
Service Virtualisation of Internet-of-Things Devices:
Techniques and Challenges

Zeinab Farahmandpour∗, Steve Versteeg†, Jun Han∗, Anand Kameswaran‡
∗Swinburne University of Technology, Melbourne, Australia. Email: {zfarahmandpour,jhan}@swin.edu.au

†CA Technologies, Melbourne, Australia. Email: steve.versteeg@ca.com
‡CA Technologies, Plano, TX, USA. Email: anand.kameswaran@ca.com

Abstract—Service virtualization is an approach that uses vir-
tualized environments to automatically test enterprise services in
production-like conditions. Many techniques have been proposed
to provide such a realistic environment for enterprise services.
The Internet-of-Things (IoT) is an emerging field which connects
a diverse set of devices over different transport layers, using
a variety of protocols. Provisioning a virtual testbed of IoT
devices can accelerate IoT application development by enabling
automated testing without requiring a continuous connection to
the physical devices. One solution is to expand existing enterprise
service virtualization to IoT environments. There are various
structural differences between the two environments that should
be considered to implement appropriate service virtualization
for IoT. This paper examines the structural differences between
various IoT protocols and enterprise protocols and identifies key
technical challenges that need to be addressed to implement
service virtualization in IoT environments.

Keywords-Service Virtualisation; Internet-of-Things; Continu-
ous Delivery;

I. INTRODUCTION

The Internet-of-Things (IoT) is an emerging field, which

connects a diverse set of devices over different transport layers,

using a variety of protocols. Gartner predicts that by 2020,

IoT elements will be incorporated in more than half of major

new business processes and systems [1]. And yet, there are

many challenges to readily deliver IoT systems. As such, there

is a pressing need to develop techniques to address these

challenges.

As the IoT continues to emerge, there will be a growing

number of software applications communicating with IoT

devices. The IoT connected software components and appli-

cations can be categorised into tiers (as depicted in Figure

1):

• Device gateways (GW): responsible for interfacing di-

rectly with an IoT device and providing an API (such as

REST) to other applications and services

• Monitors and data aggregators which collect data from

IoT devices (edge nodes)

• Applications and services for managing IoT devices

• Analytics engines which data mine aggregated IoT data

• End user applications viewable on the web or mobile

devices

Software developers writing IoT applications face chal-

lenges, which can delay the release of their application and

affect software quality. In particular, to test their application

Fig. 1. Points where service virtualisation (SV) could be applied in IoT

requires interfacing with IoT devices. This may require the

physical devices to be present every time the application

is fully tested. Furthermore, IoT protocols are very diverse

and fragmented, which makes developing and testing for this

widespread set of protocols a challenge.

Continuous Delivery (CD) [2] is the industry best practice

for accelerating software delivery and increasing software

quality. At its core, this includes automating each step of

the development release cycle and bringing production-like

conditions to every test phase. Due to the physical nature of

IoT devices as well as their diversity, this poses a challenge

to automation.

For enterprise software development, service virtualisation

[3] has been applied as a means of emulating all the other

services on which an application under test depends. The

key idea of service virtualisation is to observe and log the

network communication between an application under test

and each other service that it interacts with in its production

environment. These logged network traces can then be used

to build an interactive model, called a virtual service, for each

dependency service. The virtual service is then deployed in

an emulation environment, allowing the application under test

to send requests to and receive responses from the virtual

service, as if it were communicating with the real service.

This facilitates the automated testing of a software application

in production-like conditions, as is required for continuous

delivery.

This paper explores whether service virtualisation could be

applied to IoT devices to support the realisation of CD for

2017 IEEE/ACM 3rd International Workshop on Rapid Continuous Software Engineering (RCoSE)

978-1-5386-0428-1/17 $31.00 © 2017 IEEE

DOI 10.1109/RCoSE.2017..4

32

2017 IEEE/ACM 3rd International Workshop on Rapid Continuous Software Engineering (RCoSE)

978-1-5386-0428-1/17 $31.00 © 2017 IEEE

DOI 10.1109/RCoSE.2017.4

32



IoT. IoT DevOps problems include heterogeneous hardware,

multiple communication layers, lack of industry standards,

and skill sets requiring both operations and development.

IoT virtualization can remove constraints for IoT solutions

development. Provisioning a virtual testbed of IoT devices

can accelerate IoT application development by enabling au-

tomated testing without requiring a continuous connection

to the physical devices. Figure 1 illustrates the points at

which IoT applications could be virtualised. In this paper, we

survey a sample of IoT protocols to examine their technical

differences to enterprise protocols. On this basis, we examine

how service virtualisation would need to be adapted to support

IoT protocols.

