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a b s t r a c t 

Traditional cloud service providers build large data-centers with a huge number of connected commodity 

computers to meet the ever-growing demand on performance. However, the growth potential of these 

data-centers is limited by their corresponding energy consumption and thermal issues. Energy efficiency 

becomes a key issue of building large-scale cloud computing centers. To solve this issue, we propose a 

standalone SOPC (System on a Programmable Chip) based platform for cloud applications. We improve 

the energy efficiency for cloud computing platforms with two techniques. First, we propose a massive- 

sessions optimized TCP/IP hardware stack using a macro-pipeline architecture. It enables the hardware 

acceleration of pipelining execution of network packet offloading and application level data processing. 

This achieves higher energy efficiency while maintaining peak performance. Second, we propose a on- 

line dynamic scheduling strategy. It can reconfigure or shut down FPGA nodes according to workload 

variance to reduce the runtime energy consumption in a standalone SOPC based reconfigurable cluster 

system. Two case studies including a webserver application and a cloud based ECG (electrocardiogram) 

classification application are developed to validate the effectiveness of the proposed platform. Evaluation 

results show that our SOPC based cloud computing platform can achieve up to 418X improvement in 

terms of energy efficiency over commercial cloud systems. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

We are living in an era of cloud computing that is the back-

one of embedded ubiquitous computing [1] and big data [2] . Peo-

le can access powerful IT resources (e.g., computation and stor-

ge) and convenient services in the cloud via mobile devices at any

ime and any place. The shift of computing infrastructure from lo-

al desktop to the remote cloud improves the utilization of overall

omputing resources and reduces the costs associated with man-

gement of hardware and software resources for individual users. 

Many services on the cloud are web-based applications, which

ncur a large number of concurrent requests and each of the re-

uests involves a light-weighted task which often desires short
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atencies in response from energy hunger servers. For existing

ervers, the performance is typically limited by overheads of the

etwork packets processing and the connection management in

he NIC and OS kernel [3] . Although traditional cloud service

roviders such as Google and Amazon build data centers with

 huge number of connected commodity computers to meet the

emand of cloud computing, the ever-growing energy consump-

ion limits the scale out of these machines due to limited energy-

udget. Moreover, it comes expense related to the energy con-

umption and heat dissipation dominating the operating costs in

uch high-density computing environments. Therefore, the energy

fficiency (performance per joule) becomes the key issue of build-

ng large-scale cloud computing centers [4] . 

Reconfigurable computing based on Field Programmable Gate

rray (FPGA) technologies possesses the capability of parallel and

pecialized computation that can effectively exploits the task-level

arallelism inherent in cloud computing with relatively low energy

onsumption [5] . The current trend to take advantage of FPGA in
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cloud computing lies in two ways: (1) to improve data transfer per-

formance within data centers as a TCP/IP offload engine (TOE) [6] ;

(2) to accelerate computation-intensive applications as a hardware

accelerator [7,8] . In both two methods, FPGAs are used as slave

devices hosted by commodity CPUs on the master side. However,

such master-slave based architecture is not suitable for web-based

cloud applications, since the high communication latency between

the master CPU and the slave FPGA limits the throughput of the

system. 

In this paper, we analyze the inefficiency of master-slave based

reconfigurable architectures in dealing with highly concurrent

cloud applications by proposing a performance model, and indi-

cate that a standalone SOPC based architecture, which tightly cou-

ples network IO handling and data processing in a single FPGA, is

a more promising solution in cloud computing with both high en-

ergy efficiency and high performance catering to needs of cloud

applications. 

Having identified a promising standalone SOPC based architec-

ture, we then present the design and implementation of the SOPC

based architecture for cloud computing in details. The major chal-

lenge to implement such SOPC based architecture is the design

of a high performance TCP/IP hardware stack that is able to sup-

port high network throughput with high concurrent connections.

Since third party TCP/IP offload engines are primarily optimized

for inter-server data transfer among a few TCP connections in data

centers, they adopt one-TCP/IP-session-per-pipeline architecture to

achieve high throughput and extremely low latency. However, such

TCP/IP engines are hard to scale due to resources limitation in

FPGA, which is not suitable for high concurrent cloud applica-

tions. We address this problem by adopting a macro-pipeline ar-

chitecture, where all TCP sessions share a centralized memory and

coarse grained pipeline. Processing modules in the macro-pipeline

are operated in asynchronous mode to achieve high system level

throughput, while an external SRAM is used to minimize the ac-

cess latency of TCP connection information that are randomly ac-

cessed and modified by different modules concurrently. 

One advantage of our design by placing FPGAs on the cloud as

standalone entities to provide service is its high energy efficiency

at its peak performance. In other words, it supports higher per-

formance within a fixed energy-budget constraint in data centers.

Besides the effort s in hardware design, we further propose a online

dynamic scheduling scheme to reduce the runtime energy con-

sumption of the whole cluster system. By taking advantage of fast

configuration ability, a load balancing node is used to shut down

or power up FPGAs according to realtime workload variance in the

cloud environment, saving the energy without compromising the

quality of service to users. 

To verify our architecture design and scheduling scheme, two

case studies including a web server cluster and a cloud based ECG

(electrocardiogram) classification cluster are presented to evalu-

ate the effectiveness of proposed architecture. Design consideration

and implementation details are given to show how this architec-

ture meets the demand of cloud computing in high throughput,

high concurrency, low latency, as well as low energy consumption.

The major contributions of this work include: 

• Performance analysis of master-slave based reconfigurable ar-

chitecture and standalone SOPC based reconfigurable architec-

ture using an analytical model. 
• A massive-sessions optimized TCP/IP offload engine (described

in Section 3.A) that supports up to 100K TCP sessions under

10Gbps line rate. 
• An online dynamic scheduling method (described in Section

3.B) that can reconfigure or power off FPGA nodes according to

workload variance to reduce the runtime energy consumption. 
• Prototype of a reconfigurable cluster system based on stan-

dalone SOPC to provide cloud services, achieving up to 38X

speed up in performance and 418X improvement in energy ef-

ficiency compared to the software based cloud systems. 
• Prototype verification by implementing an I/O intensive web

server cluster system with detailed comparison with alternate

servers. 
• Prototype verification by implementing a both I/O and com-

putation intensive ECG classification cluster system, indicating

support for practical cloud applications. 

The rest of the paper is organized as follows. Section 2 ana-

yzes related work briefly. Section 3 proposes a performance model

o analyze the master-slave based architecture and the standalone

OPC based architecture. Section 4 describes the design details

f standalone SOPC based cluster systems for cloud applications.

ection 5 presents the design and implementation of two case

tudies including a web server cluster and a cloud based ECG clas-

ification cluster. Section 6 evaluates performance and energy effi-

iency of the two application cases. Our conclusions are presented

n Section 7 . 

. Related works 

The issue of energy consumption in cloud computing has been

eceiving increasing attention in recent years [9] . Researchers have

onsidered energy minimization by consolidating the workload

nto the minimum of physical resources and switching idle com-

uting nodes off, with guaranteed throughput and response time.

or example, Chase et al. [10] proposed an economic approach to

anaging shared server resources, which improves the energy ef-

ciency of server clusters by dynamically resizing the active server

et. Similar dynamic provisioning algorithms [11] are studied for

ong-lived TCP connections as in instant messaging and gaming.

oreover, a queuing model [12] to dynamic provisioning tech-

ique has also been studied to obtain the minimum number of

ervers and a combination of predictive and reactive methods has

een proposed to determine when to provision these resources. Al-

hough such scheduling methods reduce energy consumption by

witching idle servers to power saving modes (e.g. sleep, hiber-

ation or power off), the long switch latency consisting of reini-

ialization of the system and restoring the context in commercial

ervers prevents their usage in real cloud systems, especially when

he workloads are unstable. Recent study [13] utilises the power

ating technique for FPGA-based accelerators to efficiently reduce

he energy consumption of tasks running on single FPGA. However,

s far as we know, there is no related work on dynamic schedul-

ng of FPGA based cloud computing system to reduce the energy

onsumption. 

