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Abstract— Secure yet lightweight protocol for communication 
over the Internet is a pertinent problem for constrained 
environments in the context of Internet of Things (IoT) / Machine 
to Machine (M2M) applications. This paper extends the initial 
approaches published in [1], [2] and presents a novel cross-layer 
lightweight implementation to establish a secure channel. It 
distributes the responsibility of communication over secure 
channel in between the application and transport layers. Secure 
session establishment is performed using a payload embedded 
challenge response scheme over the Constrained Application 
Protocol (CoAP) [3]. Record encryption mechanism of Datagram 
Transport Layer Security (DTLS) [4] with Pre-Shared Key (PSK) 
[5] is used for encrypted exchange of application layer data. The 
secure session credentials derived from the application layer is 
used for encrypted exchange over the transport layer.  The 
solution is designed in such a way that it can easily be integrated 
with an existing system deploying CoAP over DTLS-PSK. The 
proposed method is robust under different security attacks like 
replay attack, DoS and chosen cipher text. The improved 
performance of the proposed solution is established with 
comparative results and analysis.  

Keywords— CoAP; DTLS; IoT; lightweight; M2M; pre-shared- 
key; secure session. 

I. INTRODUCTION 
IoT/M2M applications often exchange sensitive information 

such as physiological information of individuals, energy 
consumption patterns of households, location data of vehicles 
and so on and so forth over the Internet. Hence, means for secure 
communication over the Internet for IoT/M2M systems is an 
utmost necessity similar to the conventional sensitive Web 
applications. However, the usual constituents of such systems 
are resource-constrained (in terms of available energy, 
processing power, memory, communication bandwidth) sensors 
or sensor gateways. As a result the concerned systems are 
usually resource-constrained as well. So, the conventional 
protocols like HTTP and its secure version HTTPS [7] [8] prove 
sub-optimal and resource hogging for the concerned 
applications. Ref. [6] compares the different application layer 
options for ‘Web-enablement’ of constrained devices and 
establishes (CoAP) [3], being standardized by the Internet 
Engineering Task Force (IETF), as a promising candidate. 
CoAP is originally designed to use User Datagram Protocol 
(UDP) as the transport. As a natural consequence, the secure 
version of CoAP, CoAPs, is mandated to use DTLS [4] for 

secure communication. CoAP proposes to use three possible 
security modes for DTLS: (a) pre-shared key mode, (b) raw 
public key mode and (c) certificate mode. Pre-shared key mode 
is the most low-overhead option as it uses symmetric key based 
encryption. But it needs pre-provisioning of a long-lived key 
which is mutually agreed between the communicating end-
points. Yet, DTLS, originally “designed to be as similar to TLS 
as possible” [4], is not suitable for many IoT/M2M applications. 
At present, efforts are being made to modify standard DTLS to 
support the use of DTLS in constrained environments [9].  As 
discussed in [9], a significant overhead of DTLS attributes to the 
DTLS handshakes which may even lead to undesirable 
uncontrolled message fragmentation at the lower layers. This is 
true even for the PSK mode of DTLS (DTLS-PSK). 

Present paper is a salient attempt to fill in the gap, as 
described above, with a very lightweight yet robust practical 
solution. The paper builds over the initial approach published in 
[1], [2] and [26]. It presents an alternate lightweight cross-layer 
approach to provide with optimized handshakes between the 
end-points during secure-session establishment followed by 
symmetric key based channel security for the whole application 
layer message. The session establishment process involves both 
mutual authentication and agreement on the session-key pairs.  

The contributions of the present work can be summarized as 
below: 

� The proposed method partitions the responsibility of 
secure communication such that secure session 
establishment is performed at the application layer and 
transfer of full application layer message over secure 
channel is performed by the transport-layer security. 