II. IOT PROTOCOL SURVEY

To address the many challenges in IoT environments, differ-

ent standards and communication protocols were introduced.

There are a wide range of protocols used by IoT devices.

In addition to standardised protocols, there are also many

non-standard extensions as well as proprietary protocols. We

examine five commonly used IoT protocols which give a

spectrum of the potential challenges faced for virtualising an

IoT environment. Table 1 summarises some key characteristics

of the IoT protocols surveyed. As a comparison point, we also

show the attributes of the LDAP protocol [5], as an example

enterprise protocol.

A. MQTT
Message Queue Telemetry Transport (MQTT) [6] is a

session layer publish-subscribe protocol that is used in ap-

plications like the Facebook mobile application. MQTT is

an extremely simple and lightweight messaging protocol,

designed for constrained devices and low-bandwidth on high-

latency or unreliable networks. It is designed to provide

embedded connectivity between applications and middleware

on one side and networks and communications on the other

side. The protocol’s architecture consists of three main com-

ponents: publishers, subscribers, and a broker. Publishers are

lightweight sensors that connect to the broker to send their

data, then go back to sleep whenever possible. Subscribers

are applications that are interested in a certain topic, or a

type of sensory data, so that they connect to the broker

to be informed whenever new data is received. The broker

classifies the sensory data into topics and sends it to interested

subscribers.

B. CoAP
The Constrained Application Protocol (CoAP) [7] is another

session layer protocol that provides a specialized web transfer

protocol for use with resource-constrained devices. CoAP is

based on the widely successful REST model. Servers make

resources available under a URL, and clients access these

resources using methods such as GET, PUT, POST, and

DELETE. It is built over UDP and has a light-weight mech-

anism to provide reliability. CoAP contains four messaging

modes: confirmable, non-confirmable, piggyback and separate,

which support reliable and unreliable transmissions.

C. DDS

Data Distribution Service (DDS) [8] is a leading data-centric

publish-subscribe communication standard. This model builds

on the concept of a ”global data space” that is accessible to

all interested applications. It is a stateless session layer pro-

tocol for real-time machine-to-machine communications, that

supports both synchronous and asynchronous coordination.

D. ZigBee

ZigBee [9] is a very low-cost, very low-power consump-

tion, two-way, wireless communications standard. Solutions

adopting the ZigBee standard are embedded in consumer

electronics, building automation, industrial controls, PC pe-

ripherals, medical sensor applications, toys, and games. The

ZigBee network is comprised of a coordinator, routers and

end devices. The coordinator is responsible for initializing,

maintaining, and controlling the network. Routers form the

network backbone to transfer end devices’ packets.

E. Z-WAVE

The Z-Wave protocol [10] is a low bandwidth half-duplex

session layer protocol designed for reliable wireless commu-

nication in a low cost control network. The protocol’s main

purpose is to communicate short control messages in a reliable

manner from a control unit to one or more nodes in the

network. It follows a master/slave architecture in which the

master controls the slaves, sends them commands, and handles

and schedules the whole network. It supports an asynchronous

architecture communications and is used as a protocol to

develop smart products and smart home systems.

III. IOT SERVICE VIRTUALISATION CHALLENGES

Based on the surveyed sample IoT protocols, which are

listed in the Table I, we have identified three primary areas

where IoT protocols differ from most enterprise protocols,

which may pose challenges to implementing service virtu-

alisation for IoT. These include communication challenges,

message format challenges and modelling challenges.

A. COMMUNICATION SYNCRONISATION CHALLENGES

1) Pub/Sub protocols: IoT protocols such as MQTT and

DDS support a Publish/Subscribe architecture. This requires

an emulated service to handle situations where a response

should be sent in the absence of a triggering request. While

service virtualisation has been previously applied to enterprise

protocols supporting Publish/Subscribe - it is more diffi-

cult to implement than the more widely used client-server

protocols, and requires case-by-case implementation. In IoT,

Publish/Subscribe architectures are even more prevalent, a

generalised approach to emulating Publish/Subscribe therefore

requires immediate attention.

3333



TABLE I
IOT PROTOCOL CHARACTERISTICS

Enterprise Protocol IoT Protocols
�����������Taxonomy

Protocols LDAP MQTT CoAP DDS ZigBee Z-WAVE

UDP/TCP TCP TCP UDP TCP/UDP TCP/UDP TCP/UDP

Architecture Client-server Pub-sub Client-server Pub-sub Client-server Client-server
Client-server* Client-server*

State(ful/less) Stateful Stateful Stateless Stateless Configurable Configurable

Communication Unidirectional** Unidirectional Unidirectional Unidirectional Bidirectional Bidirectional
direction Bidirectional* Bidirectional* Bidirectional*

Header Size Not limited 2 max 5 bytes 4 bit fixed header 8 bytes 15 bytes Not specified
+ binary options

coordination Asynchronous Asynchronous Asynchronous Asynchronous Synchronous Asynchronous
Synchronous Synchronous

Network layer Application Session layer Session layer Session layer Sub-application Sub-application
(application interface)

Real-time Yes No No Yes Yes No
* IoT protocols have standard and non-standard versions with different structures and properties to meet their environmental needs. Therefore, each
protocol may cover different schemes for each property simultaneously. This highlights the demand for virtualization service environment for IoT.

