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Abstract The basic challenge associated with the
design of vehicle suspension system is the attainment of
an optimal trade-off between the various design objec-
tives. This study presents the design of proportional-
integral-derivative (PID) controller for a quarter-car
active vehicle suspension system (AVSS) using evo-
lutionary algorithms (EA) such as the particle swarm
optimization (PSO), genetic algorithm (GA) and dif-
ferential evolution (DE). Each of the EA-based PID
controllers showed overall improvement in suspension
travel, ride comfort, settling time and road holding from
the manually tuned controller and the passive vehicle
suspension system. These improvements were, how-
ever, achieved at the cost of increased actuator force,
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power consumption and spool-valve displacement. DE-
optimized PID control resulted in the best minimized
suspension performance, followed by the GA and PSO,
respectively. Frequency-domain analysis showed that
all the signals were attenuated within the whole body
vibration frequency range and the EA-optimized con-
trollers had RMS frequency weighted body accelera-
tion of the vehicle within allowable limits for vibration
exposure. Robustness analysis of the DE-optimized
PID-controlled AVSS to model uncertainties is carried
out in the form of variation in vehicle sprung mass
loading, tyre stiffness and speed.

Keywords Force feedback · PID control · Active
vehicle suspension system · Genetic algorithm ·
Particle swarm optimization · Differential evolution

1 Introduction

A vehicle suspension system is made up of springs,
dampers and linkages connected together in such a way
that it supports the weight of the vehicle. It also serves to
isolate the vehicle from road disturbances propagated
via its wheels, enhances road holding and handling
capabilities, and maintains suspension travel within
the physical constraints allowed for in the rattle space
[1–3].

Vehicle suspension systems are available in three
configurations, namely: passive vehicle suspension
system (PVSS), semi-active vehicle suspension system
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(SAVSS) and active vehicle suspension system (AVSS).
While the PVSS remains the most popular based on
its simplicity and low-cost, its fixed design parame-
ters do not allow for flexibility and adaptive perfor-
mance. Controllable dampers makes SAVSS to per-
form better than the PVSS, but the AVSS holds better
prospect. AVSS responds dynamically to road distur-
bance inputs. It induces relative motion between the
body and the wheel through the actuator force it gen-
erates.

The fundamental challenge in AVSS design is deter-
mining an optimal trade-off between these conflict-
ing design objectives. This must be done in such a
way that the overall performance is enhanced in spite
of inherent nonlinearities and uncertainties in the sys-
tem.

Evidence in the literature shows the superior per-
formance of the AVSS in terms of these design objec-
tives, but the choice of appropriate control method is
vital [2–5]. Recent advances in control engineering,
sensors, actuators and digital electronic systems today
have enhanced the capacity for more computationally
demanding control schemes on AVSS. However, set-
backs due to cost and hardware constraints still remain
[6,7].

Large proportion of the control techniques employed
in AVSS design are linear control schemes [8–12].
Linear optimal control schemes are attractive because
they are stable and robust, but are limited in the
face of complex nonlinear AVSS behaviour associ-
ated with hydraulic or pneumatic actuator dynam-
ics. Moreover, most AVSS applications of linear opti-
mal control schemes presume time-invariant situation
[13–16].

Examples of nonlinear control schemes that have
been applied in AVSS designs are: sliding mode, back-
stepping and feedback linearization (FBL). Backstep-
ping control method is increasingly being employed in
the literature to solve the AVSS problem because of
its adaptive control strengths. Its setback is, however,
repeated differentiation of the system nonlinear func-
tion which leads to an increase in complexity of the
nonlinear functions [17–19]. Exact FBL is not always
possible because full knowledge of the nonlinear sys-
tem model is always required. Input–output FBL, how-
ever, requires an elaborate internal stability analysis.

While sliding mode control holds good prospect,
being adaptive, the presence of chattering is a set-
back that could degrade the system performance by

exciting unmodelled high-frequency dynamics due to
the switching control signal [15,20]. Its successful
application is dependent on availability of good sys-
tem dynamic model since it uses the function approx-
imation technique [21,22]. It is also susceptible to
measurement noise and requires large control signals
[20].

PID control remains the most popular industrial con-
trol structure because of its simplicity. Transient and
steady-state characteristics such as overshoot, rise-time
and settling-time are improved by simply adjusting the
controller gains [23–25]. PID applications in AVSS
design have remained limited except for the purpose
of performance benchmarking because of robustness
limitations that is attributed to ineffective tuning [26].
However, PID control holds great prospect when com-
bined with an appropriate intelligent control technique,
especially for nonlinear systems [27,28].

Documented results have shown that large percent-
age of industrial PID control application are either
manually -tuned, poorly tuned or used based on its
default settings. Meanwhile, the best benefit of PID
control applications can only be assessed with appro-
priate tuning [24,25]. Zeigler–Nichols and Cohen tun-
ing methods [25] have been successfully employed for
decades, but they have a tendency to increase oscilla-
tion of the signals and become more cumbersome to
apply in multi-loop cases like the one under consider-
ation.

