
LESS: Lightweight Establishment of Secure Session
A Cross-Layer Approach Using CoAP and DTLS-PSK Channel Encryption

Abhijan Bhattacharyya, Tulika Bose, Soma Bandyopadhyay, Arijit Ukil, Arpan Pal
Innovation Labs

Tata Consultancy Services Ltd.
Kolkata, India

{abhijan.bhattacharyya, tulika.bose, soma.bandyopadhyay, arijit.ukil, arpan.pal}@tcs.com

Abstract— Secure yet lightweight protocol for communication
over the Internet is a pertinent problem for constrained
environments in the context of Internet of Things (IoT) / Machine
to Machine (M2M) applications. This paper extends the initial
approaches published in [1], [2] and presents a novel cross-layer
lightweight implementation to establish a secure channel. It
distributes the responsibility of communication over secure
channel in between the application and transport layers. Secure
session establishment is performed using a payload embedded
challenge response scheme over the Constrained Application
Protocol (CoAP) [3]. Record encryption mechanism of Datagram
Transport Layer Security (DTLS) [4] with Pre-Shared Key (PSK)
[5] is used for encrypted exchange of application layer data. The
secure session credentials derived from the application layer is
used for encrypted exchange over the transport layer. The
solution is designed in such a way that it can easily be integrated
with an existing system deploying CoAP over DTLS-PSK. The
proposed method is robust under different security attacks like
replay attack, DoS and chosen cipher text. The improved
performance of the proposed solution is established with
comparative results and analysis.

Keywords— CoAP; DTLS; IoT; lightweight; M2M; pre-shared-
key; secure session.

I. INTRODUCTION
IoT/M2M applications often exchange sensitive information

such as physiological information of individuals, energy
consumption patterns of households, location data of vehicles
and so on and so forth over the Internet. Hence, means for secure
communication over the Internet for IoT/M2M systems is an
utmost necessity similar to the conventional sensitive Web
applications. However, the usual constituents of such systems
are resource-constrained (in terms of available energy,
processing power, memory, communication bandwidth) sensors
or sensor gateways. As a result the concerned systems are
usually resource-constrained as well. So, the conventional
protocols like HTTP and its secure version HTTPS [7] [8] prove
sub-optimal and resource hogging for the concerned
applications. Ref. [6] compares the different application layer
options for ‘Web-enablement’ of constrained devices and
establishes (CoAP) [3], being standardized by the Internet
Engineering Task Force (IETF), as a promising candidate.
CoAP is originally designed to use User Datagram Protocol
(UDP) as the transport. As a natural consequence, the secure
version of CoAP, CoAPs, is mandated to use DTLS [4] for

secure communication. CoAP proposes to use three possible
security modes for DTLS: (a) pre-shared key mode, (b) raw
public key mode and (c) certificate mode. Pre-shared key mode
is the most low-overhead option as it uses symmetric key based
encryption. But it needs pre-provisioning of a long-lived key
which is mutually agreed between the communicating end-
points. Yet, DTLS, originally “designed to be as similar to TLS
as possible” [4], is not suitable for many IoT/M2M applications.
At present, efforts are being made to modify standard DTLS to
support the use of DTLS in constrained environments [9]. As
discussed in [9], a significant overhead of DTLS attributes to the
DTLS handshakes which may even lead to undesirable
uncontrolled message fragmentation at the lower layers. This is
true even for the PSK mode of DTLS (DTLS-PSK).

Present paper is a salient attempt to fill in the gap, as
described above, with a very lightweight yet robust practical
solution. The paper builds over the initial approach published in
[1], [2] and [26]. It presents an alternate lightweight cross-layer
approach to provide with optimized handshakes between the
end-points during secure-session establishment followed by
symmetric key based channel security for the whole application
layer message. The session establishment process involves both
mutual authentication and agreement on the session-key pairs.

The contributions of the present work can be summarized as
below:

� The proposed method partitions the responsibility of
secure communication such that secure session
establishment is performed at the application layer and
transfer of full application layer message over secure
channel is performed by the transport-layer security.

� Secure session establishment is implemented as a novel
lightweight challenge-response scheme and deployed
on CoAP as simply two pairs of encrypted
request/responses. Thus secure session establishment is
offloaded to application layer enabling the application
layer with greater control while dealing with
constrained environments. Also, enables CoAP with
inherent capability to provide authentication and
optional “object security” to application layer payload.