� Secure session establishment is implemented as a novel 
lightweight challenge-response scheme and deployed 
on CoAP as simply two pairs of encrypted 
request/responses. Thus secure session establishment is 
offloaded to application layer enabling the application 
layer with greater control while dealing with 
constrained environments. Also, enables CoAP with 
inherent capability to provide authentication and 
optional “object security” to application layer payload. 

� Once the session is established, the session parameters 
are mapped to the DTLS session parameter structure 
without requiring any modification in the existing 
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session format for DTLS-PSK mode. Thus it protects 
the full application layer message using the encryption 
mechanism of DTLS-PSK which has inherent 
protection against replay attacks [4]. 

� The same standard AES-128-CCM-8 [10] scheme is 
used for session establishment messages (unlike AES-
CBC as used in [1], [2]) and data traffic. Thus only a 
single encryption routine is required. 

� The method maintains separation in session-key space 
between the server to client and the reverse channel 
unlike the previous works.   

� The proposed lightweight solution is immune to 
traditional IoT security attacks like replay attack, DoS 
(Denial of Service) attack and chosen cipher text attack. 

� The scheme can easily integrate with existing system 
deploying DTLS-PSK without requiring any significant 
additional modules and reuse existing modules with 
minimal additional code. 

The paper is organized as follows. Section II presents a study 
of the related state of the art. Section III provides a brief 
overview of CoAP. Section IV presents the core algorithm for 
secure session establishment and its implementation on CoAP. 
Section V describes the full design incorporating the DTLS 
session parameters. Section VI presents a security analysis of the 
proposed solution. Section VII presents the results and analyses 
them. Finally, section VIII concludes with discussion on future 
directions of the research work. 

II. A STUDY OF THE STATE-OF-THE-ART 
Quite a few lightweight secure session establishment 

proposals can be found in literatures. The work in [18] presents 
an approach for end to end security on DTLS. But it uses RSA 
like public key cryptosystem and does not talk about a payload 
embedded scheme on CoAP using symmetric key crypto system 
as the present work. A server initiated challenge-response based 
session key establishment scheme is proposed as an 
experimental RFC in [19]. But that is applicable for layer 2 
security for WLAN environment. Another challenge response 
based key sharing scheme using AES-CBC encrypted 
exchanges for layer 2 and layer 3 security is disclosed in [20]. 
Similar challenge response based schemes are discussed in [21] 
and [22]. Ref. [22] proposes the scheme for securing Web-traffic 
over GSM network. However, none of the above works deal 
with implementation on CoAP and neither do they propose any 
cross layer architecture and comparative performance 
measurement as discussed in the present work. 

As mentioned earlier, [1] and [2] seeds the present work. 
However, the present work enhances [1] and [2] in quite a few 
aspects. The modified handshakes enable AES-CCM-8 
encryption which is the default choice for CoAP on DTLS-PSK 
[3]. Thus rather than keeping AES-CBC for session 
establishment and AES-CCM for DTLS encryption a single 
cryptographic algorithm may be used. The modified handshake 
also takes care of protecting the session keys from potential 
cracking through traffic analysis. The present scheme enables 
separation in the key-space between the channels unlike [1] and 
[2]. Most importantly, the present paper discusses in detail how 

the CoAP based session establishment scheme may be 
interfaced with DTLS-PSK session parameters to provide the 
final channel security for application layer message without 
requiring any modification in existing structure for DTLS 
session parameters. Thus, the present paper presents a salient, 
practical and complete solution. 

III. ABOUT COAP 
CoAP [3] is being designed by the Constrained RESTful 

Environments (CoRE) working group of IETF. The aim is to 
enable the use of RESTful architecture, for the most constrained 
sensor nodes (e.g. 8-bit microcontrollers with limited RAM and 
ROM) and networks (e.g. 6LoWPAN). CoAP empowers these 
constrained nodes to perform Web transfer for IoT or M2M 
communication. 