These shortcomings in PID control have been tack-
led through its combination with fuzzy control in
several documented works [29–33]. Improved perfor-
mance was recorded because of fuzzy control’s strength
as a nonlinear controller that is implemented where
model information available is inadequate. However,
obtaining the fuzzy control rules is time consuming and
not straight forward; thereby requiring EA like PSO or
GA for tuning purposes [8,31–34]. This increases com-
putational challenges in the system, thus prompting the
use of EA in optimizing the PID gains directly.

EA are global optimization search techniques whose
operations mimic biological or natural processes. They
provide quick means to attain the expected optimal
specifications if suitable initial conditions are pro-
vided [6,31,35,36]. GA, PSO and DE are heuristic,
population set-based direct search global optimiza-
tion algorithms with wide applications. They generate
newer and improved solutions through processes simi-
lar to biological evolution processes [14,37–39]. These
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Fig. 1 AVSS feedback control loop

characteristics make EA to be robust and flexible, but
care must be taken in the selection of the particular EA
for a control problem. Factors to consider must include
computational efficiency and real-time implementation
[36,39].

PSO is inspired by the migration of swarms and
bears some similarities with GA, which is inspired by
the biological reproductive process; for example, it also
generates improved results after each generation. Its
result may, however, show a weak progression in the
initial stages and take significant amount of time con-
verging [40–42]. Although DE has been shown to be
very efficient in some applications, it tends to be com-
putationally expensive with respect to the number of
objective function evaluations [39,43,44].

The rest of the paper is structured as follows. The
next section presents a brief description of the physi-
cal model, mathematical model and road disturbance
input models. The third section highlights the system
specifications and evaluation criteria. The fourth sec-
tion presents the controller design and optimization
methods. Discussion of results is presented in the fifth
section and this is followed by the concluding remarks
in the last section.

2 System modelling

Figure 1 presents the generic AVSS feedback control
loop. The system consists of a controller issuing the
command input to the actuator to generate a manipulat-
ing signal. Better command input signal is sent because
the controller output is optimized by the use of EA.

AVSS responds dynamically to road disturbance
inputs by inducing relative motion between the body
and the wheel through the force generated by the servo-
hydraulic actuator. Obtaining the appropriate control
voltage for the actuator includes optimal trade-off
between the design objectives in the presence of road
disturbance inputs. The success of this process yields
a suspension system that is adaptive to the road distur-
bance and other operating conditions.

2.1 Mathematical model

The physical system used for this investigation is a
2DOF, quarter-car suspension model shown in
Figure 2. This model readily captures the body heave
and wheel hop vibration mode. The sprung mass (chas-
sis) is represented by ms , unsprung mass (wheel) mu . ks
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Fig. 2 Simplified quarter-car model

and kt are the suspension and wheel stiffnesses, respec-
tively. bs is the damping coefficient of the suspension
system, bt is the damping coefficient of the tyre (which
in this case is taken to be zero), F is the actuator force,
x1 and x2 are the vertical displacements of the chas-
sis and wheel, respectively, while w is the road distur-
bance input. The controlled variable is represented by
the suspension travel (x1 − x2), ẍ1 is the body-heave
acceleration which characterizes the ride comfort and
(x2 − w) represents the wheel deflection which char-
acterizes road holding quality.

Application of Newton’s law to the quarter-car
model shown in Fig. 2 yields the following nonlinear
governing equations [1,45]:

Fms = ms ẍ1

Fmu = mu ẍ2

Fks = kl
s(x2 − x1) + knl

s (x2 − x1)
3

Fkt = kt (x2 − w)

Fbt = bt (ẋ2 − ẇ)

Ft = Fkt + Fbt

Fbs = bl
s(ẋ2 − ẋ1) − bsym

s |ẋ2 − ẋ1|
+ bnl

s

√|ẋ2 − ẋ1|sgn(ẋ2 − ẋ1)

F = Ax p

therefore:

Fms = Fks +Fbs −F

ms ẍ1 = kl
s(x2−x1)+knl

s (x2−x1)
3+bl

s(ẋ2− ẋ1)

− bsym
s |ẋ2− ẋ1|+bnl

s

√|ẋ2− ẋ1|sgn(ẋ2− ẋ1)

− Ax p (1)

and

Fmu = −Fks − Fbs + Fkt + Fbt + F

mu ẍ2 = −kl
s(x2−x1)−knl

s (x2−x1)
3−bl

s(ẋ2− ẋ1)

+ bsym
s |ẋ2− ẋ1|−bnl

s

√|ẋ2− ẋ1|sgn(ẋ2− ẋ1)

+ kt (x2 − w) + bt (ẋ2 − ẇ) + Ax p (2)

also

Vt

4βe
ẋ p = Q − Ctpx p − A(ẋ1 − ẋ2)

ẋ p = αQ − βx p − αA(ẋ1 − ẋ2) (3)

where:

α =4βe

Vt
, β = αCtp and

Q = sgn[Ps −sgn(xv)x p]Cd Sxv

√
1

ρ
|Ps −sgn(xv)x p|

The suspension spring and damping forces have lin-
ear and nonlinear components. Spring constant, kl

s , and
damping coefficient, bl

s , affect the spring force and
damping force in linear manner. bsym

s contributes an
asymmetric characteristics to the overall behaviour of
the damper. knl

s and bnl
s are responsible for the nonlinear

components of the spring and damper forces, respec-
tively. Ps is the supply pressure into the hydraulic cylin-
der, A is the area of the piston, Vt is the total actuator
volume, βe is the effective bulk modulus of the system,
Ctp is the total leakage coefficient of the piston, Cd

is the discharge coefficient, S is the spool-valve area
gradient and ρ is the hydraulic fluid density.

The electrohydraulic system is modelled as a first-
order dynamic system with a time constant τ .

ẋv = 1

τ
(−xv + Kvu) (4)

where Kv is the servo-valve gain. Supply voltage of
range ±10V is supplied to the servo-valve as control
input to limit the suspension travel to ±10cm [15].

Using the state-space representation, the system
governing equations can be presented as:

ẋ = f(x) + g(x)u + p(w) (5)

y = h(x) = x2 − x1 (6)

where the state vector x = [x1 x2 x3 x4 x5 x6]T ,
the output variable y = x2 − x1, and the control input
u. The system matrices f and g are:
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f (x) = [
f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

]T
,

(7)

where

f1(x) = x3 (8)

f2(x) = x4 (9)

f3(x) = 1

ms

[
kl

s(x2 − x1) + knl
s (x2 − x1)

3

+ bl
s(x4 − x3) − bsym

s |x4 − x3|
+ bnl

s

√|x4 − x3|sgn(x4 − x3) − Ax5

]
(10)

f4(x) = 1

mu

[
−kl

s(x2 − x1) − knl
s (x2 − x1)

3

− bl
s(x4 − x3) + bsym

s |x4 − x3|
− bnl

s

√|x4 − x3|sgn(x4 − x3) + kt x2

+ bt ẋ2 + Ax5

]
(11)

f5(x) = γΦx6 − βx5 − αA(x3 − x4) (12)

f6(x) = −x6

τ
(13)

g (x) = [
0 0 0 0 0 1

τ

]T
(14)

p (w) =
[

0 0 0 −( kt
mu

w + bt
mu

ẇ) 0 0
]T

(15)

where x3 and x4 are vertical velocities of the sprung and
unsprung masses, respectively, x5 is the pressure drop
across the piston, x6 is the servo-valve displacement
and Φ is the hydraulic load flow.

Figure 3 represents the hydraulic actuator mounted
in between the sprung and unsprung masses. Qu and
Ql are the hydraulic fluid flow rates into the upper and
lower chambers of the cylinder, respectively. Pr is the
return pressure from the hydraulic cylinder, Pu and Pl

are the oil pressures in the upper and lower portion of
the cylinder.

The performance of the suspension system is eval-
uated at the vehicle travelling speed of 40 km/h in the
presence of a road disturbance input with sinusoidal
profile, half-wavelength of 5 m and amplitude of 11 cm.
The profile of the bump is modelled by Eq. (16) and
illustrated in Fig. 4.

w(t) =
⎧
⎨

⎩

a
2 (1 − cos 2πV t

λ
) 0.45 ≤ t ≤ 0.9

0 otherwise
(16)

Fig. 3 Schematic of the double-acting hydraulic strut
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Fig. 4 Road disturbance input profile

where a is the bump height, V is the vehicle’s veloc-
ity in straight line and λ is the half wavelength of the
sinusoidal road undulation. The values for the system
parameters are provided in Table 1.

3 System performance specification and evaluation

3.1 Performance specifications

The following characteristics are required of the AVSS
controller in a bid to meet the set performance objec-
tives:

1. Nominal stability: The closed loops should be
nominally stable. Stability of the actuator dynamics
is enhanced through an inner loop force feedback.
This should improve the overall system stability.
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Table 1 Parameters of the quarter–car model [45]

Parameters Value Parameters Value

Sprung mass, ms 290 kg Suspension stiffness 2.35 ∗ 104N/m

Unsprung mass, mu 40 kg (linear), kl
s

Tyre stiffness, kt 1.9 × 105N/m Suspension stiffness 2.35 ∗ 106N/m

Bump height, a 0.11 m (nonlinear), knl
s

Piston area, A 3.35 × 10−4m2 Suspension damping 700 N/m

(linear) (bl
s )

Actuator time 3.33 × 10−2 s Suspension damping 400 Ns/m

constant, τ (nonlinear) (bnl
s )

Supply pressure (Ps ) 10, 342, 500Pa Suspension damping 400 Ns/m

Vehicle speed (V ) 40 km/h (asymmetrical), bsym
s

Disturbance half 5 m Actuator parameter (α) 4.515 × 1013

wavelength (λ) Actuator parameter (β) 1

Servo-valve gain (Kv) 0.001m/V Actuator parameter (γ ) 1.545 × 109

2. Disturbance rejection: The designed controller
should be able to attenuate low-frequency distur-
bance inputs.

3. Good command following: The suspension travel
response of the AVSS is examined in the presence
of the deterministic road input shown in Fig. 4. The
controller should be able to keep the steady-state
error as close as possible to zero.