To ensure fast changing system configuration and sharing of

ystems resources, Li et al. [14] proposed a rack scale compos-

ble system using PCIe switches, which is constructed as a collec-

ion of individual resources such as CPU, memory, GPU/FPGA ac-

elerator, disks etc., and composed into workload execution units

n demand. Although such composable system is a promising ar-

hitecture that can improve the utilization of overall systems re-

ources, the relative high communication latency between master

PU and slave devices (memory,GPU/FPGA) makes it less efficient

n dealing with latency-bounded applications such as web-based

loud services. Compare to it, our standalone SOPC based architec-

ure tightly couples network IO handling and data processing in a

ingle FPGA, which significantly reduces such communication la-

ency. Recent study [15] shows that energy consumption in net-

ork processing can be a significant percentage of total energy

onsumption in cloud computing. Neither high-performance nor

ow-power cores provide a satisfactory energy-performance trade-
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ff [16] , since the performance of many cloud applications is typ- 

cally limited by the per-packet processing overheads in the NIC

nd OS kernel. Therefore, there have been a few works on port-

ng cloud workloads to FPGA with a tighter integration of the net-

ork interface. Sai et al. [16] proposed an FPGA based Memcached

ppliance, accelerating the low-latency access to large amounts of

ata for web services with 1Gbps network interface, and Michaela

t al. [17] extended it to 10Gbps line rate. They utilized a similar

rchitecture to ours with a tight proximity of network and DRAM

o achieve lower latency. However, they used UDP offload engines

ather than TCP offload engines to handle network communica-

ions for its minimal overhead to ensure maximum throughput

ver the network and the limited number of concurrent sessions

n third party TCP offload engines. Compared to their work, our ar-

hitecture is capable for connection-oriented cloud applications by

sing a novel TCP/IP offload engine that supports 100K concurrent

CP sessions. 

As an attractive solution to reduce the host CPU overhead

rom TCP/IP processing and improve network performance, the

CP/IP offload engine (TOE) has been extensively studied both in

cademia and industry. Wu et al. [18] implemented a TOE accel-

ration hardware block and associated TCP firmware, which pro-

ided TCP/IP transmission rate up to 296 Mbps as receiver and

39 Mbps as sender. Hankook et al. [19] designed a hybrid archi-

ecture for a TCP offload engine, where the transmission and recep-

ion paths of TCP/IP are completely separated with the aid of two

eneral embedded processors to process data transmission and re-

eption simultaneously. A complete TOE for FPGAs without pro-

essor assist was presented in [20] , which supports Gigabit Ether-

et in limited hardware resources. The closest related work in TOE

s [21] , which supports for 10K concurrent connections in VC709

ith 10 Gbps bandwidth. For each connection, this design allo-

ates fixed-sized data buffers in the external SDRAM and main-

ains fixed-sized session information in on-chip block rams. Com-

ared with it, our TOE avoids using private sending buffers for each

onnection, allowing sending data to be shared among multiple

onnections, which saves the memory space and time caused by

ultiple copies to private buffers. Also, we uses a event-triggered

onnection management in external SRAM. As a result, our TOE

an support more TCP sessions (100K compared with 10K in [21] )

ith similar performance and resource consumption. Recently, so-

utions from industry have already extended the throughput of TOE

o 10Gbps–40Gbps [22,23] . Up until 2014, all of the available TOEs

ere ultra-low latency and low session count (below 256 con-

urrent sessions), with the key driving applications being high-

requency trading and inter-server data transfer in data centers. As

 result, these third party solutions typically support one TCP/IP

ession per instantiated TOE, which limits the number of concur-

ent TCP sessions due to the FPGA resources. In 2014, Intilop has

nnounced a high session count variant supporting up to 16,0 0 0

essions. However, as Intilop has not disclosed the design, it is hard

or us to make a detailed architectural comparison at this stage. 

. Performance analysis of two reconfigurable architectures 

.1. Master-slave based architecture 

Many reconfigurable systems using FPGA are built as the

aster-slave systems [8,24,25] . In each computation node, a gen-

ral purpose processor based computer works as master, which

uns operating system and handles communications and data

ransfer with the slave systems. Slave systems consist of I/O de-

ices including hard drives and network interfaces, as well as re-

onfigurable logic based on FPGAs. Communications between mas-

er side and slave side are delivered via high speed onboard inter-

onnections such as PCI-E. 
According to Amdahl’s law [26] , an arbitrary algorithm can be

ivided into portions that can be made parallel and portions that

annot be parallelized, i.e., to remain serial, and the speedup of an

lgorithm in parallel computing is limited by the time needed for

he sequential fraction of the algorithm. Modern reconfigurable de-

ices can provide abundant computing resources to accelerate the

arallel portion of an algorithm. However, performance speedup

ay not be always achieved due to with many long latency control

ommunications and I/O operations, thus increasing the sequential

ortion. 

To reveal such architectural limitations in parallel implementa-

ion of an application in reconfigurable systems, we further divide

equential portion into three parts: serial computation (S), con-

rol I/O operation (CIO), and data I/O operation (DIO), based on

hich we define the time consumed by each part as T s , T cio , and

 dio respectively. Also we define T p as the time spent on parallel

omputation, then the overall executing time T in a complete syn-

hronous system is given by: 

 = T s + T p + T cio + T dio . (1)

onsidering optimization techniques like overlapping I/O and pro-

essing, we can also define the overall executing time T in a com-

lete asynchronous system as: 

 = max { T s , T p , (T cio + T dio ) } . (2)

owever, real reconfigure systems are falls somewhere in-between

f the Eq. (1) and Eq. (2) . For simplicity, we use Eq. (2) to analyze

he two reconfigure systems. 

Since the serial computation portion of an application is in

ost situations executed on a processor, we can calculate the T s 
s: 

 s = 

S 

f s ×
∑ 

i 
N i 

CPI i 

, (3) 

here S represents the workload of serial computation portion

hich is defined by number of instructions. N i is the number of

nstructions that can be issued simultaneously of functional unit

ype i, CPI i is the average number of cycles per instruction (such

s DSP, ALU) for functional unit type i and f s is the operating fre-

uency of the device. Since the S is defined that cannot be paral-

elized, we simplify Eq. (3) as: 

 s = 

S × CP I 

f s 
. (4) 

In reconfigurable systems, the parallel computation part of an

pplication is most likely executed by hardware logic in FPGAs, so

he value of T p can be calculated as: 

 p = 

P 

R × f p 
CPP 

, (5) 

here P represents the workload of parallel computation portion

hich is defined by number of operations. R is the number of re-

onfigurable resources available for parallel computation. For ex-

mple, the total number of Int32 IP cores of adders and multipli-

rs that an FPGA can support. CPP is the average number of clock

ycles per operation per reconfigurable resource and f p is the op-

rating frequency. 

The process of control involves a sequence of message passing

perations between master CPU and slave devices. Although mod-

rn high speed interconnections are able to provide an extremely

igh throughput for data transmission, it brings a relatively high

atency. Since such control messages always contain little volume

f payload and a control process includes several times of message

assing, it makes the communication delay the dominant factor in

 cio : 

 = N c × D c . (6) 
cio 
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Fig. 1. SOPC based architecture for Cloud applications in single FPGA. 
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Eq. (6) gives the definition of T cio , where N c is the number of com-

munications for control operation and D c is the delay for such

communications. 

We assume data I/O operations are all large data transmissions

and small data transmission can be referred to control operations.

The throughput of I/O interface rather than communication latency

becomes the major factor. Since it needs more than one data copy

operations via different I/O interface to feed data to the execution

unit, the time consumed by I/O operations can be defined as: 

T dio = 

∑ 

j 

�

θ j 

, (7)

where � is the size of data to be transferred and θ j is the max

throughput of each interface j where data copy/transfer operation

occurs. 