** There is one exception for the LDAP server, which acts as an initiator and can be ignored when the LDAP server sends ”Notice of Disconnection”
to advise the client that the server is going to terminate the LDAP session on its own initiative [4].

2) Asynchronous messaging: As the IoT nodes aim to con-

serve battery they minimize energy consumption by utilising

sleep mode. For example in Z-Wave, at the time when the

control node sends a command to a slave node, the slave

node may be in sleep mode. Asynchronous communication is

therefore adopted to allow messages to be sent at an arbitrary

time. For service virtualisation two challenges arise:

• How to correlate requests and responses?

• How to time when to send responses: this requires

keeping track of timestamps.

3) Bi-directional communication: In IoT protocols, the

initiation of communication can be unidirectional, bidirec-

tional or a combination of both. For example, in the MQTT

protocol, the connection between the publisher and broker

as an intervening entity is unidirectional but the connection

between the subscriber and broker is bidirectional. Sometimes

nodes act as a sender and send their information based on

their internal events. For example for a push button, if there is

a button press event the node will start sending data without

receiving any request. In other situations they respond to ”get

information” requests from the server, to send their infor-

mation. The dominant pattern in enterprise protocol service

virtualisation, is for service nodes to act as responders, rather

than initiators. For the IoT context, the predominant pattern is

for bi-directional nodes, capable of acting as both initiators and

responders. An IoT service virtualisation solution therefore

requires generalised support for bi-directional emulated nodes.

B. MESSAGE FORMAT CHALLENGES

1) Different messaging modes: There are different modes

of messaging in IoT protocols. For example, in the CoAP

protocol there are four different messaging modes which

can be used based on the requirements, i.e., confirmable,

non-confirmable, piggyback and separate. For each mode the

structure of response packets is different.

2) Chained commands: A Z-Wave message can contain

multiple commands in one message. This is in contrast to most

enterprise protocols which have one operation per request. For

service virtualisation, this increases the complexity of message

format identification, as chained commands would first need

to be separated before they can be processed.

3) Fields with less than one byte long: Since IoT deals

with resource constrained devices, protocols try to use shorter

packets for their communication. It is more common to have

bit fields in IoT compared to in enterprise protocols. This

increases the challenge of format identification since fields are

not limited by byte boundaries.

C. MODELLING CHALLENGES

1) Encapsulated sensory data: Sensory data is encapsu-

lated in multiple protocol layers. For example, ZigBee acts

as a transport protocol. Application protocols, layered above

it, contain the actual sensory information. The sensory data

constitutes the key payload information which would need to

be captured by any useful virtual service model. However,

extracting the sensory data fields from the multiple protocol

layers poses a challenge.

2) Correlation of data models: An IoT service virtual-

ization approach needs to provide an accurate simulation

of sensory values. It is important to develop and test an

appropriate control system to deal with real devices. Therefore

service virtualization needs to derive ”good” emulation of data

coming from sensors in an IoT environment, i.e., the generated

data from emulated nodes or sensors should be realistic to help

testing the controller. A key question is how close the emulated

data should be to a real data stream. Not only do the sensory

values need to be accurate, but also sensory values need to be

responsive to commands of a controller. For example, for an

air-conditioner use case, if we want to generate a model of

the temperature sensor, we cannot consider it as an isolated

node, because its value is dependent on the commands that the

3434



controller sends to the air conditioner. If the temperature that

is captured by the sensor is above a threshold, the controller

sends a command to the air-conditioner to increase the power

of the air conditioner. In response, the temperature is expected

to decrease. Therefore for the purpose of service virtualisation,

correlation between different elements of the network should

be considered in extracting and generating a data model. While

this issue also exists in enterprise systems, it is even more

paramount in IoT.

IV. IOT OPAQUE SERVICE VIRTUALISATION

From our analysis it is clear that there are differences

between IoT protocols and enterprise protocols which require

adaptations to service virtualisation for it to be applied suc-

cessfully to IoT devices. As identified the key challenges are

the large diversity of protocols, communication challenges,

message format challenges and data modelling.

