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On-line monitoring of electric power transformers can provide a clear indication of their status and age-
ing behavior. This paper proposes neural modeling and the local statistical approach to fault diagnosis for
the detection of incipient faults in power transformers. The method can detect transformer failures at
their early stages and consequently can deter critical conditions for the power grid. A neural-fuzzy
network is used to model the thermal condition of the power transformer in fault-free operation (the
thermal condition is associated to a temperature variable known as hot-spot temperature). The output
of the neural-fuzzy network is compared to measurements from the power transformer and the obtained
residuals undergo statistical processing according to a fault detection and isolation algorithm. If a fault
threshold (that is optimally defined according to detection theory) is exceeded, then deviation from
normal operation can be detected at its early stages and an alarm can be launched. In several cases fault
isolation can be also performed, i.e. the sources of fault in the power transformer model can be also
identified. The performance of the proposed methodology is tested through simulation experiments.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

Power transformers are among the most expensive equipment
of the electric power transmission and distribution system and
their condition monitoring is important for the uninterrupted
and reliable functioning of the power grid. Transformer life man-
agement has been a topic of intensive research during the last
years because of the need for operating the electric power grid
under more harsh conditions and because of the increased demand
for electric energy. According to an IEEE survey, oil immersed
transformer failure rate per year is 0.00625. Therefore, in a fleet
of 100 transformers, ten will have problem in the next 16 years.
According to an international survey conducted by CIGRE, typical
failure rates for power transformers are in the range of 1–2% per
year for the large power transformers (operating voltages up to
300 kV). Load growth has contributed to an increase of the trans-
former’s Hot Spot Temperature (HST), i.e. of a parameter that is
directly associated to the ageing of the transformer and to the
probability of failures of the transformer’s components. The aver-
age HST a few decades ago was 50 �C, while under present operat-
ing conditions it is around 73 �C [1,2].
Transformers operating beyond their ratings exhibit the follow-
ing symptoms: (i) increase in temperature of windings, insulation
and oil, (ii) increase in leakage flux density outside the core, caus-
ing additional eddy current heating in the metallic parts, (iii) mois-
ture and gas content increases with the increase in temperature,
(iv) bushings, tap-changers, and cables are exposed to higher stres-
ses, (v) deterioration of the windings insulation appears due to
higher thermal stresses [3–5]. Obviously, there is a significant
safety and environmental risk of operating aged transformer units
close to their loading limits without surveillance and assessment.
On the other hand, on-line monitoring of power transformers can
provide a clear indication of their status and ageing behavior. Anal-
ysis of critical parameters collected from power transformers
allows avoidance of irreversible failures and permits preventive
maintenance.

During the last years research efforts have been carried out to
develop thermal models of improved accuracy for power trans-
formers [6–9]. The load-current profile, the top-oil temperature
profile and the weather conditions (ambient temperature, solar
heating, wind speed, rain conditions, etc.) are among the parame-
ters that influence the transformer’s thermal behavior. As men-
tioned, significant indications about the thermal condition of a
power transformer and the associated failure risks can be obtained
throughmonitoring the transformer’s Hot Spot Temperature (HST).
A deviation of HST from the anticipated temperature profile is
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Fig. 1. Frequency of faults in components of electric power transformers [1].
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probably an indication of ageing of the transformer or in some
cases of pre-failure situations. Analytical, as well as numerical
(neural/fuzzy) models for HST have been developed [10–12]. These
models associate the hot spot temperature to inputs such as: the
ambient temperature, the top oil temperature rise over the ambi-
ent temperature, and the maximum winding hot-spot rise over
the top-oil temperature.

The development of a model of the power transformer’s thermal
behavior in the fault-free condition and the comparison of the out-
puts of such a model with online measurements of the real trans-
former output enables to implement fault detection and isolation
(FDI). A statistical FDI method that can be used to find incipient
failures in the transformer’s components is the so-called Local Sta-
tistical Approach to change detection [13–17]. The proposed statis-
tical fault diagnosis method can point out the existence of a fault
through the processing of the residuals sequence, where the resid-
uals are defined as the differences between the measured and the
estimated HST values at every sampling instant. The proposed FDI
method transforms the complex detection problem into the
problem of monitoring the mean of a Gaussian vector. The local
statistical approach consists of two stages: (i) the global v2 test
which indicates the existence of a change in some parameters of
the transformer’s model, (ii) the diagnostics tests (sensitivity or
min–max) which isolate the parameter affected by the change
[13–17]. The local statistical approach is suitable for detecting
incipient faults in the power transformer, thus enabling preventive
maintenance.

