than
is proposed by DevoFlow, as the controller is not only able
to register for event-based statistics, but can proactively in-
stall event-based flow rules. The controller can also perform
deep packet inspection on packet payloads by registering
for their delivery, allowing many host-directed attacks to be
mitigated.

4.3 Security Applications in OpenFlow
Previous research discussed in terms of OpenFlow security
has focused on providing solutions for known vulnerabili-
ties in the protocol, or using protocol-specific mechanisms
to protect the network infrastructure. However, little work
has been presented on the implementation of known network
threat-mitigation strategies, such as intrusion detection and
firewalls, which protect end host systems from attack. Pre-
vious presented research has defined the target as the net-
work, and the OpenFlow protocol specifically. However, the
work presented by FRESCO and Mehdi et. al. represents
different attempts to implement know security applications
inside OpenFlow.

4.3.1 Revisiting Anomaly Detection using Software
Defined Networking

Mehdi, et. al. present an analysis of the effectiveness of
four different anomaly detection algorithms that exist for
traditional networks[16]. The researchers note that these al-
gorithms, at some level, operate on the number of packets
passed through the network per flow. By utilizing standard
OpenFlow network operation, the controller is informed of
the first packet for each flow. By intercepting this first
packet notification, the algorithm can know the associated
flow, and then statistics can be pulled from switches to deter-
mine the number of associated packets. By controlling what
type of flow entries are written, different algorithms can be
supported that need to have different levels of flow granular-
ity, e.g. raw number of TCP connections versus connections
per TCP port number, etc. By utilizing these OpenFlow
features, algorithms that ostentatiously require every packet
can instead only be proved with the first packet, and allow
all other packets to be processed at line rates.

This application is a prime example of the use of OpenFlow
capabilities to implement a network security solution. The
researchers also present the OpenFlow implementation as a
more efficient implementation than the traditional network
implementation, as the algorithms implemented do not need
to see every packet, but only the number of packets pro-
cessed.

4.3.2 FRESCO
The system that is presented by FRESCO is a development
framework for the creation of OpenFlow enabled security
applications. As detailed in Section 3.2.2, FRESCO pro-
vides scripting language to implement a Click-like modu-
lar compositional architecture, an API for the definition of
new Python modules, and a kernel responsible for the en-
forcement of rules. In addition, FRESCO also allows for
the the use of public-key cryptography in order to sign an
verify security modules, which allows for a trust system to
be implemented for security applications. This is the only
presented research that is able to address the above-defined
threat vector five, as this is the only proposed authentica-
tion mechanism between the controller and applications. In
addition, this work promotes the creation of new security
applications, as the modular nature of the system and the
abstraction interface provided, hide many of the low-level
details of OpenFlow. Application developers are able to fo-
cus on defining high-level policies, and the FRESCO system
is responsible for pushing those rules to switches.



5. GENERAL SDN SECURITY
As described in Section 3.2.1, two works presented in this
review are applicable to SDN security as a whole: ClickOS
[14] and Programming Protocol-Independent Packet Proces-
sors [6]. The first of the works, as is previously described,
is a system that allows for the creation of modular network
functions, such as the functions that are implemented in
middleboxes (firewalls, proxies, intrusion detection systems,
etc.), and encapsulating them in an extremely lightweight
virtual machine. These virtual machines can be quickly in-
stantiated, and therefore can potentially be created and de-
stroyed based on demand. The second work presents an
architecture for a more general SDN implementation than
OpenFlow, allowing for rules to be matched on programmer-
defined header fields, and allows for a compilations process
to support varied hardware implementations. Both of these
technologies have direct implications towards SDN security.

5.1 ClickOS
The implications of ClickOS are applicable even to Open-
Flow enabled networks, though the focus of the system is
on middlebox functions, which generally address host-based
security issues. However, due to the speed with which the
middlebox VMs can be instantiated, it is possible for new
on-demand middlebox security applications to be developed.
As such, potential load-balancing of network traffic can be
performed that allows for greater flexibility for network oper-
ators in how they implement network-wide security policies.

5.2 Programmable Protocol-Independent Pa-
cket Processors

The implications of this work are more related to how pro-
grammers attempt to detect and classify attacks. In a sys-
tem where programmers are able to define the header fields
that they wish to match to flow entries, it provides greater
flexibility for programmers to both detect and control how
attack traffic passes through the network. For example, any
TCP option can be used to match on, which allows for pro-
grammers to potentially tag packets and have them redi-
rected based on these tags, or header fields can be defined
for higher level protocols than are supported by OpenFlow,
such as the application layer (HTTP, FTP, etc.), which allow
the programmer to have an even higher level of granularity
that can be applied to traffic dissection.