4. Suspension travel: is constrained to physical limits
to avoid damages due to topping and bottoming.
Thus it is not to exceed ±0.1m [15].

5. The control voltage is also limited to ±10V .
6. The maximum actuator force must be less than the

static weight of the vehicle, that is Famax < ms g.
7. For good road holding the dynamic load that is

transmitted through the road should not be larger
than the static weight of the vehicle.

8. Ride comfort: This is quantified using the vehicle
body acceleration in the vertical direction. The ver-
tical acceleration of the vehicle body needs to be
minimal for good ride comfort, especially within
the low-frequency band of 0.1 to 10H z. The peak
sprung mass acceleration: ẍ1 < 4.5m/s2 [46–49].

The objective function employed in the optimization
algorithms is presented in Eq. (17). It is designed to
minimize the suspension travel, y, actuator force, Fa ,
sprung mass acceleration, ẍ1, actuator spool-valve dis-
placement, x6, control voltage, u, and wheel deflection,
(x2 − w). This way, ride comfort and road holding is

Fig. 5 Control architecture

improved while control voltage and actuator force is
kept as small as possible.

J = 1

T

∫
T

0

[(
y

ymax

)2

+
(

Fa

Famax

)2

+
(

ẍ1

ẍ1 max

)2

+
(

x6

x6 max

)2

+
(

u

umax

)2

+
(

(x2−w)

(x2−w)max

)2]
dt

(17)

4 Controller design and implementation

Figure 5 shows the controller architecture for the multi-
loop AVSS. The inner loop is used for force feedback
control while the outer loop is used for the suspension
travel feedback control. The outer loop is also used
for disturbance rejection control (i.e. it attenuates the
unwanted disturbances from the uneven road surface).
yd is the desired suspension travel, e1 and e2 are error
signals that will be minimized in the outer and inner

123



PID controller tuning using evolutionary algorithms

control loops, respectively, Fa is the actuator force that
will be regulated in the inner control loop with Fad

being its respective setpoint, y is the actual suspension
travel that will be manipulated through the outer control
loop, and u is the control input signal that is passed into
the AVSS by the controller.

The objective function used is based on the various
AVSS design specifications and goals, and it employs
a number of component functions to enhance the opti-
mization algorithms in selecting optimal gains for the
PID loops. The performance of the PID loops are based
on the minimization of mean squared error (MSE) of
the component functions.

4.1 Controller structure

The PID controller is defined by [26]:

e1(t) = yd − y (18)

Fad (t) = K P e1(t) + K I

∫
e1(t)dt + K D

de1(t)

dt
(19)

e2(t) = Fad (t) − Fa(t) (20)

u(t) = kpe2(t) + ki

∫
e2(t)dt + kd

de2(t)

dt
(21)

where kp and K P are the proportional gains of the inner
and outer loops, respectively, ki and K I are the corre-
sponding integral gains of the controllers, and kd and
K D are the derivative gains of the respective control
loops. For the system to be set up as a regulation con-
trol problem, the reference signal yd was set to zero. It is
therefore desired that a control law Fad (t) be designed
such that e1(t) → 0, as t → ∞.

4.2 Optimization strategies

The optimal PID controller gains are computed using
GA, PSO and DE optimization techniques, the goal
being to minimize the objective function J [Eq. (17)]
and simultaneously remove the drawbacks and rigor-
ous tuning routine associated with manual PID tuning.
Each technique is a stochastic global search, zero-order
method, therefore they do not require any derivatives
to find the minimum [35,50]. All search spaces were
bounded and realistic initial conditions were specified.
The bounds and optimization parameters must be cho-
sen such that the solution does not get caught in a local
minimum and premature convergence problems do not
arise.

The control structure for this algorithm shown in
Fig. 5 is essentially the same as that for the manually
tuned (non-optimal) PID-controlled AVSS, except that
the objective function J [Eq. (17)] is computed within
the loop and fed to the optimization routine which sub-
sequently computes the PID gains for both the inner
and outer control loops, respectively. Hence the total
number of problem variables used for the quarter-car
AVSS is six namely: K P , K I , K D , kp, ki , and kd . The
optimization is performed offline using GA, PSO, and
DE algorithms, respectively.

DE, GA, and PSO are random search optimiza-
tion methods where the optimal solution is produced
through the evolution of a random population set S =
x1, . . . , xN with each individual denoted as xi . These
algorithms differ in the manner in which the popula-
tion changes through each generation. The search space
may be predefined to operate within a feasible region
in order to improve computation time and convergence
characteristics. Such a search space is chosen through
intuitive reasoning and experience gained through man-
ual tuning as in the case of PID controller tuning.