CoAP is ‘not unlike’ HTTP [12]. The basic client/server 
interaction model for CoAP resembles HTTP. However, in case 
of CoAP a machine can act both as a client and a server. Unlike 
HTTP the message exchanges in CoAP is asynchronous in 
nature over a datagram-oriented transport such as UDP. Since 
UDP is unreliable unlike TCP, an optional conceptual 
request/response layer is added along with the main CoAP 
messaging layer which deals with both the UDP and the 
asynchronous interactions (Figure 1(a)). CoAP reduces the 
packet overhead significantly by specifying only 4 bytes of 
mandatory header field (Figure 1(b)). CoAP defines similar 
RESTful methods like HTTP, viz., GET, PUT, POST, 
DELETE. CoAP also supports a list of response codes to 
indicate the state of execution against the request from the client. 

 
CoAP supports four types of messages: Confirmable (CON), 

Non-Confirmable (NON), Acknowledgement (ACK), Reset 
(RST). A confirmable message ensures reliability and is replied 
with an ACK by the Server with the same message ID. A 
confirmable message is retransmitted using a default timeout 
and exponential back-off between retransmissions, until the 
recipient sends the ACK message. Non-confirmable messages 
are for unreliable exchanges and are not replied with any ACK. 
If the recipient is not able to process a Non-confirmable message 
it may reply with an RST message. 

IV. LESS: THE ALGORITHM AND IMPLEMENTATION ON 
COAP 

The core algorithm of LESS is built over the initial approach 
published in [1] and [2]. But, as clarified in the state-of-the art 
section, the LESS algorithm improves on quite a few aspects. 
For example: protecting the session key during the exchanges, 
enabling integrity during session establishment through AES-
CCM rather than AES-CBC encryption and enabling separation 
in key used in reverse paths of communication. Table I lists the 
steps of LESS algorithm. Figure 2 illustrates the algorithm with 
a timing diagram and Table II explains the notations used. 

 
Fig. 1.  (a) CoAP stack, (b) CoAP message structure. 
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TABLE I.  LESS: LIGHTWEIGHT ESTABLISHMENT OF SECURE SESSION: 
ALGORITHM STEPS 

Step 
No. 

Step Details 
Action Description 

0 

Pre-sharing 
secret 
(provisioning) 

Secret Y= {0,1 }128 is shared between ith 
client Ci and server S  offline at 
provisioning phase. The provisioning 
process is beyond the scope of the present 
paper. 

1 Session 
initiation 

Ci sends a “HELLO” containing #Ci and 
hello_rand to S at the time of session 
initiation.  #Ci is the unique client ID and is 
pre-registered with the server. hello_rand = 
{0,1}96is a unique random number. 

2 Server 
challenge 

S responds as:             AES 
{(ext_hello_rand⨁K_c   || server_rand)}Y, 
where K_c = {0,1 }128 ,server_rand= {0,1 
}96 and ext_hello_rand = hello_rand || 
hello_rand[0:31]. K_c is the session key 
to be used for client-side encryption.  
K_c is obfuscated with ‘ext_hello_rand’ as 
an extra protection since it is encrypted 
with Y which is common across sessions. 
‘server_rand’ is the challenge to the client 
by the server. 

3 
Client 
response and 
challenge 

Ci returns AES {( server_rand || 
client_rand)}K_c, where  client_rand = 
{0,1}96.  ‘client_rand’ is the challenge by 
the client to the server. 

4 

Client 
authentication 
& server 
response 

S verifies ‘server_rand’from client with its 
own copy and thus authenticates the client 
and returns: AES {(ext_server_rand⨁ K_s  
|| client_rand )}Y where,  
ext_server_rand = server_rand || 
server_rand[0:31].  
K_s = {0,1}128.  
K_s is the session key to be used for 
server side encryption. 

5 Server 
authentication 

Ci verifies the ‘client_rand’ from server 
with its own copy and verifies the server. 