The concept of the proposed FDI technique is as follows: the
thermal profile of the fault-free power transformer system is
learned by the neural-fuzzy network. At each time instant the neu-
ral network’s output is compared to the real Hot-Spot Temperature
of the power transformer. The difference between the real condi-
tion of the power transformer and the output of the neural net-
work forms a residual. The statistical processing of a sufficiently
large number of residuals through the aforementioned FDI method
provides an index-variable that is compared against a fault thresh-
old and which can give early indication about deviation of the
transformer from the normal operating conditions. Therefore
alarm launching can be activated at the early stages of power
transformer failure, and repair measures can be taken. Under cer-
tain conditions (detectability of changes) the proposed FDI method
enables also fault isolation, i.e. it makes possible to identify the
source of fault within the power transformer model [20].

The current paper elaborates on and extends the results of [21].
The structure of the paper is as follows: in Section ‘Transformers in
the electric power grid’ an overview of the main types of electric
power transformers is given and their significance for the electric
power grid is explained. The main types of failures in power trans-
formers is overviewed. In Section ‘Analytical thermal model of
electric power transformers’ the thermal model of oil-immersed
electric power transformers is analyzed and the significance of
the hot-spot temperature for condition monitoring and secure
operation of power transformers is explained. In Section ‘Neuro-f
uzzy modeling of power transformers thermal condition’ neuro-
fuzzy modeling is proposed for describing the variations of the
hot-spot temperature in electric power transformers as well as
its dependency on parameters such as the top-oil temperature
and the load current. In Section ‘Fault diagnosis for electric power
transformers’ a systematic method is proposed for fault detection
and isolation (FDI) in power transformers, through the monitoring
of the variations of the hot-spot temperature. The considered FDI
method is the Local Statistical Approach to fault diagnosis and is
based on the generalized likelihood ratio criterion for change
detection. It is explained that the method is suitable for incipient
faults diagnosis and preventive condition monitoring. In Section ‘S
imulation tests’ simulation experiments are performed to evaluate
the efficiency of the proposed fault diagnosis method in detecting
and isolating faults in power transformers. It is shown that despite
the nonlinearities of the thermal model of the power transformer,
the success rate of the proposed fault diagnosis method is remark-
ably high. Finally, in Section ‘Conclusion’ concluding remarks are
stated.

Transformers in the electric power grid

Condition monitoring of transformers within the smart grid

Power transformers are the most expensive and strategic com-
ponents of a power system. One can distinguish between several
classes of power transformers using two major classification crite-
ria. The first criterion has to do with the insulating material used in
the transformer (e.g. oil-immersed, gas-immersed and dry-type
transformers). The second criterion has to do with the incoming
and outgoing voltage levels of the power transformers and their
role in the electric power grid (e.g. power transformers in genera-
tion stations, power transformers in the transmission system,
power transformers in the distribution system, distribution substa-
tion transformers or distribution network transformers) [1–5].

Fault detection and isolation (FDI) for power transformers aims
at continuously assessing the transformer’s condition through the
monitoring of associated critical parameters and at determining
if the transformer is on the verge of a failure (this can be due to
an internal fault or due to aging). To implement FDI it is necessary
to develop a model of the transformer’s functioning that associates
its internal state to environmental conditions thus (i) enabling the
detection of incipient failures (ii) prohibiting the erroneous inter-
pretation of the monitored critical parameters and (iii) avoiding
the launch of false alarms (for example if the transformer is oper-
ating in a heat wave, its oil temperature could be expected to be
unusually high, but the transformer’s FDI system should ascribe
the temperature rise to the environmental conditions rather than
a transformer problem) [22,23].

Reasons for failures in electric power transformers

Common failures in power transformers are (see Fig. 1):

(i) Insulation breakdown in windings. As the transformer ages
the windings insulation is weakened to the point that it
can no longer sustain the mechanical stresses due to a fault
(e.g. in case of a short circuit). Turn-to-turn insulation
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suffers a dielectric failure. Winding failures cause in turn
degradation of the overall insulation system, including the
transformer’s oil. Ageing of transformer oil is characterized
by partial discharge (gas evolution starts from the oil) and
thermal degradation (the raise of the transformer’s temper-
ature and the associated thermal stresses accelerate the oil’s
decomposition).