4.2.1 Genetic algorithm (GA)

GA is a direct search algorithm that has attracted a lot
of interest in recent years. It is a global optimization
technique based on natural selection and the genetic
reproduction concept. GA maintains a set S of can-
didate solutions. Traditionally, these candidate solu-
tions (chromosomes) in GA are represented by binary-
coded strings, but recently real coding of the strings
has been preferred for continuous optimization prob-
lems. A real-coded GA treats chromosomes as points
of real-valued numbers and it adapts the genetic opera-
tors of the binary coded GA accordingly. At each gen-
eration of GA, the old set S is updated by new off-
springs obtained through the reproduction (crossover
and mutation) process. The GA for minimization fol-
lows the four steps:
Algorithm 1 : The genetic algorithm

– Step 1: Initialize.

– Generate N uniformly distributed random
points from the search region Ω and store the
points and their corresponding function values
in S = (x1, . . . , xN ).

– Set generation counter k = 0. The initial condi-
tion x0 which in controller tuning corresponds
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to the set of controller gains obtained through
manual tuning.

– Step 2: Stopping rule.

If the stopping condition (e.g. the maximum
value, kmax , of k has been reached) is achieved,
then stop; otherwise continue to the next step.

– Step 3: Generate offsprings.

– Selection: select m ≤ N points from S as par-
ents, normally biased towards the better points.

– Crossover: pair the parents and create m new
points (offsprings).

– Mutation: mutate an element (gene) of each off-
spring with probability pν . Mutation is repeated
if the mutated element is infeasible.

– Step 4: Update S.

– Replace the least fittest m points in S with the
m offsprings.

– Set k = k + 1 and go to Step 2.

In real-coded GA, for example, a crossover can be
defined as follows: if x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) denote two parents and x̃ =
(x̃1, x̃2, . . . , x̃n) and ỹ = (ỹ1, ỹ2, . . . , ỹn) denote the
offsprings, then the offsprings are represented by:

x̃i = αi xi + (1 − αi )yi (22)

ỹi = αi yi + (1 − αi )xi , (23)

where αi are uniform random numbers, say in [−0.5,

1.5]. We have used N=500, kmax = 150 and m=250.
Our numerical experiments suggest that the GA per-
forms better with pν = 0, taking some small probabil-
ity for continuous variables.

4.2.2 Particle swarm optimization (PSO)

PSO maintains a group of particles. At each iteration k,
the i th particle is represented by a vector xk

i in multidi-
mensional space to characterize its position. The vector
vk

i is used to characterize its velocity. Thus, PSO main-
tains a set of positions

S = {xk
1 , . . . , xk

N }
and a set of corresponding velocities

V = {vk
1, . . . , xk

N }.

Initially, the iteration counter k = 0, and the posi-
tions x0

i and their corresponding velocities v0
i are gen-

erated randomly from the search space Ω . Each particle
changes its position xk

i , per iteration. The new position
xk+1

i of the i th particle (i = 1, 2, . . . , N ) is biased
towards its best position pk

i with best function value,
referred to as personal best or pbest, found by the par-
ticle so far, and the very best position pk

g , referred to as
the global best or gbest, found by its companions. The
gbest is the best position in the set

P = {pk
1, pk

2, . . . , pk
N },

where p0
i = x0

i ,∀i .
We regard a particle in S as good or bad depending

on its personal best being a good or bad point in P .
Consequently, we call the i th particle ( j th particle) in
S the worst (the best) if pk

j (pk
i ) is the least (best) fitted,

with respect to function value, in P . We denote the best
particle in S as pk

g .

At each iteration k, the position xk
i of the i th particle

is updated by a velocity vk+1
i which depends on three

components: its current velocity vk
i and the weighted

difference vectors (pk
i −xk

i ) and (pk
g−xk

i ). Specifically,
the set S is updated for the next iteration using

xk+1
i = xk

i + vk+1
i , (24)

where vk+1
i is given as:

vk+1
i = ωvk

i + r1c1(pk
i − xk

i ) + r2c2(pk
g − xk

i ). (25)

The parameters r1 and r2 are uniformly distributed ran-
dom numbers in [0, 1] and c1 and c2, known as the cog-
nitive and social parameters, respectively, are popularly
chosen to be c1 = c2 = 2. Thus the values r1c1 and
r2c2 introduce some stochastic weighting in the differ-
ence vectors (pk

i −xk
i ) and (pk

g −xk
i ), respectively. The

set P is updated, as the new positions xk+1
i are created,

using the following rule

pk+1
i =

{
xk+1

i if f (xk+1
i ) < f (pk

i )

pk
i otherwise.

(26)

This process of updating the velocities vk
i , positions

xk
i , pbest pk

i and the gbest pk
g is repeated until a user-

defined stopping condition is met. This standard ver-
sion of PSO is referred to as PSO-S, and its pseudo-code
is presented below.
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Algorithm 2: The PSO algorithm [51]

Step 1: Initialization.