To sum up, Eq. (2) is specified as: 

T = max 

{ 

S × CP I 

f s 
, 

P 

R × f p 
CPP 

, 

( 

N c × D c + 

∑ 

j 

�

θ j 

) } 

. (8)

With the definition given by Eq. (8) and considering the energy

consumption of the whole system including both general purpose

processors and FPGAs, we can infer that the applications that per-

fectly match the master-slave reconfigurable system thus achieving

high energy efficiency must have following properties: 1) a com-

parative portion of serial computation workload that can keep the

general purpose processors in high utilization; 2) less control inter-

actions between master and slaves; 3) the data from I/O interface

must satisfy the needs of parallel processing in FPGAs. 

However, many services on the cloud are web-based applica-

tions, which include a large number of concurrent tasks and each

of the tasks is light-weighted. In other words, these applications

contain very little portion of serial computation-intensive work-

load but rather large part of parallel computation coupled with

complex control and I/O operations. In this case, the master-slave

based reconfigurable systems become inefficient. Since D c is large

in master-slave systems, when N c increases to a certain threshold,

the time spent in message interaction between host and FPGA de-

vices may consume much more time than that for parallel com-

putation in FPGAs. Also, when there is a bottleneck in the chain

of transferring data from I/O to FPGA or large I/O delays caused

by too many data copy operations, poor performance would be the

consequence because of the insufficiently data supply for parallel

computational cores. 

3.2. SOPC based architecture 

The SOPC based reconfigurable architecture integrates the func-

tionality provided by master side in a master-slave system into FP-

GAs. General purpose processors with high performance and high

energy consumption are replaced by embedded microprocessors,

while off-chip interconnect are replaced by on-chip interconnect

with low latency. I/O facilities are directly connected to FPGAs

where controller circuits of such I/O interface are implemented as

IP blocks. As a result, it is more suitable for cloud based applica-

tions for the following reasons: 

1. It narrows the distance between control unit and computational

unit by using direct message passing interface such as FIFOs or

shared memories, so that it decreases the control latency ( D c ). 

2. Data from I/O interfaces are directly fed to computational logic

via raw interface with extremely high throughput. As such, the

architecture decreases the number of data copy operations and

eliminates the data transmission bottleneck that may exist in

the master-slave architecture. Also, direct I/O access with hard-

ware control logic can offload some of control workload that

should be done by processors. As a result, it reduces Nc . 
3. Using embedded microprocessors instead of general purpose

processors in applications to incur little serial computational

workload can dramatically reduce the overall energy consump-

tion of the system, while it still provides identical functionali-

ties with acceptable performance. 

. Design details of SOPC based reconfigurable clusters for 

loud applications 

The inherent nature of the cloud computing imposes more de-

and on cloud-side system for high throughput network I/O, high

erformance computing capability and fast storage. In order to

eet the demand in a standalone FPGA, we designed a standalone

OPC based architecture for cloud service that tightly couples net-

ork IO handling and data processing in a single FPGA, which is il-

ustrated in Fig. 1 . It includes an I/O subsystem, a memory subsys-

em, an embedded microprocessor and a user defined application

ogic. In the I/O subsystem, network protocols from physical layer

o transport layer are integrated in hardware pipeline to achieve

igh throughput and low latency. It supports 10Gb optical ether-

et via XAUI interface as well as the entire TCP/IP stack. We also

ntegrate a SATA controller to support non-volatile mass storage

evices. In the memory subsystem, we use two types of external

emory for different purposes: Two DDR3 SDRAMs, which provide

6GB memory space in total, are used as data memory to store

ulk data such as upstream and downstream data, for its high stor-

ge density and high burst throughput; One 72Mb SRAM is used

o store data structures of TCP sessions for its low access latency.

oreover, an embedded microprocessor is involved to incorporate

ith AMBA AXI4 interconnects to provide 3 major functions as

ollows: (1) Initializing the whole system by configuring registers

f system modules and peripherals; (2) Providing an AHCI based

river for SATA controller; (3) Maintaining a file system based on

SD. Unlike the former-described common component, the user

efined application logic is unique for different cloud applications,

hich implements the application level algorithm in cloud service

n specialized hardware pipelines. 

.1. Massive-sessions optimized TCP/IP stack 

In the scenario of cloud applications, the major disadvantage

f third party TCP/IP offload engines that would outweigh advan-

ages is that they are primarily optimized for massive data vol-

me transmission rather than number of concurrent connections

o boast their support for bandwidth of 10+Gbps, where each TOE
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Fig. 2. Mircro-architecture of TCP/IP stack. 
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Fig. 3. Memory allocation and scheduling of TCP connections. 
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nly handles no more than hundreds of TCP connections concur-

ently. As a result, they adopt one TCP/IP session per instantiated

ipeline architecture [22,23] , where each session includes full TCP

unction as well as private TX and RX buffer using on-chip BRAMs.

ulti-sessions can be supported by instantiating multiple copies

f such pipeline. However, web based cloud computing is quite a

ifferent application scenario in that the TOE needs to maintain

ore than ten thousands of concurrent connections where each

onnection only contributes a little portion of total throughput.

hus these third party TOEs no longer satisfy such requirement due

o limited on-chip resource to support more TCP sessions.To ad-

ress the problem, we propose a massive-sessions optimized TOE.

e use a macro-pipeline architecture, where all TCP sessions share

 coarse-grained pipeline with carefully organized TX, RX buffer.

lso,we develop a hardware based connection management to sup-

ort rapid scheduling of up to 100K TCP sessions. We show our

rchitecture in Fig. 2 with the detailed explanations given in the

ollowing subsections. 

.1.1. Macro-pipeline architecture 

In order to achieve high system throughput, all processing mod-

les in the macro-pipeline are operated in asynchronous way, each

f which handles a portion of processing stage or directly responds

o a specific type of TCP packets. These processing modules are

vent triggered, that is they continuously read the events or mes-

ages from the input FIFO, process the events, and send messages

o the next stage without any synchronizations. Specifically, for in-

oming data processing, data from network are first offloaded from

0G Ethernet and unpacked by IP datagram receive engine to ob-

ain TCP packets. Then these TCP packets are divided into different

ategories based on the control bit in their TCP headers and de-

ivered to different processing engines respectively. Each process-

ng engine deals with a particular type of TCP packet such as SYN

acket, FIN packet or ACK packet and directly generates feedback

ackets to response. The connection management engine deals

ith the connection and disconnection of TCP links and sched-

les of the data transmission order among all established links. For

utgoing data processing, the data fragment engine segments data
hat is to be transmitted into small data packages. Then these data

ackages are encapsulated with TCP header and IP header succes-

ively by TCP packaging engine and IP encapsulation engine. When

 timeout occurs, the retransmission engine retransmits the lost

CP packets based on the information from the most recent data

CK number. 

.1.2. Connection management 

Unlike conventional TOEs that support only no more than hun-

reds of TCP sessions, to support more than ten thousands of TCP

essions in our TOE is no trivial task. Due to the limited on-chip

emory resources, connection information can only be stored in

xternal memory, while the shared memory may become the bot-

leneck of the system when it incurs random accesses from dif-

erent processing modules concurrently. We mitigate the impact of

he problem in two ways: to reduce access latency and to reduce

he number of memory accesses. We first choose SRAM instead

f DRAM to store TCP sessions for its much lower access latency.

hen, as described in Fig. 3 , the memory space of external SRAM

s segmented into a number of consecutive TCP connection slots,

here we use a hash mechanism with source IP address and port

umber as the key to fast lookup of a dedicated TCP connection.

e avoid using round-robin scheduling scheme, which is widely

sed in TOEs that support small number of TCP sessions, to sched-
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Fig. 4. Online dynamic scheduling in standalone SOPC based reconfigurable clus- 

ters. 
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ule the execution of data transmission among established TCP con-

nections. Because in web-based cloud computing scenario with a

large number of concurrent connections, it is time consuming to

check every connection slot to find an active connection that is

able to sent data. Instead, we maintain two linked list to fast lo-

cate active connections and timeout connections. The active linked

list is used to store TCP connections that have an event to be pro-

cessed. The connection management engine continuously obtains

the connection in the head, executes the event, then puts the con-

nection to the tail of timeout linked list. When an event (new

ACK received, new data received or new data to send) for certain

connection occurs, the connection is inserted to the tail of active

linked list. On the other hand, the timeout linked list is used for

monitoring the transmission timeout of idle connections. Idle con-

nections are inserted to the tail of timeout linked list with a time-

out point that adds a fix timeout value to current time. Since the

timeout linked list is naturally sorted in timeout point, the retrans-

mission engine only need to check through the head of the list to

obtain the most timeout connections, avoiding recurrently travers-

ing the whole established TCP connection slots that may impose

access burdens to the shared memory. 