(ii) The on-load tap changers (OLTC) failures. On-load tap chang-
ers are used to change the tapping connection of the trans-
former’s windings while the transformer is energized. The
tap changers suffer from ageing. The insulating oil inside
the tap changer becomes dirty due to switching arcs, which
leads to weakened insulation properties. Another effect of
the switching arcs is the wear of the arcing contacts. An
additional ageing mechanism is the so-called long-term
effect on the changeover selector. This effect starts with
the formation of a thin layer of oil. The increased contact
resistance due to the oil film layer can cause creation of hard
and porous carbon material at places where the load current
flows.

(iii) Bushings failures. An electrical bushing is an insulating struc-
ture including a through conductor or providing a central
passage for such a conductor aiming at transmitting electric
power in or out of the transformer. Oil-paper insulation is
widely used in power transformer bushings. However, pro-
longed exposure to extreme electrical, thermal, mechanical
and environmental stresses can deteriorate the insulation’s
condition and can break the cellulose bonds of the paper.
This can lead to the formation of gas byproducts and bubbles
and in turn can result in partial discharge and conducting
tracts ending at shorting out one or more layers of the
bushings.

The cost savings from performing preventive maintenance for
power transformers (e.g. due to deterring critical conditions in
the power grid and subsequent cascading events) can be signifi-
cantly more important than the monitoring cost itself. Condition
monitoring for power transformers is helpful in many aspects such
as planning of maintenance schedules, obtaining knowledge of the
health of equipment, estimating the remaining life of the equip-
ment, finding areas of further improvement, and refining product
specifications. Established methods for preventive maintenance
of power transformers are shown in Fig. 2.
Fig. 2. Condition monitoring methods for power trans
Analytical thermal model of electric power transformers

Thermal modeling of power transformers

The stages for obtaining an analytical model of the power trans-
former’s thermal behavior are as follows [11]:

� Calculate at each time step the ultimate top oil temperature rise
in the transformer from the load current at that instant, using:
DHTO;U ¼ DHTO;R
I2LRþ 1
Rþ 1

" #q
ð1Þ

where DHTO;U is ultimate top oil temperature (TOT) rise [�C],
DHTO;R is the rated TOT rise over ambient [�C], IL is the load cur-
rent normalized to rated current [p.u.], q is an empirically
derived exponent to approximately account for effects of change
of resistance with change in load, R is the ratio of rated-load loss
to no-load loss at applicable tap position.

� Calculate the increment in the TOT from the ultimate top oil rise
and the ambient temperature at each time step using the differ-
ential equation:
sTO
dHTO

dt
¼ ½DHTO;U þHA� �HTO ð2Þ

where HTO is the TOT [�C], sTO is the top oil rise time constant,
and HA is the ambient temperature [�C].

� Calculate the ultimate hot spot temperature rise using:
DHHS;U ¼ DHHS;RI
2b
L ð3Þ

where b is an empirically derived exponent, dependent on the
cooling method, DHHS;U is the ultimate HST rise over top oil
(for a given load current) [�C], DHHS;R is the rated HST rise over
top oil (for rated load current) [�C].

� Calculate the increment in the HST rise, using the differential
equation:
form
sHS
dDHHS

dt

� �
¼ DHHS;U � DHHS ð4Þ

where HHS is the hot spot winding temperature [�C], DHHS is the
HST rise above top oil [�C], and sHS is the hot spot rise time
constant [h].
ers and the associated processed parameters.
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� Finally, add the TOT to the hot spot temperature rise to get the
HST, using:
HHS ¼ HTO þ DHHS ð5Þ
The model of Eqs. (1)–(5), named top-oil rise model, is
based on some simplifying assumptions and its accuracy
can deteriorate due to parameter variations. As a result,
in order to protect power transformers, conservative safety
factors have been introduced that prevent the transformer’s
overheating. Consequently, the calculated maximum power
transfer may be 20–30% less or worse than the real trans-
former capability.

HST as an ageing and failure indication for power transformers

There are two types of aging in power transformers. The first
one is the so-called intransitive aging and indicates the degrada-
tion of the transformers’ components and particularly the degrada-
tion of the insulating material to withstand the designed stresses,
such as electrical, mechanical, thermal and physical. The second
one is the so-called transitive aging and denotes the rapid degrada-
tion of the transformer’s components and particularly of the wind-
ings insulation due to abnormal operating conditions. The
sustainable high Hot-Spot Temperature results in transitive trans-
former ageing.