 

TABLE II.  THE SYMBOLS AND NOTATIONS 

Notation/ 
Symbol Description 

Y Shared secret between the client and the server. 

AES{.}K AES-CCM-8 operation on plaintext using key K. 

⨁ XOR operation. 

∥ Concatenation. 

{0,1}n Binary bit-string of length ‘n’. 

Note: (1) The AES-128-CCM-8 encryption would need 12 
bit nonce for each encryption and an additional data. (2) 
‘hello_rand’, ‘server_rand’ and ‘client_rand’ serves as the 
required nonce values in steps 2, 3 and 4 respectively. (3) The 
‘additional data’ is served by the header of each application layer 
message.‘hello_rand’, ‘server_rand’, ‘client_rand’ may be 
generated using the nonce generation process as described in [1]. 
(4) Generation of K_c and K_s is beyond the scope of the present 
paper. 

 

 

 

A. Implementing LESS as CoAP Exchanges 
Implementation of the algorithm on CoAP follows the same 

payload embedded technique as in [1] and [2]. However, the 
individual message contents change in accordance with the 
modified algorithm described in Table I. Present method reuses 
the CoAP header options proposed in [1] [2]. The options are 
reproduced in Table III for ready reference. The handshakes 
required for implantation on CoAP is illustrated in Figure 3. 

The maximum possible CoAP payload in the whole set of 
exchanges can be 36 bytes (exchanges in step II and IV of Table 
I) with the components given below: 

(16 bytes of obfuscate session key + 12 bytes of the random 
challenge) + 8 bytes of additional data for CCM encryption 
required for integrity check = 36 bytes of application layer 
payload. 

Hence, the CoAP message size during the session 
establishment process is far less than 64 bytes which is the 
minimum CoAP message block [11]. Thus the scheme 
guarantees no fragmentation of the application layer payload 
which leads to uncontrolled traffic in the network. 

 

 
                                                            (a) 
 

 
(b) 

Fig. 2. The timing diagram with mapping to steps in Table I (a) and the flow-
chart (b) corresponding to the handshakes involved in LESS. 
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TABLE III.  COAP HEADER OPTIONS FOR LESS IMPLEMENTATION 

Name Format Description 

AUTH 

empty If the option is present it 
indicates that the present 
request relates to the 
authentication process. 

AUTH_MESSAGE_TYPE uint 0: auth_init (Session initiation 
request – indicates the “hello” 
message from client); 
 

1:Indicates a response from 
client  against the server 
challenge 

V. CHANNEL ENCRYPTION: MAPPING SESSION 
PARAMETERS AS DTLS SESSION  

Once the session is established, the control switches from 
CoAP to DTLS in order to provide the channel security to the 
full application data comprising the application layer header and 
the information payload. In order to perform channel encryption 
DTLS-PSK needs the following session-parameter tuple [4] at 
both the client and the server ends:  

{client write key, server write key, client initialization 
vector, server initialization vector}.  

‘Client write key’ is 128 bit key for client side encryption 
and ‘server write key’ is the 128 bit key for server side 
encryption. Client and server initialization vectors (IV) are each 
of 4 bytes in length and are required as the IVs for AES 
encryption. The overall scheme is illustrated as a layered 
representation in Figure 4. 

The client and server side encryption keys are derived during 
the session establishment process. The IVs are derived by 
XORing the ‘client_rand’ and ‘server_rand’ (exchanged during 

the session establishment process) followed by truncation.  The 
IV generation process is illustrated in Figure 5. 

Once the encryption parameters are computed the derived 
tuple is mapped to the DTLS session parameter structure for 
each record encryption as illustrated in Figure 6. It is to be 
emphasized that no modification in the existing structure is 
required. Mapping can be done seamlessly into the existing 
structure.  

 

 

 

VI. SECURITY CONSIDERATIONS 
A detail mathematical security analysis is performed in [2]. 

In this section we discuss resilience against some practical active 

 
 
Fig. 3. Implementing LESS as CoAP handshakes using the confirmable 
(CON) message type.  