Most service virtualisation approaches decode incoming

requests into tokens in order to extract fields and values. A

set of defined rules based on these fields and values will then

be applied to construct a response to send back to the system

under test. A limitation of this approach is that it requires

a decoder and protocol handler for every protocol. Due to

the large diversity and heterogeneity of IoT protocols it is

unrealistic to develop and support a protocol handler for every

IoT protocol and their variations. This leads us to exploit

methods, which use nor or less prior knowledge and try to

extract the model of the services automatically.

A recently proposed approach is opaque service virtual-

ization [11]. Opaque service virtualisation utilises sequence

alignment and data mining methods to analyse samples of

recorded messages. Rules for constructing responses are auto-

matically derived. Opaque service virtualisation can be applied

to a wide variety of protocols without requiring an individual

protocol handler for each protocol. An adaptation of opaque

service virtualisation therefore seems well suited to handling

the heterogeneity challenge of IoT protocols.

Extensions to opaque service virtualisation are required

to handle the communication challenges and the message

format challenges. The key consideration is the data modelling

challenge. For many enterprise use cases, the data is defined by

a schema and is discrete. Protocol operations allow records to

be created, read, updated or deleted (CRUD). From a service

modelling point of view this is relatively straight forward.

Either the record is there or it is not, many of the precise

values of the record do not matter for the purpose of the

testing scenario. In contrast, for IoT scenarios the continuous

nature of the data is integral to the testing scenario (such as

a for a controller). For example, as discussed in section C, a

temperature sensor has a continuous range of values which is

a function of the controller settings and the environment. For a

realistic IoT virtual service, opaque service virtualisation needs

to be extended to include an explicit data modelling step. Data

mining methods could be employed to automatically derive

correlations between controller settings and sensory fields.

Fig. 2. Virtual Testing Environment (VTE)

Figure 2 illustrates the conceptual virtual service models with

data models included.

V. CONCLUSION AND FUTURE WORK

In this paper, we have compared different IoT protocols and

enterprise protocols with the focus on expanding service vir-

tualization to the IoT environment. Some key challenges iden-

tified for virtualising IoT environments include: heterogeneity,

communication synchronisation, formatting complexity and

data of continuous nature. To address heterogeneity we plan

to implement an extension of Opaque Service Virtualisation.

In particular, an explicit data modelling phase needs to be

included in the approach. This will allow the automatic virtual-

isation of IoT environments without requiring prior knowledge

of the IoT protocols. We believe this will greatly support IoT

developers in enabling them to continuously test their IoT

applications in an automated fashion without requiring access

to the physical devices.

REFERENCES

[1] Gartner. (2016) By 2020, more than half of major new business processes
and systems will incorporate some element of the internet of things.
[Online]. Available: http://www.gartner.com/newsroom/id/3185623

[2] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Pearson
Education, 2010.

[3] J. Michelsen and J. English, “What is service virtualization?” in Service
Virtualization. Springer, 2012, pp. 27–35.

[4] J. Sermersheim. (2006) Lightweight Directory Access Protocol
(LDAP): The protocol. [Online]. Available: https://tools.ietf.org/html/
rfc4511.html

[5] J. Hodges and R. B. Morgan. (2002) Lightweight Directory Access
Protocol (V3): Technical specification, RFC3377. [Online]. Available:
https://tools.ietf.org/html/rfc3377.html

[6] A. Stanford-Clark and H. L. Truong. (2013) MQTT for sensor networks
(MQTT-SN) protocol specification (V1.2). [Online]. Available: http:
//mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN spec v1.2.pdf

[7] Z. Shelby, K. Hartke, and C. Bormann. (2014) The Constrained
Application Protocol (CoAP), RFC7252. [Online]. Available: https:
//tools.ietf.org/html/rfc7252

[8] Object Management Group. (2015) Data Distribution Service (DDS)
(V1.4). [Online]. Available: http://www.omg.org/spec/DDS/1.4/PDF/

[9] S. Safaric and K. Malaric, “ZigBee wireless standard,” in Multimedia
Signal Processing and Communications, 48th International Symposium
ELMAR-2006 focused on. IEEE, 2006, pp. 259–262.

[10] Zensys A/S. (2006) Z-Wave protocol overview. [Online].
Available: https://wiki.ase.tut.fi/courseWiki/images/9/94/SDS10243 2
Z Wave Protocol Overview.pdf

[11] S. Versteeg, M. Du, J.-G. Schneider, J. Grundy, J. Han, and M. Goyal,
“Opaque service virtualisation: a practical tool for emulating endpoint
systems,” in Proceedings of the 38th International Conference on
Software Engineering Companion. ACM, 2016, pp. 202–211.

3535