Transitive ageing of electric power transformers can be detected
by monitoring the transformer’s Hot-Spot Temperature. The
increase of the transformer HST accelerates the end of the trans-
former lifetime and vice versa. The relationship between the HST
and the transformer life consumption is governed by the Arhennius
reaction rate theory (IEEE Standard C57.91-1995) which states that

remaining life ¼ AeB=T ; or

per unit life ¼ AeB=HHSþ273
ð6Þ

where A and B are empirical constants. The A and B constants are
based on materials characteristics of the insulation and they are
determined such that per unit life is unity at HST of 110 �C. Indica-
tive values of A and B are 9:8� 10�18 and 15� 103. According to the
previous formula one can calculate the lost lifetime of the trans-
former as a function of the HST. Thus, one sees that transitive ageing
causes acceleration of the transformer’s end of life which is mainly
due to the increase of the HST.
Neuro-fuzzy modeling of power transformers thermal
condition

The approach followed in this paper, for extracting a neuro-
fuzzy model of HST variations, results in improved modeling of
the transformer’s thermal behavior. Neurofuzzy models have been
also used in identification and fault diagnosis for nonlinear sys-
tems [24]. In the sequel, fuzzy rules of the Takagi–Sugeno type will
be considered. These have the form:

Rl : IF x1 is Al
1 AND x2 is Al

2 AND � � � AND xn is Al
n

THEN �yl ¼
Xn
i¼1

wl
ixi þ bl l ¼ 1;2; . . . ; L

ð7Þ

where Rl is the l-th rule, x ¼ ½x1; x2; . . . ; xn�T is the input (antece-

dent) variable, �yl is the output (consequent) variable, and wl
i; bl

are the parameters of the local linear models. The above model
is a Takagi–Sugeno model of order 1. Setting wl

i ¼ 0 results in
the zero order Takagi–Sugeno model [20]. The output of the Tak-
agi–Sugeno model is given by the weighted average of the rules
consequents (Fig. 3):
ŷ ¼
PL

l¼1�y
lQn

i¼1lAl
i
ðxiÞPL

l¼1

Qn
i¼1lAl

i
ðxiÞ

ð8Þ

where lAli
ðxiÞ : R ! ½0;1� is the membership function of the fuzzy

set Al
i in the antecedent part of the rule Rl. In the case of a zero order

TS system the output of the l-th local model is �yl ¼ bl, while in the
case of a first order TS system the output of the l-th local model is

given by �yl ¼PL
l¼1w

l
ixi þ bl.

If the numerically extracted neural-fuzzy model does not
approximate efficiently the monitored physical system then a
refinement of the partitioning of the patterns space may be
required, and improved placement of the centers of the Gaussian
activation functions can be attempted [18,19]. The individual steps
of data-driven fuzzy modeling for nonlinear function approxima-
tion are discussed in [20,25]. These stages are demonstrated in
Fig. 4.

Fault diagnosis for electric power transformers

The global v2 test for fault detection

As shown in Fig. 5 the proposed method is based on the defini-
tion of the residual ei described as the difference between the out-
put from the power transformer y0i and the output from a neural
model yi [26]. The neural/fuzzy model is used to simulate the
power transformer in a fault-free state and has been extracted
from input/output data when the power transformer operates nor-
mally. To perform also fault isolation, the real power system has
been simulated by using the so-called exact model. In order to have
the neural/fuzzy model and the exact model with the same num-
ber of parameters, the exact model can be also represented by a
neural/fuzzy model extracted from input/output data of the power
transformer. Therefore, when the power transformer is affected by
slight parameters variations which can finally lead to failure, the
output of the exact model will differ from the output of the neural
model. In other words, while the neural model simulates the power
transformer in an undistorted stable state, the exact model simu-
lates the real power transformer in all conditions and is extracted
from the real power transformer data (Fig. 5).

The partial derivative of the residual square is:

Hðh; ŷiÞ ¼ 1
2
@e2i
@h

¼ ei
@ŷi
@h

ð9Þ

where h is the vector of model’s parameters. The vector H having as
elements the above Hðh; ŷiÞ is called primary residual. In the case of
neuro-fuzzy models the gradient of the output with respect to the
consequent parameters wl

i is given by

@ŷ
@wl

i

¼ xilRl ðxÞPL
l¼1lRl ðxÞ

ð10Þ

The gradient with respect to the center cli is

@ŷ
@cli

¼
XL
l¼1

yl
2 xi�cl

ið Þ
v l
i

lRl ðxiÞ
PL

j¼1lR j ðxiÞ � lRl ðxiÞ
h i

PL
l¼1lRl ðxiÞ

h i2 ð11Þ

The gradient with respect to the spread v l
i is

@ŷ
@v l

i

¼
XL
l¼1

yl
2 xi�cl

ið Þ2
v l
i
3 lRl ðxiÞ

PL
j¼1lR j ðxiÞ � lRl ðxiÞ

h i
PL

l¼1lRl ðxiÞ
h i2 ð12Þ

Next, having calculated the partial derivatives of Eqs. (10)–(12),
the rows of the Jacobian matrix J are found by



Fig. 3. Inputs/outputs configuration of the neural model of the power transformer thermal dynamics.