4.1.3. TX, RX buffer allocation 

Due to limited on-chip resources, it is impossible to offer each

TCP session a private TX and RX buffer using BRAMs. Instead, we

directly store the data in DDR3 external memory. However, the or-

ganization of upstream data and downstream data for each TCP

connections is different. For upstream data, we maintain a buffer

pool (a continuous memory space in DDR3 SDRAM) that is divided

equally into segments. The size of each segment can be programed

according to the need of application scenario. A buffer allocation

stack is used to manage the allocation and reclaim of the buffer

resources. When a new connection is established, the connection

management engine acquires a new buffer from the buffer pool,

and registers it in the connection information. Then upstream data

can be offloaded to the buffer, where it can be directly accessed by

user defined logic. During TCP disconnection, the buffer is recycled

back to the buffer pool. For downstream data, however, our TCP

stack does not assign a specific TX buffer to each established TCP

connection. Rather we leave user defined logic to organize the data

to be sent. Specifically, the user defined logic can trigger the TCP

stack to send data by registering one or more data ready events,

each of which contains the starting address and the length of pre-

pared data in DDR3 SDRAM. This leads to a series of benefits for

performance: (1) The user defined logic needs not to wait in case

that the send buffer is full; (2) It eliminates the data copy opera-

tions from application level to transport level; (3) It supports mul-

tiple data transmission without the involvement of user defined

logic; (4) Many TCP connections can share the same data to be sent

(e.g. users’ requests for the same webpage in webserver applica-

tion), which saves the memory space and time caused by multiple

copies to private send buffers. 

4.2. Online dynamic scheduling 

Data centers are typically designed to provide processing ca-

pacity for potential peak workload. However, actual request load

imposed to data centers changes over time. It is a waste of en-

ergy to activate all its processing power when system is at a low

load. Fortunately, the standalone SOPC based architecture where

every FPGA works as an independent system offers high flexibil-

ity in scheduling, which can be used to address the problem. Since

the configuration and shut down time of a FPGA is negligible com-

pared to that of a general-purpose computer, it is possible to adjust

the number of activated computing nodes according to realtime
orkload by directly powering up or down FPGAs in the cloud en-

ironment to save the energy, while the latter must keep awake

ost of the machines. 

Due to our impressively short reconfiguration time in seconds

less than two seconds) rather than minutes, which most of FPGA

sers take to reconfigure FPGA via JTAG cables, as we store recon-

guration bits in NOR flash connected to FPGA via BPI interface,

e can exploit the advantages of a lot of dynamic load balanc-

ng methods on web-based systems [27] , many of which can be

dopted in our architecture. We chose HTTP redirection technique

o route incoming requests into our FPGA based cloud servers.

ig. 4 demonstrates the process of such dynamic scheduling. First

f all, the user on the client side connects and sends an HTTP GET

equest to the load balancing node. The load balancing node picks

p a running FPGA that has the least workload and sends its IP

ack to the client side as an HTTP 302 redirection response. Then,

he user sends the request to the allocated FPGA to receive services

n the cloud side. 

The load balancing node periodically (five second interval for

nstance) gathers running status of each FPGA to record the work-

oad distribution of the whole system. Note that adding commu-

ication support between the load balancing node and the FPGA

ould cause additional chip area usage. However, in our system,

e can reuse the network data path we have already build to sup-

ort online dynamic scheduling on the FPGA side. The polling ac-

ion is simply done by sending a unique HTTP GET request to each

PGA, which is been processed by our TCP/IP stack. Then the on-

hip microprocessor will collect data of running status and sent

hem back as the HTTP response. All that are needed are several

egisters to store the running status and a small piece of code

unning on the on-chip microprocessor to deal with the unique

TTP GET request. For different applications, running status and

cheduling algorithm can be various. In our implementation, the

verage system throughput during the last time interval of each

PGA is obtained to monitor the condition of loading. We define T i 
s the current throughput for FPGA i , T m 

as the maximum throught-

ut that a single FPGA can afford to provide services under certain

oS (Quality of Service) requirement, and N is the current number

f total active FPGAs. So the system level load rate is defined as: 

 current = 

∑ N 
i =1 T i 

N · T m 

(9)

Common practice (defined as basic algorithm) uses an upper

ound L u and a lower bound L l of system level load rate to de-

ide whether to increase or decrease the number of the activated

PGAs. When the system load rate L current drops below the lower

ound L l , the load balancing node first stops routing the user re-

uests to the FPGA that contains the least workload, and informs

he onboard configuration module to power off such FPGA when

t becomes idle. On the contrary, when the system load rate L current 
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Algorithm 1 Online dynamic scheduling. 

Input: Acti v eList � set of activated FPGAs 

Input: IdleList � set of ready-to-power-off FPGAs 

Input: PowerO f f List � set of power-off FPGAs 

Input: interv al � scheduling interval 

Input: k � window size 

Input: L u � scheduling upper bound 

1: loop 

2: for all FPGA i in Acti v eList 
⋂ 

IdleList do 

3: gather current throughput T i 
4: end for 

5: S (0) ← 

∑ 

i ∈ Acti v eList T i 

6: L current ← 

S (0) 

| Act i v eList |·T m 
7: L next ← 

S (−2) −3 S (−1) +3 S (0) 

| Act i v eList |·T m � quadratic fitting 

8: L target ← max { L current , L next } 
9: if L target > L u then � activate new FPGAs 

10: repeat 

11: if IdleList is not empty then 

12: nod e ← Id leList .maxT_pop() 

13: Act i v eList .push( node ) 

14: else if PowerO f f List is not empty then 

15: node ← PowerO f f List .pop() 

16: reconfigure F P GA node 

17: Act i v eList .push( node ) 

18: end if 

19: L target ← 

| Act i v eList | 
| Act i v eList | +1 

L target 

20: until L target < L u 
21: else 

22: S max ← max { S (0) , S (−1) , . . . , S (−k +1) } 
23: N t ← � S max 

T m ·L u � 
24: while | Act i v eList | > N t do � deactivate FPGAs 

25: node ← Act i v eList .minT_pop() 

26: Id leList .push( nod e ) 

27: end while 

28: end if 

29: for all FPGA i in IdleList do � poweroff FPGAs 

30: if T i == 0 then 

31: IdleList .delete( i ) 

32: power off F P GA i 

33: PowerO f f List .push( i ) 

34: end if 

35: end for 

36: wait( interv al) 

37: end loop 
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ises over the upper bound L u , the load balancing node informs the

nboard configuration module to power up and configure a resting

PGA to provide service. 

However, the parameter setting of the scheduling upper bound

 u and lower bound L l is no trivial. The higher L u increases the pos-

ibility of service failure, while the lower L u leads to the waste of

erformance. Also, the higher L l may cause the oscillation between

ake up and power off and the lower L l gives rise to the waste of

nergy. To address the problem, we introduced the following two

ptimizations to the basic algorithm: 

.2.1. Predictive scheduling 

For every scheduling point, we first predict the system load of

he next scheduling period ( L next ) by quadratic fitting the system

oad data of the last three samples. Specifically, we define S (− j) =
 

i ∈ Act i v eList (− j) T 
(− j) 

i 
as the total throughtput of all FPGAs at the last

 scheduling point, where S (0) stands for current total throughput.

hen, we can compute the system load of the next scheduling pe-

iod as L next = 

S (−2) −3 S (−1) +3 S (0) 

| Act i v eList |·T m . We use the maximum value of L next 

nd L current to decide whether to activate more FPGAs. Compared to

he basic algorithm that tends to choose a moderate L u to avoid

ervice failure when the system encounters explosive growth of

oad, our optimization can predict the trend of load variation and

ake adjustment in advance. As a result, we can use a higher L u 
o make the whole system more energy efficient without worrying

ervice failure. 