6. FUTURE SECURITY RESEARCH
After reviewing the different works that are summarized in
Section 3, I was able to identify several trends that exist
in current research. The importance of OpenFlow to the
research community must be noted, as the protocol is fo-
cused upon by a majority of the recent security research.
This is logical due to the industry adoption of the protocol,
which motivates the research community to attempt to im-
prove the specification and utilize it to implement security
solutions. However, other research proposes technology that
provide greater flexibility than what is proved by OpenFlow.
Such technologies provide powerful tools to network opera-
tors and application developers, but unfortunately, some of
these are difficult to implement as they entail changes to
hardware. The different trends that I identified are detailed
below.

1. After examining the origins of active networks and
SDN, it can be seen that each of these technologies
attempts to solve some specific issues from previous
technology, e.g. the Internet. Furthermore, new SDN
designs attempt to resolve specific issues that are ob-
served in OpenFlow. However, new designs face the
issue of deployment, as can be seen by the issues en-
countered by active networks and new SDN designs,
and even new OpenFlow specifications. New designs
also seem to introduce new vulnerabilities that are di-
rectly related to the new features that separate them
from previous work. This can be seen clearly in the
control-plane communication bottleneck that exists in
SDN. This trend shows that even though many new
solutions to protocol issues are presented, few of them
are adopted due to the difficulty of achieving industry
support and the existence of vulnerabilities that are
created by the technology’s new features.

2. Continuing from the previous trend, the new SDN de-
signs that are introduced present more flexible capa-
bilities than what is provided by OpenFlow, such as
the support of arbitrary network protocols. Due to
the static set of features that are provided by Open-
Flow, the motivations for these applications are clear,
though there is still the issue of deployment that is
discussed previously. Most of these new designs re-
quire changes to data-plane devices. Such changes can
be implemented in software implementations, but any
widespread hardware deployments are more difficult to
achieve.

3. Due to the popularity of OpenFlow, research is also be-
ing performed in order to optimize different aspects of
the specification and address its shortcomings. These
technologies are oftentimes easier to deploy, as many
of them can be applied at the controller layer and take
advantage of existing OpenFlow capabilities. These
technologies are also more likely to be deployed, as in-
dustry entities that use the protocol are more invested
in implementing improvements.

Based on these trends, I predict several future research move-
ments. These trends are based on the fact that OpenFlow
is currently in use in datacenter environments, which de-
mand a higher degree of scalability of the protocol than it
was designed for. In addition, there is a continued push to
achieve the network programmability that motivated Open-
Flow and SDNs in the first place. As such, there is a greater
motivation to provide support for developers to easily create
applications. Current application development is difficult, as
applications are tied to a specific controller architecture and
are not portable. Also, new SDN alternatives are difficult
to test, especially at scale, due to the difficulty in achieving
hardware support. Due to these two issues, future research
will have a focus on development platforms and frameworks.

In terms of SDN security, easier and more portable appli-
cation development allows for easier integration of security
and non-security applications that can be deployed on any
controller platform. New development platforms allow for
the testing, and potential deployment, of SDN designs that
incorporate new security features that are not present in



OpenFlow. Specific predictions for research in this area is
detailed below.

• Tools for adoption and testing: Virtual switches,
e.g. Open vSwitch, are often used to test new SDN
protocols, but Open vSwitch and other switches are
limited by their existence as software components. I
believe research into increasing performance of soft-
ware switches is essential, and work has already been
proposed that beats the performance of Open vSwitch.
However, a lower-level virtualization solution, such as
is provided by ClickOS, would be beneficial. Also, bet-
ter solution would be to use FPGA technologies, how-
ever little development has been performed using FP-
GAs, perhaps due to time and monetary constraints.
However, FPGAs provide the flexibility that is needed
to test new protocols.

• OpenFlow application frameworks: FRESCO pro-
vides a framework for the development of security ap-
plications. A natural next step is to extend this system
to be used with any OpenFlow application, and to ex-
tend it to a general interface for all controllers. Such a
framework would allow for a creation of a trust system
between applications and controllers, similar to what
is proposed by FRESCO.

In addition to tools for application development and deploy-
ment, research will also continue to address OpenFlow limi-
tations and present new optimizations. This is motivated by
OpenFlow’s deployment in datacenters, which puts a higher
responsibility on OpenFlow and makes securing the protocol
more important. Future research will therefore attempt to
implement more pragmatic features in the protocol that are
suited for the network environments that are seen in data-
centers. These features will serve the dual role of increasing
the protocol’s performance and making the protocol more
resilient to failure and attack. In addition, further work will
be performed to address specific security vulnerabilities in
OpenFlow. I have already presented work that addresses
some of these issues, and work on these vulnerabilities will
continue, but some of these vulnerabilities need to be ad-
dressed by future work.

• Systems for trust in the network: Previous work
has called for methods to assign trust to different as-
pects of SDNs, especially OpenFlow [13]. Public-key
cryptography can be used to implement trust, if im-
plemented with care. However, designs must include a
system for establishing trust. This can be performed
by human administrators or by merit-building trust
systems. Such a system could be combined with a
development framework in order to ease development,
such as a system that leverages capabilities that are
presented by FRESCO.