Fig. 4. General scheme of data-driven neural-fuzzy modeling.

Fig. 5. Residual between the exact model and the neuro-fuzzy model.
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Jðh0; ykÞ ¼
@ŷkðhÞ
@h

����
h¼h0

ð13Þ

The problem of change detection with the v2 test consists of
monitoring a change in the mean of the Gaussian variable which
for the one-dimensional parameter vector h is formulated as

X ¼ 1ffiffiffiffi
N

p
XN
i¼1

ek
@ŷk
@h

� Nðl;r2Þ ð14Þ
where ŷk is the output of the neural (exact) model generated by the
input pattern xk; ek is the associated residual and h is the vector of
the model’s parameters. For a multivariable parameter vector h
should hold X � ðMg;RÞ. In order to decide if the power transformer
is in fault-free operating condition for a given set of data of N mea-
surements, one defines as h� the value of the parameters vector l
minimizing the root mean square error (RMSE) of the HST neural
estimate. The notation is introduced only for the convenience of
problem formulation, and its actual value does not need to be
known. Then the model validation problem amounts to make a
decision between the two hypotheses:

H0 : h� ¼ h0

H1 : h� ¼ h0 þ 1ffiffiffiffi
N

p dh
ð15Þ

where dh– 0. It is known from the central limit theorem that for a
large data sample, the normalized residual given by Eq. (14)



G. Rigatos, P. Siano / Electrical Power and Energy Systems 80 (2016) 150–159 155
asymptotically follows a Gaussian distribution when N ! 1
[13,27]. More specifically, the hypothesis that has to be tested is:

H0 : X � Nð0; SÞ
H1 : X � NðMg; SÞ ð16Þ

where M is the sensitivity matrix (see Eq. (17)), g is the parameters’
vector and S is the covariance matrix (see Eq. (18)). The product Mg
denotes the new center of the monitored Gaussian variable X, after
a change on the system’s parameter h. The sensitivity matrix M of
1ffiffiffi
N

p X is defined as the mean value of the partial derivative with

respect to h of the primary residual defined in Eq. (9), i.e.
E @

@hHðh; ykÞ
� �

and is approximated by [13,27]:

Mðh0Þ ’ @

@h
1
N

XN
k¼1

Hðh0; ykÞ ’
1
N
JT J ð17Þ

The covariance matrix S is defined as E Hðh; ykÞHTðh; ykþmÞ
n o

;

m ¼ 0;	1; . . . and is approximated by [13,27]:

S ¼’
XN
k¼1

Hðh0; ykÞHTðh0; ykÞ
h i

þ
XI

m¼1

1
N �m

XN�m

k¼1

Hðh0; ykÞHTðh0; ykþmÞ
h

þ Hðh0; ykþmÞHTðh0; ykÞ
i

ð18Þ

where an acceptable value for I is 3. The tool to decide about the
existence of a change (fault) is the likelihood ratio

sðXÞ ¼ ln
ph1ðxÞ
ph0ðxÞ

; where

ph1
ðXÞ ¼ e½X�lðXÞ�

T S�1 ½X�lðXÞ�
ð19Þ

and ph0
ðXÞ ¼ eX

TS�1X . The center of the Gaussian distribution of the
changed system is denoted as lðXÞ ¼ Mgwhere g is the parameters
vector. The Generalized Likelihood Ratio (GLR) is calculated by max-
imizing the likelihood ratio with respect to g [13,27]. This means
that the most likely case of parameter change is taken into account.
This gives the global v2 test t:

t ¼ XTS�1MðMTS�1MÞ�1
MTS�1X ð20Þ

Since X asymptotically follows a Gaussian distribution, the statistics
defined in Eq. (20) follows a v2 distribution with n degrees of free-
dom. Mapping the change detection problem to this v2 distribution
enables the choice of the change threshold. Assume that the desired
probability of false alarm is a then the change threshold k should be
chosen from the relation

R1
k v2

nðsÞds ¼ a, where v2
nðsÞ is the probabil-

ity density function (p.d.f.) of a variable that follows the v2 distribu-
tion with n degrees of freedom.