� Once the session is established, the session parameters
are mapped to the DTLS session parameter structure
without requiring any modification in the existing

2015 29th International Conference on Advanced Information Networking and Applications Workshops

978-1-4799-1775-4/15 $31.00 © 2015 IEEE

DOI 10.1109/WAINA.2015.52

682

session format for DTLS-PSK mode. Thus it protects
the full application layer message using the encryption
mechanism of DTLS-PSK which has inherent
protection against replay attacks [4].

� The same standard AES-128-CCM-8 [10] scheme is
used for session establishment messages (unlike AES-
CBC as used in [1], [2]) and data traffic. Thus only a
single encryption routine is required.

� The method maintains separation in session-key space
between the server to client and the reverse channel
unlike the previous works.

� The proposed lightweight solution is immune to
traditional IoT security attacks like replay attack, DoS
(Denial of Service) attack and chosen cipher text attack.

� The scheme can easily integrate with existing system
deploying DTLS-PSK without requiring any significant
additional modules and reuse existing modules with
minimal additional code.

The paper is organized as follows. Section II presents a study
of the related state of the art. Section III provides a brief
overview of CoAP. Section IV presents the core algorithm for
secure session establishment and its implementation on CoAP.
Section V describes the full design incorporating the DTLS
session parameters. Section VI presents a security analysis of the
proposed solution. Section VII presents the results and analyses
them. Finally, section VIII concludes with discussion on future
directions of the research work.

II. A STUDY OF THE STATE-OF-THE-ART
Quite a few lightweight secure session establishment

proposals can be found in literatures. The work in [18] presents
an approach for end to end security on DTLS. But it uses RSA
like public key cryptosystem and does not talk about a payload
embedded scheme on CoAP using symmetric key crypto system
as the present work. A server initiated challenge-response based
session key establishment scheme is proposed as an
experimental RFC in [19]. But that is applicable for layer 2
security for WLAN environment. Another challenge response
based key sharing scheme using AES-CBC encrypted
exchanges for layer 2 and layer 3 security is disclosed in [20].
Similar challenge response based schemes are discussed in [21]
and [22]. Ref. [22] proposes the scheme for securing Web-traffic
over GSM network. However, none of the above works deal
with implementation on CoAP and neither do they propose any
cross layer architecture and comparative performance
measurement as discussed in the present work.

As mentioned earlier, [1] and [2] seeds the present work.
However, the present work enhances [1] and [2] in quite a few
aspects. The modified handshakes enable AES-CCM-8
encryption which is the default choice for CoAP on DTLS-PSK
[3]. Thus rather than keeping AES-CBC for session
establishment and AES-CCM for DTLS encryption a single
cryptographic algorithm may be used. The modified handshake
also takes care of protecting the session keys from potential
cracking through traffic analysis. The present scheme enables
separation in the key-space between the channels unlike [1] and
[2]. Most importantly, the present paper discusses in detail how

the CoAP based session establishment scheme may be
interfaced with DTLS-PSK session parameters to provide the
final channel security for application layer message without
requiring any modification in existing structure for DTLS
session parameters. Thus, the present paper presents a salient,
practical and complete solution.

III. ABOUT COAP
CoAP [3] is being designed by the Constrained RESTful

Environments (CoRE) working group of IETF. The aim is to
enable the use of RESTful architecture, for the most constrained
sensor nodes (e.g. 8-bit microcontrollers with limited RAM and
ROM) and networks (e.g. 6LoWPAN). CoAP empowers these
constrained nodes to perform Web transfer for IoT or M2M
communication.

CoAP is ‘not unlike’ HTTP [12]. The basic client/server
interaction model for CoAP resembles HTTP. However, in case
of CoAP a machine can act both as a client and a server. Unlike
HTTP the message exchanges in CoAP is asynchronous in
nature over a datagram-oriented transport such as UDP. Since
UDP is unreliable unlike TCP, an optional conceptual
request/response layer is added along with the main CoAP
messaging layer which deals with both the UDP and the
asynchronous interactions (Figure 1(a)). CoAP reduces the
packet overhead significantly by specifying only 4 bytes of
mandatory header field (Figure 1(b)). CoAP defines similar
RESTful methods like HTTP, viz., GET, PUT, POST,
DELETE. CoAP also supports a list of response codes to
indicate the state of execution against the request from the client.