.2.2. Sliding window 

Since the overall loads on the cloud side are sum of massive in-

ividuals requests, it tends to be smoothly changed and stable with

mall fluctuation in most of time. Therefore, it is important to im-

rove the energy efficiency when the system is under such stable

tate. However, the basic algorithm is hard to guarantee a high en-

rgy efficiency during the stable period, which tends to choose a

ow L l to avoid oscillation between wake up and power off. For ex-

mple, If the L l is set to 50% and L u to 80%, while the system load

uctuate around 60% ± 8%, the basic algorithm would not decrease

he number of activated FPGAs to improve the system utilization.

o address the problem, we setup a sliding window of size k , and

eep track of the maximum value of the whole system through-

ut ( S max = max { S (0) , S (−1) , . . . , S (−k +1) } ) among the last k samples.

y assuming that there is a high probability that the load during

he next scheduling period is no more than S max , we can reduce

he number of activated FPGAs to make system in highest utiliza-

ion under the upper bound L u , which is calculated as � S max 
T m ·L u � . Al-

hough such optimization increases the response latency of power-

ng off FPGAs when system load rate L current drops, it significantly

mproves the energy efficiency when the system is under stable

tate. 

More specifically, we describe our algorithm in pseudo-code as

hown in Algorithm 1 . 

. Case studies 

In this section, we use two case studies to verify the effective-

ess of our design and implementation of cloud based applica-

ions using the proposed architecture. The web server application,

hich plays a fundamental role in current cloud computing infras-

ructure, is chosen as the base case study. Since the web server

s the major channel to connect users and cloud services, we use

his case study to evaluate how this architecture meets the require-

ent of low delay, high bandwidth and high concurrency I/O per-

ormance in cloud environment. The second case study is a cloud

ased ECG classification which is an important bio-cloud applica-

ion [28] . Unlike webserver application which is only I/O-intensive,
he cloud based ECG classification is an application that both I/O-

ntensive and computation-intensive. We use this case study to

emonstrate how this architecture handles realistic cloud-based

orkloads. Since we have already presented the common module

f the SOPC Based Architecture in details, in this section we mainly

ocus on the design of the user defined application logic. 

.1. Webserver 

The primary function of a web server is to deliver web pages

r files to clients. The communication between client and server

akes place using the Hypertext Transfer Protocol (HTTP). A user

gent, commonly a web browser, initiates communication by mak-

ng a request for a specific resource via HTTP and the server re-

ponds with the content of that resource. In our design ( Fig. 5 ), the

ser defined application logic contains two main modules: a URL

arser and a data locating module. To narrow the bandwidth gap

etween network I/O and SSD storage I/O, a cache is maintained in
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Fig. 5. Architecture of the user defined application logic for webserver. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Architecture of the user defined application logic for cloud based ECG clas- 

sification. 
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the DDR3 memory. For simplicity, we use embedded microproces-

sor to assist the cache management while a hash table in on-chip

block ram is used to fast locate the cached address of request file

by hardware. When TCP/IP stack offloads the upstream data, the

URL parser reads the HTTP GET request from the DDR3 memory

and parse it to obtain a file name. Then the data locating module

checks if the requested file is cached in DDR3 memory using the

hash table. If yes, the data locating module directly signals the data

fragment engine by writing the address and the length information

of such cached data to the corresponding data send message with-

out copying the data to a buffer; Otherwise, it notifies the embed-

ded microprocessor to move the data from the SSD to the cache

and then repeats the previous operations. Due to limited space of

the paper, we do not extend further with detailed hardware imple-

mentation of the two modules, which is not the core issue of this

case. 

5.2. Cloud based ECG classification 

The electrocardiogram (ECG) is a graphic representation of the

electrical activity of the heart, which is a useful tool to diagnose

heart diseases. Since the heart disease is still the most common

cause of death in the modern world, the early diagnosis of such

disease becomes significantly important. Recent advances in mo-

bile technology and cloud computing have inspired numerous de-

signs of cloud-based health care services and devices [28,29] . Med-

ical data such as ECG can be collected and transmitted automati-

cally to the cloud based analysis system from anywhere and timely

feedback can be returned to patients through the network. The en-

tire process of automated diagnosis can be generally subdivided

into three procedures: beat detection, feature extraction, and clas-

sification [30] . 

Beat Detection: The QRS complex detection algorithm de-

scribed in [31] is used for our design of beat detection. This algo-

rithm is based on wavelet transform (WT), in which a target signal

is decomposed into an approximate signal and a set of relatively

high-frequency wavelets. Each stage of WT consists of a high-pass

filter G [ · ], a low-pass filter H [ · ] and two down-samplers by 2

( ↓ 2). The down-sampled outputs of first high and low-pass filters

provide the detail, D 1 and the approximation, A 1, respectively. Fol-

lowing the first level of decomposition, the approximation A 1 is

further decomposed in the second level using the same filters, and

so on. 

The detection of QRS complex is mainly focused on the detec-

tion of R peaks in the raw ECG data. In D2, every special wave

where a negative minimum point is followed by a positive max-

imum point corresponds to each R peak. In other words, we can

capture the position of R peaks by identifying the zero-crossing of

extremum pairs in D2. Then the QRS complex is extracted from the
aw ECG data by segmenting a fixed number of samples centered

t R peaks. 

Feature Extraction: We use the method presented in [32] to

xtract features from QRS complex. The two-level discrete wavelet

ecomposition produces signal components in different subbands.

n order to reduce the dimensionality of the extracted signal com-

onents, 11 statistics over the set of the wavelet coefficients were

sed to represent the time-frequency distribution of the ECG sig-

als: 

1. Variance of the original QRS complex signal; 

2. Variance of the wavelet coefficients in each subband

(D1,D2,A2); 

3. Variance of autocorrelation functions of the wavelet coefficients

in each subband (D1,D2,A2); 

4. Ratio of the minimum to the maximum of the wavelet coeffi-

cients in each subband (D1,D2,A2); 

5. instantaneous RR intervals. 

Classification: We use artificial neural network (ANN) to clas-

ify the extracted features, which is a widely used method for clas-

ification in machine learning and pattern recognition. 

The architecture of our cloud based ECG classification in FPGA

s showed in Fig. 6 . While users connect to the FPGA and up-

oad their ECG data through TCP/IP protocol, the TCP/IP stack en-

ine handles these TCP connections and offloads the ECG data

o the DDR3 memory. Then the TCP/IP stack engine sends the

onnection information messages to the task assignment module

hrough a FIFO. The latter periodically polls all feature extraction

FE) pipelines to find an idle one, and then reads and dispatches

he ECG data associated with head-of-the-FIFO TCP connection to

he idle FE pipeline. Since the feature extraction stage is the most

omputation-intensive and time consuming stage, we put multiple

E pipelines to meet the requirement of system level throughput.

he input of each FE pipelines is the sequential samples of ECG

ata related to one user. After several processing steps including

-peak detection, 2 level wavelet transformation, autocorrelation

omputation, variance computation, and min/max computation, FE

ipeline outputs 11 statistics features described above as well as

ts connection information message to a feature FIFO. The classifi-

ation module contains a pre-trained ANN with 11 input neurons,

0 hidden neurons and 6 output neurons. It automatically reads

eatures from the feature FIFO, classifies the type of the ECG data,

rites the result to the DDR3 memory, and then notifies the TCP/IP

ngine to send the diagnostic result back to the user. 