Fault isolation with the sensitivity method
Fault isolation is needed to identify the source of faults in the

electric power transformer model. A first approach to change isola-
tion is to focus only on a subset of the parameters while consider-
ing that the rest of the parameters remain unchanged [13,27]. The
parameters vector g can be written as g ¼ ½/;w�T , where / contains
those parameters to be subject to the isolation test, while w con-
tains those parameters to be excluded from the isolation test. M/

contains the columns of the sensitivity matrix M which are associ-
ated with the parameters subject to the isolation test. Similarly Mw

contains the columns of M that are associated with the parameters
to be excluded from the sensitivity test.

Assume that among the parameters g, it is only the subset /
that is suspected to have undergone a change. Thus g is restricted

to g ¼ ½/;0�T . The associated columns of the sensitivity matrix are
given by M/ and the mean of the Gaussian to be monitored is
l ¼ M//, i.e. l ¼ MA/; A ¼ ½0; I�T . Matrix A is used to select the
parameters that will be subject to the fault isolation test. The rows
of A correspond to the total set of parameters while the columns of
A correspond only to the parameters selected for the test. Thus the
fault diagnosis (v2) test of Eq. (20) can be restated as:

t/ ¼ XTS�1M/ MT
/S

�1M/

� 	�1
MT

/S
�1X ð21Þ
The min–max test
In this approach the aim is to find statistics that will be able to

detect a change on the part / of the parameters vector g and which
will be robust to a change in the non observed part w [13,27].
Assume the vector partition g ¼ ½/;w�T . The following notation is
used:

MTS�1M ¼ Iuu Iuw

Iwu Iww


 �
ð22Þ

c ¼ u
w


 �T

� Iuu Iuw

Iwu Iww


 �
� u

w


 �
ð23Þ

where S is the previously defined covariance matrix. The min–max
test aims to minimize the non-centrality parameter c with respect
to the parameters that are not suspected for change. The minimum
of c with respect to w is given for:

w� ¼ argmin
w

c ¼ uT Iuu � IuwI
�1
wwIwu

� 	
u ð24Þ

and is found to be

c� ¼ min
w

c ¼ uT Iuu � IuwI
�1
ww Iwu

� 	
u ¼ u

�I�1
wwIwuu

 !T

Iuu Iuw

Iwu Iww


 � u
�I�1

wwIwuu

 !
ð25Þ

which results in

c� ¼ uT I;�IuwI
�1
ww

h i
MTR�1

n o
� R�1 R�1M I;�IuwI

�1
ww

h in o
u ð26Þ

The following linear transformation of the observations is
considered:

X�
/ ¼ I;�IuwI�1

ww

h i
MTR�1X ð27Þ

The transformed variable X�
/ follows a Gaussian distribu-

tion N l�
/; I

�
/

� 	
with mean l�

u ¼ I�uu and with covariance

I�u ¼ Iuu � IuwI
�1
wwIwu. The max–min test decides between the

hypotheses:

H�
0 : l� ¼ 0 and H�

1 : l� ¼ I�uu ð28Þ
and is described by:

s�u ¼ X�
u
T I�u

�1X�
u ð29Þ

The stages of fault detection and isolation (FDI) with the use of
the Local Statistical Approach are given in Table 1:

Simulation tests

First a neural network has been used for modeling the thermal
dynamics of power transformers. Next fault diagnosis is performed
with the use of the local statistical approach. A temperature signal
is recorded from the power transformer with the use of suitable
sensors. At a first stage the sequence of residuals is obtained, that
is the differences between the monitored output of the transformer



Table 1
Stages of the local statistical approach for FDI.

1. Generate the residuals partial derivative given by Eq. (9)
2. Calculate the Jacobian matrix J given by Eq. (13)
3. Calculate the sensitivity matrix M given by Eq. (17)
4. Calculate the covariance matrix S given by Eq. (18)
5. Apply the v2 test for change detection of Eq. (20)
6. Apply the change isolation tests of Eq. (21) or Eq. (29)
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and the output of the fault-free reference model which is provided
by the neural network. Next, hypothesis testing about parametric
change (failure) in the system is performed through the computa-
tion of the likelihood ratio for the sequence of the residuals, as
described in Section ‘Fault diagnosis for electric power transform-
ers’. Actually, this computation is carried by considering the Taylor
series expansion of the likelihood ratio. Using that neither the
parameters subject to change are known, nor the magnitude of this
change has been quantified, maximization of the likelihood ratio is
performed with respect to the parameters vector (so as to capture
the worst case fault). This maximization results into the General-
ized Likelihood Ratio. Thus, one arrives at a transformed residuals
signal which follows the v2 distribution of Eq. (20) and equiva-
lently one computes an optimal criterion for parametric change
detection according to the properties of the v2 distribution.