• Further OpenFlow devolution: As OpenFlow is
currently deployed in datacenters and further adoption
of OpenFlow specifications has stagnated [2], greater
designs such as DevoFlow will be proposed that give
more decision power to data-plane devices. Combined
with software switches in hypervisors, these designs

could be implemented. Other powers that could be
returned to the data-plane include forwarding lookups
and flow entry optimizations. Controllers would be
responsible for populating devices with the correct in-
formation and pushing changes, but devices would be
able to make routing decisions or combine flow entries
locally. This trend helps to reduce the impact of the
data-plane to control-plane communication bottleneck.

• Optimization of OpenFlow flow tables: Many is-
sues in OpenFlow scalability are related to the number
of flow entries created in flow tables. A step to resolve
this issue should be taken by refactoring individual
flows into general flows using the wildcard rules pro-
vided by OpenFlow. Previous work has hinted at this
possibility [20], but it was not fully explored. Such
optimization would decrease the impact of brute-force
attacks on the network that attempt to generate large
numbers of flow entries in the data-plane.

7. CONCLUSION
In this paper, I presented a review of current research into
SDN security along with a prediction for the paths that fu-
ture research will take. I have identified several categories
of research that are split between the most popular SDN de-
ployment, OpenFlow, and general SDN research. This split
is natural due to the wide community and industry support
for OpenFlow, which motivates research to help improve the
protocol as it is used in production environments.

This research marks the first concerted attempts at SDN
security, which until recently has been somewhat lacking,
even in OpenFlow. As OpenFlow was not originally de-
signed for security and it supports existing protocols, new
security research does not seem necessary. However, the
benefits provided by SDN also introduce new security chal-
lenges. Research discussed here represents valid solutions to
some of these security issues, but further work must be done
in order to satisfactorily secure these vulnerabilities.

8. REFERENCES
[1] Open vSwitch. http://openvswitch.org/.

[2] Openflow - enabling innovation in your network.
http://archive.openflow.org/. Open Networking
Foundation.

[3] The SwitchWare Project.
http://www.cis.upenn.edu/ switchware/l. University
of Pennsylvania.

[4] The xen project. http://www.xenproject.org/.

[5] D. J. Bernstein. SYN Cookies.
http://cr.yp.to/syncookies.html.

[6] P. Bosshart, D. Daly, and M. Izzard. Programming
Protocol-Independent Packet Processors. arXiv
preprint arXiv:, pages 0–6, 2013.

[7] M. Casado, M. Freedman, and J. Pettit. Ethane:
Taking control of the enterprise. ACM SIGCOMM,
2007.

[8] A. Curtis and J. Mogul. DevoFlow: scaling flow
management for high-performance networks. ACM
SIGCOMM, 2011.

[9] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and
R. Kompella. Towards an elastic distributed SDN



controller. Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking
- HotSDN ’13, page 7, 2013.

[10] N. Feamster, J. Rexford, and E. Zegura. The Road to
SDN. ACM Queue, 11(12):20–40, Dec. 2013.

[11] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang.
Public Review for A Clean Slate 4D Approach to
Network Control and Management. ACM SIGCOMM,
35(5):41–54, 2005.

[12] E. Kohler, R. Morris, and B. Chen. The Click modular
router. ACM Symposium on Operating Systems
Principles, 34(December):217–231, 1999.

[13] D. Kreutz, F. M. Ramos, and P. Verissimo. Towards
secure and dependable software-defined networks.
Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking -
HotSDN ’13, page 55, 2013.

[14] J. Martins, M. Ahmed, C. Raiciu, and F. Huici.
Enabling fast, dynamic network processing with
clickOS. Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking
- HotSDN ’13, page 67, 2013.

[15] N. McKeown and T. Anderson. OpenFlow: enabling
innovation in campus networks. ACM SIGCOMM,
2008.

[16] S. A. Mehdi, J. Khalid, and S. A. Khayam. Revisiting
Traffic Anomaly Detection using Software Defined
Networking. Recent Advances in Intrusion Detection
(RAID), pages 1–20, 2011.

[17] S. Shin, P. Porras, V. Yegneswaran, and M. Fong.
Fresco: Modular composable security services for
software-defined networks. Network and Distributed
Systems Security Symposium, 2(1), 2013.

[18] S. Shin, V. Yegneswaran, P. Porras, and G. Gu.
AVANT-GUARD: scalable and vigilant switch flow
management in software-defined networks. Proceedings
of the 2013 ACM Conference on Computer and
Communications Security, 2013.

[19] D. Tennenhouse, J. Smith, W. Sincoskie,
D. Wetherall, and G. Minden. A survey of active
network research. IEEE Communications Magazine,
35(1):80–86, Jan. 1997.

[20] S. H. Yeganeh and Y. Ganjali. Kandoo : A Framework
for Efficient and Scalable Offloading of Control
Applications. Proceedings of the first workshop on Hot
topics in software defined networks HotSDN’ 12, pages
19–24, 2012.