Step 1a: Initialize iteration counter k = 0
Step 1b: Initialize N random positions of the
particles (xk

i , i = 1, 2, . . . , N ) and store them
in S.
Step 1c: Initialize N random velocities (vk

i , i =
1, 2, . . . , N ) and store them in V .
Step 1d: Initialize N pbest (pk

i , i = 1, 2, . . . , N )
and store them in P .
Step 1e: Set pk

g equal the best pbest in P .

Step 2: While not stopping criterion do

Step 2a: For each i th particle:
Update V : Calculate vk+1

i using (25)
Update S: Calculate position xk+1

i using
(24)
Update P: Update P using (26).

Step 2b: Update gbest pk
g:

pk+1
g = arg min

i∈{1,2,...,N } f (pk+1
i ).

Step 2c: k = k + 1.

We have used ω=0.5, kmax =100 and N=100.

4.2.3 Differential evolution (DE) optimization

DE attempts to replace each point in S with a new bet-
ter point. Therefore, in each iteration, N competitions
are held to determine the members of S for the next
iteration. The i-th (i = 1, . . . , N ) competition is held
to replace xi in S. Considering xi as the target point a
trial point, yi is found from two points (parents), the
point xi , i.e. the target point and the point x̂i deter-
mined by the mutation operation. In its mutation phase
DE randomly selects three distinct points x p(1), x p(2)

and x p(3) from the current set S. None of these points
should coincide with the current target point xi . The
weighted difference of any two points is then added to
the third point which can be described as:

x̂i = x p(1) + F(x p(2) − x p(3)) (27)

where F > 0 is a scaling factor, and x p(1) is known as
the base vector. If the point x̂i /∈ Ω then the mutation
operation is repeated. The trial point yi is found from
its parents xi and x̂i using the following crossover rule:

y j
i =

{
x̂ j

i if R j ≤ CR or j = Ii

x j
i if R j > CR and j �= Ii ,

(28)

where Ii is a randomly chosen integer in the set I , i.e.
Ii ∈ I = {1, 2, . . . , n}; the superscript j represents
the j-th component of respective vectors; R j ∈ (0, 1),
drawn uniformly for each j . The ultimate aim of the
crossover rule (28) is to obtain the trial vector yi with
components coming from the components of target vec-
tor xi and mutated vector x̂i . And this is ensured by
introducing CR and the set I . Notice that for CR = 1
the trial vector yi is the replica of the mutated vector
x̂i . The effect of CR has been studied in [43,52] and
it was found that CR = 0.5 is a good choice. The tar-
geting process continues until all members of S are
considered. After all N trial points yi have been gen-
erated, acceptance is applied. In the acceptance phase
the function value at the trial point, f (yi ), is compared
to f (xi ), the value at the target point. If f (yi ) < f (xi )

then yi replaces xi in S, otherwise, S retains the original
xi . Reproduction (mutation and crossover) and accep-
tance continues until some stopping conditions are met
[43].

Algorithm 3: The DE Algorithm

Step 1: Determine the initial set

S = {x1, . . . , xN }
where the points xi , i = 1, . . . , N are sampled
randomly in Ω; evaluate f (x) at each
xi , i = 1, . . . , N . Set iteration counter k = 0.
Step 2: Stopping condition.

If the stopping condition such as k > kmax is
satisfied, select the fittest individual in S as the
optimal solution and then stop; otherwise con-
tinue to the next step.

Step 3: Generate points to replace points in S for
the next population (or iteration). For each xi ∈ S
(i = 1, . . . , N ), determine yi by the following two
operations:

Mutation:

x̂i = x p(1) + F
(
x p(2) − x p(3)

)

where x p(1), x p(2) and x p(3) are three ran-
dom vectors from S and F is an scaling fac-
tor. chosen randomly. The tournament selec-
tion is applied for each i . If the j-th component
x̂ j

i /∈ Ω then it is generated randomly.

123



M. Dangor et al.

Table 2 PID controllers gains tuned using manual and evolutionary algorithms

Technique Outer PID loop gains Inner PID loop gains

K P K I K D kp ki kd

Manual 17,000 0 1,400 0.002 0.004 0

GA 23,681 10 1,597 0.00193 0.0038 6.448 × 10−10

PSO 23,518 −15 2,507 0.00134 0.0023 0

DE 23,005 20 1,681 0.00195 0.0056 6.386 × 10−10

Crossover : Calculate the trial vector yi corre-
sponding to the target xi from xi and x̂i using
the crossover rule (28).

Step 4: Acceptance rule to replace points in S.

Select each trial vector yi for the k +1 iteration
using the acceptance criterion: replace xi ∈ S
with yi if f (yi ) < f (xi ) otherwise retain xi .
Set k := k + 1 and go to Step 2.

We have used CR = 0.5, F = 0.75, kmax = 500 and
N = 100.