Following the experimentation procedure that was described in
Fig. 3, a neuro-fuzzy model was used to estimate with high accu-
racy the winding HST of a laboratory prototype mineral-oil-
immersed power transformer. The transformer main characteris-
Table 2
Ratings of the modeled power transformer.

Nameplate rating 25 kVA
Vprimary/Vsecondary 10 kV/400 V
Iron losses 195 W
Copper losses (full load) 776 W
Top oil temperature rise at full load 73.1 �C
Weight of core and coil assembly 136 Kg
Weight of oil 62 Kg
Density 757 Kg/m3

Total weight 310 Kg
Length, width and height of tank 64� 16� 80 cm
Type of cooling ONAN
Factory/year MACE/87
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Fig. 6. Approximation of the Hot Spot Temperature of the electric power transformer (re
(b) by a fuzzy TSK network (blue-line). (For interpretation of the references to color in
tics are resumed in Table Table 2. A measurement station has been
set up consisting of thermocouples that were monitoring (a) the
Hot Spot Temperature of the medium and voltage windings and
(b) the Top Oil Temperature. The Hot Spot Temperature could have
been also measured with optical fiber sensors. The manufacturer’s
specifications give, the most probable hot-spot position. A hall
effect current transducer has been used in order to measure the
load current.

Neuro-fuzzy modeling of the power transformer has been car-
ried out. The electric power transformer was modeled with the
use of a neuro-fuzzy network, having as output the estimated
hot-spot temperature HSTðkÞ and as inputs past values of the
top-oil temperature, e.g. HTOðk� 1Þ;HTOðk� 2Þ and past values of
the load current. e.g. ILðk� 1Þ. Neural models with the same out-
put, such HSTðkÞ and a larger number of inputs, i.e. including more
past values of the top-oil temperature and of the load current,
could be also considered. The transformer’s model has been iden-
tified considering both a neural network with Hermite polynomial
basis functions and a neuro-fuzzy network of the Takagi–Sugeno
type. In the first case, a neural network with Hermite basis func-
tions was used to model the variations of the power transformer
HST. As shown in Fig. 6(a) thanks to the inherent multi-
frequency characteristics of the Hermite polynomial basis func-
tions, such a neural model can capture with increased accuracy
spikes and abrupt changes in the HST profile [28,29]. In the second
case, the neural/fuzzy TSK model of Fig. 3 was used to estimate the
variations of HST. The obtained approximation is shown in Fig. 6
(b). To decide where the basis functions should be placed, the input
space was segmented using the input dimension (grid) partition
[20]. The RMSE of training the Hermite and the TSK model was
of the order of 4� 10�3.

The size of the training set was 300. The LMS (Least Mean
Square) algorithm was used for the adaptation of the linear

weights wðlÞ
1 [18,19]. This neurofuzzy model actually stands for a

rule base that consists of 64 rules (3 input variables partitioned
in 4 fuzzy subsets each). All fuzzy sets (Gaussian activation func-
tions) were assumed to have the same spread.

The TSK fuzzy model of the transformer that was extracted from
real power transformer HST, TOT and load current data consisted
initially of 64 rules. It comprised 64 linear parameters (weights)
and 12 nonlinear parameters (centers of fuzzy sets). The size of
the model was reduced to 27 rules after omitting those rules which
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d line) (a) by a neural network with Hermite polynomial basis functions (blue-line)
this figure legend, the reader is referred to the web version of this article.)
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received small activation from the existing data set. The parame-
ters set in the new TSK fuzzy model consisted of 39 parameters
(27 linear parameters which were the output layer weights and
12 nonlinear parameters which were the centers of the fuzzy sets).
This means that by applying the local statistical approach to FDI
and the v2 change detection test to the considered electric power
transformer model, the fault threshold should be equal to 39.

The numerical tests confirmed theory. In case that no fault was
assumed for the power transformer the mean value of the v2 test
over a number of trials was found to be equal to 38.713. Such a
value was anticipated according to the theoretical analysis of the
v2 test. For slight deviations of the parameters of the power trans-
former from their nominal (fault-free) values, the global v2 test
was capable of giving a clear indication about the existence of a
fault. Thus for changes which varied between 0.01% and 1% of
the nominal parameter’s value (either for a linear or a nonlinear
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Fig. 7. (a) Score of the global v2 for changes in a linear parameter of the electric power tra
the global v2 for changes in a nonlinear parameter of the electric power transformer m
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Fig. 8. Success rate of the fault isolation test (sensitivity method) (a) for changes in a lin
1:0% of the nominal value (b) for changes in the a nonlinear parameter of the electric p
parameter) the score of the v2 test deviated significantly from
the fault threshold (which as mentioned before was set equal to
39). As shown in Fig. 7, a small fault (deviation from the nominal
parameter’s value) suffices to generate an output of the v2 test that
exceeds several times the value of the fault threshold.