Since both the R peak detection and the feature extraction con-

ain a wavelet transformation procedure, we share a two level WT

odule between these two processes. The architecture of the fea-
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Fig. 7. Architecture of feature extraction pipeline. 

Fig. 8. Architecture of light-weight neuron design in FPGA. 
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Fig. 9. Experimental prototype platform. (a) Reconfigurable prototype platform con- 

taining 16 2U rack-mountable computing node; (b) one of its quad-FPGA reconfig- 

urable computing node. 

Fig. 10. Board architecture for single node in experimental prototype platform. 
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ure extraction pipeline is showed in Fig. 7 , when ECG data is

eady in the local block ram, the WT module reads it out and ex-

cutes a pipelined wavelet transformation. The D2 output is sent

o R peak detection module, where all R peak positions as well as

he 64-point QRS segments centered at R-peaks are extracted from

he record. The latter records the position of the R peak and Also,

he instantaneous RR intervals are computed and sent to the fea-

ure output module. After that, a second wavelet transformation

s executed to the extracted QRS segments. The controller stores

ll subband data and controls the execution order to compute all

tatistics feature via different modules including Min/Max module,

utocorrelation module, and variance module. In our design, the

emory space in the block ram is divided into two identical parts

o support ping pong operations, which can hide the latency re-

ated to data acquisition. 

The architecture of single neuron in hidden layer and output

ayer is illustrated as Fig. 8 . Since the most time consuming stage

s feature extraction stage rather than classification stage, we adopt

 more light-weight neuron design to save the on-chip resources.

ach neuron contains a finite state machine to control the access of

ata from the output of the former neurons. During each cycle, the

euron executes one multiply-accumulate operation to one of its

nput data with its pre-trained weight. The implementation of the

igmoid function use a look-up table (LUT) stored in the on-chip

lock Ram [33] . The use of the LUT reduces the resource require-

ent and improves the speed. In our design, a global 64K depth

nd 16bit width LUT is used to compromise between the resources

tilization and the resolution of the output. 

. Experimental results and discussion 

.1. Building experimental prototype platform 

We have been involved in building mimicry computer [34] ,

nd used this reconfigurable platform ( Fig. 9 ) to evaluate the our

OPC based architecture for cloud applications. The current pro-

otype platform consists of 16 computing nodes, each of which is

ackaged in a standard 2U rack-mountable, as shown in Fig. 10 .

ach computing node houses one mother board and four daugh-

er boards. Each daughter board contains: 1) a XC6VLX550T FPGA

rom Xilinx; 2) three SO-DIMM channels that support up to 16GB
DR3 SDRAM and 72Mb SRAM; 3) 10G Ethernet with XAUI/SFP+

nterface; 4) SATA3 interface connecting an Intel 320GB SSD; 5)

2MB NOR flash in BPI interface; 6)PCI-E X8 interface. Data trans-

er between adjacent FPGAs can be carried out directly through

oint to point interconnections in mother board. All FPGAs are in-

erconnected by a fiber channel switch from Cisco with their IP

ddressed pre-defined in the flash that is attached to each FPGA. 

For the purpose of remote configuration, an onboard configu-

ation module based on an Intel Atom CPU is integrated on each

other board. Tools are provided for users to manipulate all kinds

f operation such as starting up or shutting down certain FPGA,

ownloading the bitstream, even debugging remotely using Chip-

cope, when a PC host is connected to the Atom system through

etwork. By using BPI configuration interface, it only takes less

han two second to configure the FPGA. 

.2. Resources utilization 

As mentioned above, we implemented both two applications on

ur reconfigurable prototype platform. Each instance of the SOPC

ased architecture was implemented in a Xilinx XC6VLX550T FPGA.

he embedded microprocessor is implemented by Microblaze, a

ight-weight soft core provided by Xilinx. The system clock fre-

uency of both two implementations are 156.25Mhz which is equal

o the frequency of 10Gbps PHY interface. Table 1 shows the de-

ice utilization summary of main modules for single core, which is

enerated by Xilinx ISE 14.1. All common modules in total use only

.4% of total slice registers, 13.5% of total slice LUTs, 25.1% of to-

al BRAMs and less than 1% of total DSP48E1s, which leaves most

f on-chip resources for user defined application logic. Note that
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Table 1 

Device utilization summary for single core. 

XC6VLX550T 

Slice Reg LUTs BRAM DSP48 

Available 687 ,360 343 ,680 2528 864 

Common Modules 

TCP/IP Stack 21 ,312 22 ,604 126 6 

SATA Controller 3108 4816 10 0 

Microblaze 1620 2185 498 3 

DDR3 Controller 10 ,028 8200 0 0 

AXI interconnect 4155 4989 0 0 

Ethernet 3704 3555 0 0 

User Defined Application Logic 

web server 9727 11 ,563 114 0 

ECG classification 87 ,242 72 ,972 162 450 

The-state-of-the-art TOE in academia 

TOE [21] 20 ,611 19 ,026 279 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Throughput at different file sizes. 

Fig. 12. HTTP transaction rate at different file sizes. 
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our TCP/IP stack has a similar source usage as the-state-of-the-art

[21] TOE in academia, but supports more concurrent TCP sessions. 

6.3. Performance evaluation of the SOPC based web server 

The performance of the SOPC based web server was evaluated

by Spirent Avalanche 3100 [35] , a popular network performance

testing equipment that is able to evaluate OSI Layer 4–7 stateful

traffic performance over multi-10 Gbps physical layers. Three per-

formance metrics are measured including: 

• Throughput, measured in bits per second (bps), which is the

rate of successful data delivery in a given time period; 
• Number of HTTP Transactions per second, which refers to the

number of complete HTTP transaction including connection es-

tablishment, file transmission, and connection disconnection,

performed by web server per second. This metric is highly

related to the response time of single transaction, when re-

quested files are very small; 
• Max number of concurrent connections, which refers to the

max number of active TCP links processed concurrently. 

Results were compared with other two main stream industrial

systems: 

• Apache HTTP web server [36] , which is the most widely used

open-source HTTP server in industry. We launched Apache 2.2

HTTP web server instance on IBM x3635 M3 servers with Intel

X5650 CPU (2.66 GHz), 8GB DDR3 memory and Intel X520-SR2

10GE network adapter. 
• Master-slave based web server where we connected our daugh-

ter board as a slave device to IBM x3635 M3 servers via PCI-

E interface. We integrated the QuickTCP [22] IP core, a third

party 10GE TCP/IP stack in FPGA to offload network data pro-

cessing, leaving the master side CPU handling application level

functions such as file management and look up. 

Files of different sizes were stored in the SSD for SOPC based

web server, while the master-slave based implementation system

held such files in the hard drive hosted on the master side. 

6.3.1. Throughput 

Fig. 11 shows that the peak throughput of SOPC based web

server is 8.3Gbps which is slightly lower than Apache and master-

slave based web server. However, when the size of requested file

became small, the standalone SOPC based web server performed

much better than other two systems. Because in this situation, the

processing delay of single complete HTTP transaction including the

setting up and tearing down of TCP connection turned out to be
he bottleneck. For master-slave based implementation, a lot of

essage interaction and remote memory access operations via PCI-

 were needed between the master side and the slave side, which

ut more delay during single HTTP transaction. For Apache based

mplementation, OS operations such as system call, user space to

ernal space memory copy and interrupt handling bring more de-

ay. In our standalone SOPC based web server, however, latency

s reduced due to the tightly-coupled architecture. Compare with

21] , our TCP/IP stack also has a similar throughput (8.3Gbps) as

21] (8.6 Gbps). 

.3.2. Number of HTTP transactions per second 

Fig. 12 illustrates our explanation from another perspective. The

TTP transaction rate of the SOPC based web server can reach up

o 120,0 0 0 TPS (Transactions per Second) when transmitting the

ame 1KB file, which is 6.8 times that of the master-slave based

mplementation and 9.2 times that of the Apache web server. How-

ver, as file size increases, the performance gap is getting narrower,

nd the throughput limitation is becoming the bottleneck. 