CoAP supports four types of messages: Confirmable (CON),

Non-Confirmable (NON), Acknowledgement (ACK), Reset
(RST). A confirmable message ensures reliability and is replied
with an ACK by the Server with the same message ID. A
confirmable message is retransmitted using a default timeout
and exponential back-off between retransmissions, until the
recipient sends the ACK message. Non-confirmable messages
are for unreliable exchanges and are not replied with any ACK.
If the recipient is not able to process a Non-confirmable message
it may reply with an RST message.

IV. LESS: THE ALGORITHM AND IMPLEMENTATION ON
COAP

The core algorithm of LESS is built over the initial approach
published in [1] and [2]. But, as clarified in the state-of-the art
section, the LESS algorithm improves on quite a few aspects.
For example: protecting the session key during the exchanges,
enabling integrity during session establishment through AES-
CCM rather than AES-CBC encryption and enabling separation
in key used in reverse paths of communication. Table I lists the
steps of LESS algorithm. Figure 2 illustrates the algorithm with
a timing diagram and Table II explains the notations used.

Fig. 1. (a) CoAP stack, (b) CoAP message structure.

683

TABLE I. LESS: LIGHTWEIGHT ESTABLISHMENT OF SECURE SESSION:
ALGORITHM STEPS

Step
No.

Step Details
Action Description

0

Pre-sharing
secret
(provisioning)

Secret Y= {0,1 }128 is shared between ith
client Ci and server S offline at
provisioning phase. The provisioning
process is beyond the scope of the present
paper.

1 Session
initiation

Ci sends a “HELLO” containing #Ci and
hello_rand to S at the time of session
initiation. #Ci is the unique client ID and is
pre-registered with the server. hello_rand =
{0,1}96is a unique random number.

2 Server
challenge

S responds as: AES
{(ext_hello_rand⨁K_c || server_rand)}Y,
where K_c = {0,1 }128 ,server_rand= {0,1
}96 and ext_hello_rand = hello_rand ||
hello_rand[0:31]. K_c is the session key
to be used for client-side encryption.
K_c is obfuscated with ‘ext_hello_rand’ as
an extra protection since it is encrypted
with Y which is common across sessions.
‘server_rand’ is the challenge to the client
by the server.

3
Client
response and
challenge

Ci returns AES {(server_rand ||
client_rand)}K_c, where client_rand =
{0,1}96. ‘client_rand’ is the challenge by
the client to the server.

4

Client
authentication
& server
response

S verifies ‘server_rand’from client with its
own copy and thus authenticates the client
and returns: AES {(ext_server_rand⨁ K_s
|| client_rand)}Y where,
ext_server_rand = server_rand ||
server_rand[0:31].
K_s = {0,1}128.
K_s is the session key to be used for
server side encryption.

5 Server
authentication

Ci verifies the ‘client_rand’ from server
with its own copy and verifies the server.

TABLE II. THE SYMBOLS AND NOTATIONS

Notation/
Symbol Description

Y Shared secret between the client and the server.

AES{.}K AES-CCM-8 operation on plaintext using key K.

⨁ XOR operation.

∥ Concatenation.

{0,1}n Binary bit-string of length ‘n’.

Note: (1) The AES-128-CCM-8 encryption would need 12
bit nonce for each encryption and an additional data. (2)
‘hello_rand’, ‘server_rand’ and ‘client_rand’ serves as the
required nonce values in steps 2, 3 and 4 respectively. (3) The
‘additional data’ is served by the header of each application layer
message.‘hello_rand’, ‘server_rand’, ‘client_rand’ may be
generated using the nonce generation process as described in [1].
(4) Generation of K_c and K_s is beyond the scope of the present
paper.

A. Implementing LESS as CoAP Exchanges
Implementation of the algorithm on CoAP follows the same

payload embedded technique as in [1] and [2]. However, the
individual message contents change in accordance with the
modified algorithm described in Table I. Present method reuses
the CoAP header options proposed in [1] [2]. The options are
reproduced in Table III for ready reference. The handshakes
required for implantation on CoAP is illustrated in Figure 3.