As far as fault isolation is concerned, the numerical results
showed that the sensitivity method for fault isolation was very effi-
cient in distinguishing the parameter subject to fault among all 39
parameters in the power transformer’s parameter set. The sensitiv-
ity fault isolation test was performed for both a linear parameter

(weight w1) and for a nonlinear parameter (weight cð1Þ1 ) of the
transformer’s model. In Fig. 8 it can be observed that the success
rate for the aforementioned fault magnitudes attained the value
of 100%.

Finally, fault isolation tests for detecting changes in both linear

(weight w3) and nonlinear parameters (center cð23Þ1 ) of the power
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Fig. 9. Success rate of the fault isolation test (max–min method) (a) for changes in a linear parameter of the electric power transformer model, ranging between 0:01% and
1:0% of the nominal value (b) for changes in the a nonlinear parameter of the electric power transformer model, ranging between 0:01% and 1:0% of the nominal value.
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transformer model were also performed with the use of the max–
min method. The associated results are depicted in Fig. 9. It can be
observed that the max–min fault isolation method succeeded also
a high success rate in finding the faulty parameter in the trans-
former’s thermal model.

Measurement noise has been considered in the development
and testing of the fault diagnosis method. In the fault-free case
the output of the power transformer and the output of its fault-
free model (that is provided by the neural network) should be dif-
ferent only by the amount of the measurement noise affecting the
sensors which measure the hot-spot temperature in the trans-
former. The sequence of the outputs difference (residuals) follows
a Gaussian distribution centered at zero, while its weighted square
follows a v2 distribution. The same statistical properties hold for
the modified residuals sequence which is based on the Taylor ser-
ies expansion of likelihood ratio and Eq. (14). On the other hand, in
the case of parametric change there will be a shift to a non-zero-
value for the mean value of the residuals signal and for the modi-
fied residuals signal. This is explained in Eq. (16). This shift is due
to the structural (parametric) change in the transformer and not
due to the existence of measurement noise.

It is also noteworthy that the proposed fault diagnosis method
(local statistical approach) is suitable for the detection of incipient
faults, that is small parametric changes and minimal deviation of
the components of the power transformer from their nominal val-
ues. This is because,as noted above the local statistical approach is
based on the concept of Taylor series expansion of the likelihood
ratio that is computed with the sequence of measurements
obtained from the monitored system. The Taylor expansion round
the point (vector) of the nominal values of the system’s parameters
remains valid only for small parametric changes. Therefore, the
mathematical developments which lead final to the v2 statistical
change detection test of Eq. (20) hold if the magnitude of paramet-
ric changes is small. In most dynamical systems faults are driftwise
instead of stepwise. This means that they progress slowly until
they reach a point in which the damage is not-reversible and the
system enters a critical condition. Thus, by being able to detect
small parametric changes (incipient faults) one can initiate restora-
tion measures for the system at a stage where the failure is still
manageable and reversible. The benefits from such an early change
detection approach are easy to understand.
Conclusion

A new method for condition monitoring and early fault diagno-
sis of electric power transformers has been introduced. The paper
has proposed (i) to use neural-fuzzy networks for modeling the
temperature behavior of an electric power transformer and partic-
ularly the variations of a parameter known as Hot Spot Tempera-
ture (HST), (ii) to use a statistical fault diagnosis method (Local
Statistical Approach to Fault Diagnosis) that enables the early
detection of failures (changes) in the transformer’s model. A neu-
ral/fuzzy model was extracted from data which were obtained
from the operation of a real power transformer. Next, the efficiency
of the proposed FDI method was tested through the statistical pro-
cessing of the residuals, i.e. of the sequence of the differences
between the measured output of the real and the estimated output
of the power transformer. The significance of the obtained results
for early fault diagnosis in power transformers and consequently
for preventive maintenance of these expensive components of
the electric power grid is obvious. By monitoring the variation of
the Hot-Spot Temperature (HST) one can have early indications
about the occurrence of power transformer failures and can pro-
ceed to repair actions before critical conditions emerge. The pro-
posed FDI method can be applied for condition monitoring of
more critical components of the electric power grid and can help
to maintain the reliable operation of the electric power transmis-
sion and distribution system.
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