We can use the performance model introduced from

ection 2 to analyze the results. In master-slave based imple-

entation system, the communication latency between the

aster side and the slave side via PCI-E interface is nearly 4μs.

nd during the process of a complete HTTP request-response

peration including three-way handshake in the process of es-

ablishing a connection and four-way handshake in the process

f disconnecting a connection, there are 12 communications

perations over PCI-E interface. According to Eq. (6) , the time

onsumed by control I/O operation T cio is approximately equal

o 4 μs × 12 = 48 μs . On the other hand, according to Eq. (7) ,

he time consumed by data I/O operation T dio is almost equal

o �
θPCI−E 

+ 

�
θHardDisk 

× cache _ miss _ rate . When file size is small and

ached in the memory of the master side, the T dio is nearly equal

o the PCI-E latency. The HTTP transaction rate of master-slave
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Fig. 13. Comparison of energy efficiency among our standalone SOPC implemen- 

tation, FPGA-in-salve-mode implementation and Apache implementation of web- 

server. We evaluate the energy efficiency of both single node under peak perfor- 

mance and cluster under dynamic load. 

Table 2 

Latency of the user defined application logic in cloud based 

ECG classification application. 

Data acquisition Feature extraction Neural network 

4096 9728 61 
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4  
ased implementation is 17,500 TPS when file size is 1K byte,

hich means it needs 10 0 0 0 0 0 μs / 1750 0 = 57 μs for each com-

lete transaction. As per the computation, we can infer that most

f the time is consumed by control I/O operations. This obser-

ation indicates that the master-slave based architecture is quite

nsuitable for such situation. In our SOPC based implementation,

owever, the control I/O latency is small enough to be ignored, so

hat it dramatically reduces the process time for HTTP transaction,

hich is only 10 0 0 0 0 0 μs / 120 0 0 0 = 8 . 3 μs . This result indicates

hat our SOPC based web server can offer better user experience

n terms of lower response time when suffering high concurrent

equests. 

.3.3. Max number of concurrent connections 

We continuously generated keep-alive HTTP requests to mea-

ure the max number of concurrent connections of three sys-

ems. TCP connections established based on such request do not

ear down after requested file is completely transmitted. The num-

er of max concurrent connections were recorded when the web

erver is not able to set up more TCP connections. Experimental

esults show that the max concurrent TCP connections supported

y our stand-alone SOPC based web server, Apache web server

nd the master-slave based web server are nearly 100K, 80K, and

28 respectively. Since the QuickTCP [22] IP core only supports

ne TCP/IP session per instantiated pipeline, considering on-chip

esource constrain, the max number of concurrent connections is

imited for not able to integrate more pipelines. Also compared

ith [21] , our TCP/IP stack supports much more concurrent TCP

onnections (100K VS. 10K), with similar performance and resource

onsumption. 

.3.4. Energy efficiency under peak performance 

We use the term million bits transmitted per joule (Mb/J) to

efine the energy efficiency of different systems. The power con-

umption for one instance of the SOPC based web server run-

ing under maximum workload was 40 W (including the power of

he off-chip devices and the cooling fan). So the peak energy ef-

ciency was calculated as 8320 Mbps ÷ 40 W = 208 Mb/J. However,

he Apache web server consumed 160 W with full workload and its

eak energy efficiency was 58 Mb / J , while the master-slave based

mplementation consumed 180 W which leads to a worse peak en-

rgy efficiency that was 52 Mb / J . In master-slave based web server,

ost of the energy was consumed by the conventional PC on the

aster side. Since the application mapped to such architecture

oes not have a large serial computation-intensive portion to be

xecuted in the high performance general purpose processor, web

ervers based on the master-slave style architecture are obviously

nefficient. 

.3.5. Energy efficiency in mimicry cluster 

We measure the energy efficiency of our SOPC based web

erver in Mimicry Cluster with online dynamic scheduling. We em-

lated the dynamic changing requests where the peak workload

s nearly 4 times of its average workload. 40 files ranging from

MB to 64MB were used as requested files and 12 IBM x3635 M3

ervers were used as client machines. To balance the QoS and dy-

amic energy efficiency, we empirically set the scheduling upper

ound L u to 85%, window size to 15 and scheduling interval to 5 s .

he experiment was carried out for 24 hours, and at the point of

equest peak, 12 FPGA were used to provide web services. A clus-

er that contains 12 master-slave based web servers and a cluster

hat contains 12 Apache web servers were tested under the same

nput. On account of unsustainable cost that frequently powers up

nd shuts down the conventional PC, we made all 12 nodes awake

uring the test. 
We measured the total energy consumption P ( J ) and total file

izes S ( MB ) downloaded during the test period, then we calculated

he energy efficiency as 8 S / P ( Mb / J ). Fig. 13 shows the energy effi-

iency of the three systems under dynamic changing workload. The

nergy efficiency of our standalone SOPC based web server cluster

as 152 Mb / J , which was 73.8% of its peak energy efficiency(energy

fficiency under maximum workload). However, the energy effi-

iency of the master-slave based web server was 12.8 Mb / J , which

as 24.7% of its peak energy efficiency. Moreover, Apache cluster

chieved 26.4% of its peak energy efficiency. The results indicate

hat, using online dynamic scheduling, our SOPC based system is

ble to effectively utilize the processing power of activated com-

uting node, while power off the rest of nodes to save energy.

hus, it gains much more energy efficiency in a dynamic way, com-

ared to other two static scheduled systems. 

.4. Performance evaluation of the cloud based ECG classification in 

PGA 

In our study of cloud based ECG classification, 23 ECG records

ere selected from the MTI-BIH arrhythmia database [37] which

s widely used in research community of ECG analysis. All records

ere digitized at 360 samples per second with 11-bit resolution for

lightly over 30 minutes. These records include six ECG beat types:

he normal beat (N), the left bundle branch block beat (LBBB), the

ight bundle branch block beat (RBBB), the atrial premature beat

APB), the premature ventricular contraction (PVC), and the paced

eat (PB). For each beat type, we choose 50% beats for training and

nother 50% beats for testing. The parameters related to the neu-

on network were trained offline using software and then fixed to

he implementation in FPGA. Ten FE pipelines were integrated in

eature extraction module to maximize the throughput and make

ull use of reconfigurable resources. The size of the block ram in

ach FE pipeline is 16KB which can store 8K points of the ECG data

n 16bit wide. Half of the memory space is used for current pro-

essing, while the other half is used for new ECG data buffering. 

Table 2 illustrates the latency of the user defined application

ogic in our design. The latency of the FE pipeline to process a

K points ECG data containing 12 heart beats is 9782 cycles. Al-
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Fig. 14. Comparison of energy efficiency between our standalone SOPC implemen- 

tation and software implementation of cloud based ECG classification. We evaluate 

the energy efficiency of both single node under peak performance and cluster under 

dynamic load. 

Table 3 

Benchmarking with the state-of-the-arts ( ECG samples pro- 

cessed per second (Sams/s)). 

Hashim [41] Ieong [42] Zhou [43] Ours 

29 .06 × 10 3 57 .53 × 10 6 17 .75 × 10 6 63 .89 × 10 6 
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though the latency of reading data from the DDR3 memory to

the block is 4096 cycles, such data acquisition latency was hid-

den in the execution pipeline using double buffering. Since the

system clock is 156.25Mhz, the throughput of single FE pipeline

is 8 KB ÷ (9728 cycles × 1 / 156 . 25 Mhz) = 128 . 5 MB/s . Considering the

max theoretical upstream throughput of 10Gb Ethernet, 10 FE

pipelines are sufficient to meet the requirement of the system level

throughput: (10 Gb/s ÷ (128 . 5 × 8) Mb/s = 9 . 72 < 10) . On the other

hand, the latency of the neural network module to classify one

heart beat is 61 cycles. As a result, its throughput can be calculated

as 8 KB ÷ (61 cycles × 1 / 156 . 25 Mhz × 12 beats ) = 1 . 71 GB/s > 10 Gb/s,

which also meet the requirement of the system level throughput. 