In relation to the structure of the DE, it is worth com-
menting on its potential to solve the problem from a
computational point of view. Firstly, this algorithm has
the ability to search the solution space more efficiently
than most optimization algorithms. This is because the
mutated individual x̂i for each individual xi is deter-
mined based on only 3 randomly selected mutually
independent individuals x p(1), x p(2), and x p(3) from
the solution space S. Such a setup creates an excellent
flexibility that permits candidate individuals to form
anywhere in the solution space. Hence, many portions
of the solutions space are expected to be explored with
this configuration.

The second quality of the DE that makes it stand out
with respect to other optimization algorithms is the fact
that the xi individual is replaced only if its respective
candidate solution yi has a better fitness value. This
condition basically only allows progression or evolu-
tion of the individual if its fitness improves. Such a
rule guarantees that the algorithm will converge to a
solution. However, this condition tends to slow down
convergence speed.

5 Results and discussion

A two-loop PID control system was utilized to effec-
tively control the quarter-car AVSS. The actuator force

was generated by an electrohydraulic actuator which
was stimulated by a control voltage in the range of
±10 Volts. Numerical simulation of the designed AVSS
was carried out in the Matlab®/Simulink environ-
ment. The AVSS was subjected to a deterministic road
disturbance, which had the form of a sinusoidal road
bump with a height of 0.11 m and a half-wavelength of
5 m. The vehicle travelled at 40 km/h.

The PID controllers were tuned using four different
methods: manual, and EA-based optimization methods
(DE, GA and PSO). The results obtained based on these
methods were compared with those of the PVSS. The
optimal gains obtained at the end of each iteration are
listed in Table 2.

Figures 6 and 7 show the variation of the PID gains in
the inner and outer feedback loops as the iteration pro-
gressed. The figures also show that optimal gains were
already attained by the 100th iteration even though GA
and DE were operated for 150 generations and itera-
tions.
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Fig. 6 Variation of the outer PID feedback loop gains with iter-
ation
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Fig. 8 Heave acceleration time history

The vehicle body acceleration results are presented
in Fig. 8. The improvement in the force transmitted
to the vehicle body is evident in the AVSS with EA
optimization. The peak body-heave acceleration for the
PVSS is 13.35 ms−2, DE-optimized case gave the best
result of 4.1 ms−2. This amounts to about 69 % reduc-
tion in the force transmitted to the vehicle body on
account of the road disturbance input.

In Fig. 9, multiple oscillations of the suspension sys-
tem was cut down by the EA-optimized AVSS, such that
settling time is reduced by about 36 %, when compared
with the PVSS. The least suspension travel peak value
was attained by PSO-optimized AVSS controller. Other
suspension performance objectives were traded-off for
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Fig. 10 Wheel deflection time history

better suspension travel performance in the manually
tuned controller.

The results for the wheel deflection is presented in
Fig. 10. The trend is similar to those in the body-heave
acceleration and suspension travel. The GA-optimized
case has the best road-holding performance. Summary
of the suspension performance based on the peak and
RMS values are presented in Table 3.

The power consumption requirement for all the
controllers were within allowable range as shown by
Fig. 11 where the control voltages were within±10 Volts.
Figure 12 presents the actuator force time history for
the different controllers. While the lowest peak value of
actuator force was generated by manually tuned AVSS
controller, the PSO-optimized case had the largest actu-
ator force peak value. In addition, the PSO-based case
has a steady-state error of about 0.2k N .
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Table 3 Summary of the vehicle suspension performance

Passive Manual GA DE PSO

Suspension RMS 2.50 2.30 1.90 1.80 1.70

Travel (cm) Peak 8.70 6.40 6.90 7.10 6.80

Heave RMS 4.10 1.62 0.98 0.94 0.96

Acceleration (ms−2) Peak 13.35 5.30 4.40 4.10 4.20

Wheel RMS 0.64 0.24 0.21 0.23 0.22

Deflection (cm) Peak 2.06 1.01 0.89 0.90 0.93

Settling time (s) 2.80 2.50 1.90 1.80 1.80
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Fig. 12 Actuator force time history

The trend for the actuator spool-valve displacement
in Fig. 13 is similar to that of the suspension travel
(see Fig. 9) where the PSO-optimized case performance
was marginally superior. Summary of these results are
presented in Table 4.
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Fig. 13 Actuator spool-valve displacement time history

Figures 14 and 15 show that the control system is stable
in the bounded-input bounded-output (BIBO) sense as
the system clearly settled with a steady-state error in
the order of magnitude of 0.0001 m. Robustness analy-
sis of the designed controller to parameter variations
in the vehicle mass, tyre stiffness and speed was con-
ducted for the DE-optimized case because it performed
best. These specific parameters were chosen because
the variations do occur in reality; as number of passen-
gers and fuel do change over time; tyres do lose pres-
sure during driving; and the vehicle speed does change.
As the performed the best, this robustness analysis will
conducted for it. Parameter variations plots relating to
suspension travel are presented in Figs. 14 and 15.