The maximum possible CoAP payload in the whole set of
exchanges can be 36 bytes (exchanges in step II and IV of Table
I) with the components given below:

(16 bytes of obfuscate session key + 12 bytes of the random
challenge) + 8 bytes of additional data for CCM encryption
required for integrity check = 36 bytes of application layer
payload.

Hence, the CoAP message size during the session
establishment process is far less than 64 bytes which is the
minimum CoAP message block [11]. Thus the scheme
guarantees no fragmentation of the application layer payload
which leads to uncontrolled traffic in the network.

 (a)

(b)

Fig. 2. The timing diagram with mapping to steps in Table I (a) and the flow-
chart (b) corresponding to the handshakes involved in LESS.

684

TABLE III. COAP HEADER OPTIONS FOR LESS IMPLEMENTATION

Name Format Description

AUTH

empty If the option is present it
indicates that the present
request relates to the
authentication process.

AUTH_MESSAGE_TYPE uint 0: auth_init (Session initiation
request – indicates the “hello”
message from client);

1:Indicates a response from
client against the server
challenge

V. CHANNEL ENCRYPTION: MAPPING SESSION
PARAMETERS AS DTLS SESSION

Once the session is established, the control switches from
CoAP to DTLS in order to provide the channel security to the
full application data comprising the application layer header and
the information payload. In order to perform channel encryption
DTLS-PSK needs the following session-parameter tuple [4] at
both the client and the server ends:

{client write key, server write key, client initialization
vector, server initialization vector}.

‘Client write key’ is 128 bit key for client side encryption
and ‘server write key’ is the 128 bit key for server side
encryption. Client and server initialization vectors (IV) are each
of 4 bytes in length and are required as the IVs for AES
encryption. The overall scheme is illustrated as a layered
representation in Figure 4.

The client and server side encryption keys are derived during
the session establishment process. The IVs are derived by
XORing the ‘client_rand’ and ‘server_rand’ (exchanged during

the session establishment process) followed by truncation. The
IV generation process is illustrated in Figure 5.

Once the encryption parameters are computed the derived
tuple is mapped to the DTLS session parameter structure for
each record encryption as illustrated in Figure 6. It is to be
emphasized that no modification in the existing structure is
required. Mapping can be done seamlessly into the existing
structure.

VI. SECURITY CONSIDERATIONS
A detail mathematical security analysis is performed in [2].

In this section we discuss resilience against some practical active

Fig. 3. Implementing LESS as CoAP handshakes using the confirmable
(CON) message type.

Fig. 4. A layered representation of the cross-layer implementation. The
interface layer derives the one-time parameters required for DTLS record
encryption for a given session.

Fig. 5. The client and server IV generation process. Client_IV and
Server_IV are required for both client side and server side encryption.
This algorithm is identically executed at both client and server. Note
that the required parameters to perform the calculation is available to
both client and server after the session establishment process.

Fig. 6. Fig. 6. Illustrating the mapping of the session parameters to the DTLS-
PSK session parameter strycture. The fields are mapped as below:

Session ID => generated by the server and shared to the client through the
response between T2 -> T3 of Figure 3;
Peer certificate & Compression method => NULL for DTLS-PSK [4];
Cipher suit => TLS_PSK_WITH_AES_CCM_8 as suggested by CoAP spec
[3];
Master secret => The pre-shared secret maps here;
Read & Write state => Derived from the session key tuple from the interface;
Sequence No. => Generated implicitly by the DTLS transaction logic.

685

and passive attacks. The definition of attacks considered are
within the purview of [23].

A. Resilience to Passive Attack Due to Traffic Analysis
It is, in theory, possible to launch an offline passive attack

by capturing the exchanged traffic over several sessions and
predicting the encryption parameters. The attack can be
mitigated by frequently changing the session parameters as the
challenge response depends on several unique random numbers.
However, in the proposed mechanism, the initial exchange (T2
-> T3 of Fig. 3) to establish the session parameters use the same
pre-shared key across sessions. So, it can be argued that it is
theoretically possible to launch a passive attack to get the session
keys shared by the server. But, the server obfuscates the shared
keys using the random number shared by the client along with
the hello message. Thus, even if a theoretical attacker gets to
predict the pre-shared secret, rightly guessing the each session
key would need the attacker to try 2256, or approximately
1.16×1077 combinations for each session. Accordingly, traffic-
padding based traffic analysis and snooping attacks can be
mitigated without incurring any additional bandwidth or latency
cost.