To simulate the behavior of users in client side, we used com-

puters to generate multiple TCP connections to the server side, and

continually upload ECG data that from the testing set. Each con-

nection uploaded 4K sequential sample points to the server side.

Classification of every heart beat was sent back to the users. Since

the method and the experiment data we used for ECG classifica-

tion referred to the work presented in [32] , here we do not evalu-

ate the classification accuracy which was already described in that

paper. However, we focused on the performance related to the sys-

tem throughput in a cloud based environment. Since the perfor-

mance results of the method were not reported in that paper, in

order to draw a comparison, we implemented a software version

of the same application on IBM x3635 M3 server with Intel x5650

CPU (2.66 Ghz), 8GB DDR3 memory and Intel X520-SR2 10GE net-

work adapter. The software version was programmed in standard

C using Linux socket for network communication. 

6.4.1. Maximum transactions per second 

We used maximum transactions per second (Tps) as the per-

formance metric to evaluate the system level throughput. A com-

pleted transaction included the uploading of the 4K points ECG

data, ECG data classification and the sending back of the re-

sult. We gradually increased the speed of input requests gener-

ated from the computers until the system under test failed to re-

spond, then we recorded the maximum speed of transactions. Our

FPGA based solution was able to accomplish 41,830 transactions

per second which is 38 times that of the software version. Com-

pared to the software version, where both I/O-intensive workload

and computation-intensive workload share the same CPU time, our

standalone SOPC based architecture deals with two parts of work-

load by separated hardware modules, thus achieves a better per-

formance. 

6.4.2. Energy efficiency under peak performance 

We use the term transactions per joule ( Trans / J ) to define the

engergy efficiency of different systems. The power consumption

for one instance of FPGA under maximum workload was 46 W . So

the peak energy efficiency was calculated as 41830 T ps ÷ 46 W =
909 T rans/J. However, the software version consumed 172 W un-

der maximum workload and its peak energy efficiency was only

6.4 Trans / J . 

6.4.3. Energy efficiency in mimicry cluster 

We measure the energy efficiency of our cloud based ECG clas-

sification in Mimicry Cluster with online dynamic scheduling. We

adopted the same experimental design used in that of the web

server application. We measured the total energy consumption P ( J )

and total completed transactions T during the test, then we cal-

culated the energy efficiency as T / P ( Trans / J ). As shown in Fig. 14 ,

the energy efficiency of our standalone SOPC based cluster was

711 Trans / J , which was 78.2% of its peak energy efficiency. However,

the energy efficiency of the software based cluster was 1.7 Trans / J ,

which was 27.2% of its peak energy efficiency. Thus, our standalone
OPC based clusters achieved 418 X improvement in energy effi-

iency compared to commercial clusters. 

We calculate the energy cost of two systems accord-

ng to [38] . Each user generates 360 ECG samples per sec-

nd, and each transaction consists 40 0 0 samples. Since the

nit price of electricity is 1 CNY per KWh in China, if the

loud system serves 1 million users (one seventh of car-

iac patients in China), the annual energy cost is nearly

0 6 · 12 months · 30 days · 24 h · 60 min · 60 s · (360 / 40 0 0) T rans/s ·
 / (1 . 7 T rans/J) · (1 · 2 . 78 · 10 −7 ) C NY /J = 457776 CNY when using

ommercial servers, while 10 6 · 12 months · 30 days · 24 h · 60 min ·
0 s · (360 / 40 0 0) T rans/s · 1 / (711 T rans/J) · (1 · 2 . 78 · 10 −7 ) C NY /J = 

094 CNY when using our SOPC based servers. The calculation

hows that our SOPC based cloud computing system can signifi-

antly reduce the energy cost compared to traditional commercial

ervers. 

.4.4. Benchmarking with the state-of-the-arts 

We compare the performance of our work in single node

ith prior FPGA solutions. The performance comparison results in

erms of processing throughput (ECG samples processed per sec-

nd (Sams/s)) is given in Table 3 . Since most of the ECG processing

ystems [39–41] are designed for portable and single user scenario,

hey typically employ embedded processors or light-weight hard-

ire to save power and chip size. So that these systems have a

oderate ECG processing capacity (e.g. Hashim [41] achieves only

9.06 × 10 3 Sams/s). Ieong [42] otherwise designed a through-

ut optimized QRS detection hardware in FPGA, which achieves

7.53 × 10 6 Sams/s. However, it only accelerated QRS detection

hile our work presents a whole cloud based ECG analysis system

ncluding network handling, connection management, QRS detec-

ion, feature extraction and classification. Zhou [43] proposed an

PGA-assisted cloud framework for massive ECG processing. It uses

 commercial server to handle network connections and attaches

n FPGA via PCIE to accelerate ECG processing. However, the data

ransmission latency between the PC host and the FPGA degrades

he whole performance ( 17.75 × 10 6 Sams/s). Also, it does not

ontain feature extraction and classification logic. Compared with

t, our system is a stand-alone SOPC system. By offloading both

etworking operations and ECG data analysis in a close-coupled ar-

hitecture, our system can achieve 63.89 × 10 6 Sams/s. 
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.5. Limitations 

Although our system has an advantage in terms of performance

nd energy efficiency, it indeed has limitations. Since a complex

loud application may contain many functions that are not suit-

ble or not necessary to be implemented in hardware, it is better

o implement such functions in embedded microprocessor. How-

ver, the use of Microblaze limits the performance of dealing with

uch functions, thus becoming the bottleneck of the system. Fortu-

ately, FPGAs of the latest generation such as kintex-7 have already

ddressed this problem by integrating a hard core of dual ARM

rocessor which provides more powerful computing capability (un-

vailable to purchase when this project began). Our proposed ar-

hitecture can be perfectly ported to these new devices, which we

elieve are more suitable for cloud computing in terms of usabil-

ty. The second limitation is that FPGA is harder to use compared

o CPU. In IaaS (Infrastructure-as-a-Service) and PaaS(Platform-as-

-Service) cloud scenarios, developing any application using high-

evel synthesis or Verilog/VHDL is a difficult process for general

sers. However, architectures proposed in our paper are mainly fo-

us on SaaS (Software-as-a-Service) cloud scenarios, where cloud

roviders undertake the work of architecture design and imple-

entation in FPGA while general users only receive cloud services

ithout awareness of the use of FPGAs in the cloud. In this situ-

tion, the cost down of energy consumption in the cloud is much

ore valuable than the price paid to use FPGA. Still, our work will

e a good starting point to accelerate the development of SOPC

ased cloud applications with high performance network access

apability, mass storage and cloud service functionalities. 

. Conclusion 

In this paper we presented the design and implementation of

 standalone SOPC based architecture that tightly couples the net-

ork IO handling and data processing in a single FPGA to acceler-

te cloud applications. A massive-sessions optimized TCP/IP hard-

are stack that supports 10Gb Ethernet and 100K concurrent TCP

onnections is proposed to meet the requirement of high con-

urrent requests. Due to the hardware pipeline implementation

f network protocols and user defined application logics, our im-

lementation can achieve higher performance, lower energy con-

umption with standalone cloud service functionalities. Moreover,

e proposed an online dynamic scheduling method in standalone

OPC based reconfigurable cluster system, where single FPGA can

e scheduled on or off at a relatively low cost according to the

ealtime workload variance, thus saved overall energy in the dy-

amic process. Two case studies including a web server cluster and

 cloud based ECG classification cluster were implemented on our

ewly built reconfigurable prototype platform, which is a parallel

ystem that explored the performance potential of FPGA as stan-

alone systems. Experimental results showed that the webserver

mplemented in our system is able to support more concurrent

CP connections with lower response delay and similar through-

ut compared with two other state of the art webservers. In cloud

ased ECG classification application, 38X speed up in performance

nd 418X speed up in energy efficiency were achieved compared

o the software based cloud systems. These measured results are

onsistent with the analytical results of our performance analysis. 
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