The steady-state error increased for both 20 %
increase and decrease in vehicle speed. An increase
in vehicle speed produced weaker transient behaviour
with an additional peak. The order of magnitude of the
steady-state error for this parameter uncertainty is com-
paratively high but is acceptable considering the large
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Table 4 Summary of the vehicle suspension power consumption performance parameters

Manual GA DE PSO

Control voltage RMS 0.784 0.764 0.800 0.757

(Volts) Peak 2.90 3.30 3.40 3.20

Actuator force RMS 0.550 0.593 0.631 0.659

(k N ) Peak 1.996 2.289 2.369 2.509

Actuator spool- RMS 5.503 × 10−4 5.086 × 10−4 5.277 × 10−4 5.054 × 10−4

Valve Displacement (m) Peak 0.0028 0.0026 0.0027 0.0026

Fig. 14 Suspension travel response of DE-based PID-controlled
quarter-car system for −20 % variation in some selected parame-
ters

Fig. 15 Suspension travel response of DE-based PID-controlled
quarter-car system for +20 % variation in some selected parame-
ters

degree of nonlinearities as well as the adverse effects
of actuator dynamics. Variation in vehicle mass up to
20 % did produce a steady-state error but it was 7 % of
the peak value and this makes it fairly acceptable. The
same may be concluded for the case of a 20 % vari-
ation in tyre stiffness as the largest steady-state error
was only 12 % of the peak value. Moreover, the system
remained BIBO stable for all cases and this infers that
the system is stable and has an acceptable degree of
sensitivity to parameter variations.

The whole body vibration (WBV) frequency range
of 0.5–80 Hz covers the critical frequency range for
the humans (i.e. the vehicle resonance frequencies that
needs to be avoided). Ride comfort is quantified on
the basis of the RMS frequency-weighted vehicle body
acceleration in the vertical direction, which prompts the
use of the ISO 2631 weighting filter Wk . The human
body is less sensitive to high-frequency vibrations, but
ride discomfort is perceived at lower range (1–8 Hz)
[47,49].

ISO 2631 provides guidelines and vibration sensi-
tivity weighting specifications. Additional WBV spec-
ifications are provided in the European Commission
Directive 2002/44/EC [48,49,53]. Figure 16 presents
a pseudo-frequency domain analysis carried out using
the power spectral density (PSD) estimates based on
Welch algorithm in the M AT L AB®/Simulink signal
processing toolbox.

The following parameters are used in computing
the Welch’s periodograms: the windowing function–
Hanning window function; the number of points used
in forming each fast Fourier transform, NFFT = 1,024;
length of the window, NWind = 256; and the sampling
frequency of the windows was set at 80 Hz to accom-
modate the WBV range.

A distinct resonance occurred at about 40H z for
all the suspension systems, the vibration mode associ-
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Fig. 17 Ride comfort assessment

ated with this frequency could not be readily identified
but the amplitude is <10−4 dB which is quite low. The
AVSS had other minor resonance peaks but their mag-
nitudes were also lower than 1 dB. All the other signals
were attenuated except for the plot for passive suspen-
sion wherein signal magnitude was amplified within
0.1–0.8 Hz frequency range.

The frequency-weighted RMS value for the PVSS
body-heave acceleration exceeded the exposure limit
level (ELV) as stipulated by the European Commis-
sion Directive 2002/44/EC (see Fig. 17). However, this
value for the manually tuned case exceeded the expo-
sure action level (EAV) as stipulated by the same direc-
tive, but lies within the a little uncomfortable range
stipulated by ISO 2631 [47–49].

The EA-optimized case had better ride comfort per-
formance. Their performances were all below the EAV
level and they were all within the a little uncomfortable
range [47–49].

6 Conclusion

The performance of all the EA-optimized cases sur-
passed those of the manually tuned and the PVSS cases;
especially in the vehicle body acceleration which was
minimized to a third of the peak value for the PVSS.
DE-optimized controller had the best overall perfor-
mance. Although the PSO-optimized case results were
close to those of the DE-optimized case, it exhibited
steady-state errors in the suspension travel and the actu-
ator force signal. This explains why it is less promi-
nent than GA-optimized case with regard to engineer-
ing applications.

Optimal design of PID control is an effective tool in
meeting hard design specifications such as those placed
on ride comfort. They improved the steady-state char-
acteristics of the suspension travel, and road holding as
well as their transient behaviours. They tend to produce
large derivative gains whose inherent ability to increase
rise time tends to add chattering to the more sensitive
outputs of the system. DE is the best optimal routine
which exhibits a satisfactory robustness to system para-
meters variations. In terms of frequency response, each
case was able to attenuate signals from 5 to 80 Hz. In
the lower frequencies (0.01–5 Hz) the exposure levels
were the worst. However, the AVSS cases did produce a
significant improvement in this domain with RMS ride
comfort values falling within the “Less Discomfort”
range of the ISO 2631 (2003).
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