B. Resilience to Denial of Service (DoS)
DoS has two aspects. Firstly, an attacker can consume

resources on the server by transmitting a series of session
initiation requests. Secondly, the attacker may use the server as
an amplifier by issuing session initiation requests with forged
source and causing message flooding.

Both the possibilities are countered through the challenge/
response mechanism. The client has to be able to properly
decode the server challenge at the first place to carry on the next
interactions. It is evident from the discussion in the above
subsection that it is practically impossible for an attacker to get
hold of the session keys shared by the server. Thus, any DoS
attack would be ineffective just after the server challenge (step
2 in Table I).

C. Replay Protection
An attacker may simply replay the captured traffic to

unnecessarily consume resources at the end-points. The
proposed system circumvents this since it re-uses DTLS record
encryption technique for securing the application data over the
transport channel. DTLS inherently protects against replay
attack through proper sequencing of the encrypted records in a
session and a sliding receiving window [4].

VII. RESULTS AND ANALYSIS
Experiments are performed to compare the performance of

the LESS algorithm against an existing DTLS-PSK
implementation. Californium [13] [14] is used as the off-the-
shelf CoAP implementation with DTLS. The californium code
base is modified to include the solution presented in this paper.
Performance is measured in terms of average latency and
bandwidth for the session-establishment process and also in
terms of the rate of successful session establishment attempts
under different packet error conditions. WANEM [15] is used
as the Internet emulator. WANEM provides user handle to
modify network parameters like bandwidth, packet loss ratio,
etc. Wireshark [16] is used to analyze the resulting traffic.

Figure 7 illustrates the experimental setup and Figure 8 shows
the obtained results.

Fig. 7. The experimental setup for comparing the performance of original
DTLS-PSK handshakes vs LESS. Two separate networks are formed. Each
consist of one computation system. The system in the 1st network runs the client
implementation and the system in the 2nd network runs the server
implementation. The computers are physically connected over Ethernet to a 3rd
system acting as a gateway. The gateway system runs WANEM and emulates
the Internet between the two networks. The dotted line shows the logical secure
session between client and the server across the networks. The session is
established using both DTLS-PSK and LESS algorithm under different
network losses configured using WANEM. The network bandwidth was
configured as a nominal 9.6 kbps.

(a)

(b)

(c)

Fig. 8. The comparative results (avg. of 1000 iterations): (a) the average
latency (in sec.) in a secure session establishment against different packet loss
rates; (b) the average bandwidth consumed in terms of the bytes exchanged
over the physical media for the secure session establishment process against
different packet loss rates; (c) ratio of successful secure session establishment
to the total number of session establishment attempts for different packet
losses.

686

A. Analysis of the Results

The results establish, LESS on CoAP shows consistent
performance even in lossy conditions. LESS outperforms
DTLS-PSK handshake in all aspects for obvious reasons.
Firstly, LESS performs the full session establishment in just two
request/response pairs against six ‘flights’ in DTLS (Figure 9).
Again, each ‘flight’ may be composed of more than one
messages and may lead to physically fragmented datagrams
being transmitted. On the contrary LESS is implemented as
small CoAP messages guaranteeing no fragmentation. LESS
leverages CoAP’s inherent reliability feature through CON
mode which is very efficient and simple message
acknowledgement feature incorporated in CoAP’s messaging
layer. This feature, coupled with un-fragmented low-sized
messages over simple UDP, leads to the consistent performance
of LESS (Figure 8(a) & (b)). Most importantly, LESS has 100%
successful session establishment (Figure 8(c)) despite heavy
loss. It is due to CoAP’s reliability feature. But DTLS-PSK
session establishment suffers with increasing packet loss. The
captured traffic shows that DTLS-PSK fails message integrity
check during the 5th and 6th flights more often with increasing
packet loss. However, latency of LESS under 0% packet loss is
little higher than DTLS-PSK (Figure 8(a)) as LESS algorithm
involves cryptographic operations. The total latency displayed
incorporates this computational latency. DTLS does not involve
any such computation during session establishment. But, this
difference loses significance for lossy conditions.