 
 
Fig. 4. A layered representation of the cross-layer implementation. The 
interface layer derives the one-time parameters required for DTLS record 
encryption for a given session. 

 
Fig. 5. The client and server IV generation process. Client_IV and 
Server_IV are required for both client side and server side encryption. 
This algorithm is identically executed at both client and server. Note 
that the required parameters to perform the calculation is available to 
both client and server after the session establishment process. 

 
Fig. 6. Fig. 6.  Illustrating the mapping of the session parameters to the DTLS-
PSK session parameter strycture. The fields are mapped as below: 

Session ID => generated by the server and shared to the client through the 
response between T2 -> T3 of Figure 3; 
Peer certificate & Compression method => NULL for DTLS-PSK [4]; 
Cipher suit => TLS_PSK_WITH_AES_CCM_8 as suggested by CoAP spec 
[3]; 
Master secret => The pre-shared secret maps here; 
Read & Write state => Derived from the session key tuple from the interface; 
Sequence No. => Generated implicitly by the DTLS transaction logic. 
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and passive attacks. The definition of attacks considered are 
within the purview of [23].  

A. Resilience to Passive Attack Due to Traffic Analysis 
It is, in theory, possible to launch an offline passive attack 

by capturing the exchanged traffic over several sessions and 
predicting the encryption parameters. The attack can be 
mitigated by frequently changing the session parameters as the 
challenge response depends on several unique random numbers. 
However, in the proposed mechanism, the initial exchange (T2 
-> T3 of Fig. 3) to establish the session parameters use the same 
pre-shared key across sessions. So, it can be argued that it is 
theoretically possible to launch a passive attack to get the session 
keys shared by the server. But, the server obfuscates the shared 
keys using the random number shared by the client along with 
the hello message. Thus, even if a theoretical attacker gets to 
predict the pre-shared secret, rightly guessing the each session 
key would need the attacker to try 2256, or approximately 
1.16×1077 combinations for each session. Accordingly, traffic-
padding based traffic analysis and snooping attacks can be 
mitigated without incurring any additional bandwidth or latency 
cost. 

B. Resilience to Denial of Service (DoS) 
DoS has two aspects. Firstly, an attacker can consume 

resources on the server by transmitting a series of session 
initiation requests. Secondly, the attacker may use the server as 
an amplifier by issuing session initiation requests with forged 
source and causing message flooding. 

Both the possibilities are countered through the challenge/ 
response mechanism. The client has to be able to properly 
decode the server challenge at the first place to carry on the next 
interactions. It is evident from the discussion in the above 
subsection that it is practically impossible for an attacker to get 
hold of the session keys shared by the server. Thus, any DoS 
attack would be ineffective just after the server challenge (step 
2 in Table I).  

C. Replay Protection 
An attacker may simply replay the captured traffic to 

unnecessarily consume resources at the end-points. The 
proposed system circumvents this since it re-uses DTLS record 
encryption technique for securing the application data over the 
transport channel. DTLS inherently protects against replay 
attack through proper sequencing of the encrypted records in a 
session and a sliding receiving window [4].  

VII. RESULTS AND ANALYSIS 
Experiments are performed to compare the performance of 

the LESS algorithm against an existing DTLS-PSK 
implementation. Californium [13] [14] is used as the off-the-
shelf CoAP implementation with DTLS. The californium code 
base is modified to include the solution presented in this paper. 
Performance is measured in terms of average latency and 
bandwidth for the session-establishment process and also in 
terms of the rate of successful session establishment attempts 
under different packet error conditions.  WANEM [15] is used 
as the Internet emulator. WANEM provides user handle to 
modify network parameters like bandwidth, packet loss ratio, 
etc. Wireshark [16] is used to analyze the resulting traffic.  

Figure 7 illustrates the experimental setup and Figure 8 shows 
the obtained results. 

 

 

 
Fig. 7. The experimental setup for comparing the performance of original 
DTLS-PSK handshakes vs LESS. Two separate networks are formed. Each 
consist of one computation system. The system in the 1st network runs the client 
implementation and the system in the 2nd network runs the server 
implementation. The computers are physically connected over Ethernet to a  3rd 
system acting as a gateway. The gateway system runs WANEM and emulates 
the Internet between the two networks. The dotted line shows the logical secure 
session between client and the server across the networks. The session is 
established using both DTLS-PSK and LESS algorithm under different 
network losses configured using WANEM. The network bandwidth was 
configured as a nominal 9.6 kbps. 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. The comparative results (avg. of 1000 iterations): (a) the average 
latency (in sec.) in a secure session establishment against different packet loss 
rates;   (b) the average bandwidth consumed in terms of the bytes exchanged 
over the physical media for the secure session establishment process against 
different packet loss rates; (c) ratio of successful secure session establishment 
to the total number of session establishment attempts for different packet 
losses. 
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A. Analysis of the Results 

The results establish, LESS on CoAP shows consistent 
performance even in lossy conditions. LESS outperforms 
DTLS-PSK handshake in all aspects for obvious reasons. 
Firstly, LESS performs the full session establishment in just two 
request/response pairs against six ‘flights’ in DTLS (Figure 9). 
Again, each ‘flight’ may be composed of more than one 
messages and may lead to physically fragmented datagrams 
being transmitted. On the contrary LESS is implemented as 
small CoAP messages guaranteeing no fragmentation. LESS 
leverages CoAP’s inherent reliability feature through CON 
mode which is very efficient and simple message 
acknowledgement feature incorporated in CoAP’s messaging 
layer. This feature, coupled with un-fragmented low-sized 
messages over simple UDP, leads to the consistent performance 
of LESS (Figure 8(a) & (b)). Most importantly, LESS has 100% 
successful session establishment (Figure 8(c)) despite heavy 
loss. It is due to CoAP’s reliability feature. But DTLS-PSK 
session establishment suffers with increasing packet loss. The 
captured traffic shows that DTLS-PSK fails message integrity 
check during the 5th and 6th flights more often with increasing 
packet loss. However, latency of LESS under 0% packet loss is 
little higher than DTLS-PSK (Figure 8(a)) as LESS algorithm 
involves cryptographic operations. The total latency displayed 
incorporates this computational latency. DTLS does not involve 
any such computation during session establishment. But, this 
difference loses significance for  lossy conditions.  

VIII. CONCLUSION AND FUTURE DIRECTION 
A novel lightweight cross layer approach for secure session 

establishment and exchange of application layer message 
through a secure channel is discussed. DTLS is an heir to TLS 
and is not originally designed for constrained environments. 
Efforts are on to fit DTLS into such applications. But an 
application-layer controlled scheme like the present one may be 
a sane alternative. The proposed system is implemented such a 
way that it reuses most of the routines available already in CoAP 
and DTLS-PSK and adds minimal additional code. The system 
needs to maintain simple state machine (not discussed) to handle 
both CoAP over UDP and DTLS traffic. If only ‘object security’ 
suffices, the cross-layer interface may be removed. The keys for 
the opposite paths derived during secure session establishment 
may be used to encrypt and exchange encrypted CoAP payloads 
over simple UDP transport resulting into a very lightweight 
“object security” solution. Also, enabling CoAP with inherent 
security may be a very futuristic approach as CoAP is poised to 
be used on different alternative transport which may not be 

DTLS compatible. Lightweight multicast security is another 
need for IoT/M2M systems. But, a proper solution is still 
awaited [17]. Present work is to be extended for multicast 
security solution. The present work will be augmented with the 
work on lightweight solution for intelligent transportation 
[24][25] to create a complete lightweight secure solution. 
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