VIII. CONCLUSION AND FUTURE DIRECTION
A novel lightweight cross layer approach for secure session

establishment and exchange of application layer message
through a secure channel is discussed. DTLS is an heir to TLS
and is not originally designed for constrained environments.
Efforts are on to fit DTLS into such applications. But an
application-layer controlled scheme like the present one may be
a sane alternative. The proposed system is implemented such a
way that it reuses most of the routines available already in CoAP
and DTLS-PSK and adds minimal additional code. The system
needs to maintain simple state machine (not discussed) to handle
both CoAP over UDP and DTLS traffic. If only ‘object security’
suffices, the cross-layer interface may be removed. The keys for
the opposite paths derived during secure session establishment
may be used to encrypt and exchange encrypted CoAP payloads
over simple UDP transport resulting into a very lightweight
“object security” solution. Also, enabling CoAP with inherent
security may be a very futuristic approach as CoAP is poised to
be used on different alternative transport which may not be

DTLS compatible. Lightweight multicast security is another
need for IoT/M2M systems. But, a proper solution is still
awaited [17]. Present work is to be extended for multicast
security solution. The present work will be augmented with the
work on lightweight solution for intelligent transportation
[24][25] to create a complete lightweight secure solution.

REFERENCES
[1] A. Ukil, S. Bandyopadhyay, A. Bhattacharyya, A. Pal, “Auth-Lite:

Lightweight M2MAuthentication reinforcing DTLS for CoAP,” in
PERCOM Workshops, Budapest, 2014, pp. 215-219.

[2] A. Ukil, S. Bandyopadhyay, A. Bhattacharyya, A. Pal, “Lightweight
security scheme for vehicle tracking system using CoAP,” in Proc.
ASPI’13, Zurich, 2013.

[3] Constrained Application Protocol (CoAP), RFC 7252, June 2014.
[4] Datagram Transport Layer Security Version 1.2, RFC 6347, January

2012.
[5] Pre-Shared Key Ciphersuites for Transport layer Security (TLS), RFC

4279, December 2005.
[6] S. Bandyopadhyay, and A. Bhattacharyya, "Lightweight Internet

protocols for web enablement of sensors using constrained gateway
devices," in Proc. ICNC, pp. 334 – 340, January 2013.

[7] HTTP over TLS, RFC 2818, May 2000.
[8] The Transport Layer Security (TLS) Version 1.2, RFC 5246, August

2008.
[9] https://datatracker.ietf.org/wg/dice/charter/.
[10] AES-CCM Cipher Suites for Transport Layer Security (TLS), RFC 6655,

July 2012.
[11] C.Bormann and Z. Shelby. Blockwise transfers in CoAP (draft-ietf-core-

block-14) (http://tools.ietf.org/html/draft-ietf-core-block-14) .
[12] Hypertext Transfer Protocol – HTTP/1.1, RFC 2616, June 1999
[13] Californium (Cf) (http://people.inf.ethz.ch/mkovatsc/californium.php).
[14] https://github.com/mkovatsc/Californium.
[15] http://wanem.sourceforge.net/.
[16] https://www.wireshark.org/.
[17] A. Rahman and E. Dijk. Group Communication for CoAP (draft-ietf-core-

groupcomm-25).
[18] T. Kothmayr, et al. , “A DTLS based end-to-end security architecture for

the Internet of Things with two-way authentication”, in Proc. LCN
Workshops, Florida, 2012

[19] The EAP-PSK Protocol: A Pre-Shared Key Extensible Authentication
Protocol (EAP) Method, RFC 4764, January 2007.

[20] Z. Bajic, R. Nagarajan, R. Vijayakumar, “Methods and apparatus for layer
2 and layer 3 security between wireless termination points”, U.S. Patent
8281134, Oct. 2012.

[21] O. Delgado-Mohatar, et al.,A light-weight authentication scheme for
wireless sensor networks. Ad Hoc Networks., Vol. 9, Issue. 5, pp. 727-
735

[22] H. Liao, et al, “Method and system for secure lightweight transactions in
wireless data networks”, U.S. Patent 6148405 A, Nov. 2000.

[23] Internet Security Glossary, Version 2, RFC 4949, August 2007.
[24] A. Bhattacharyya, S. Bandyopadhyay, A. Pal, “ITS-light: Adaptive

lightweight scheme to resource optimize intelligent transportation
tracking system (ITS) Customizing CoAP for opportunistic
optimization”, 10th International Conference on Mobile and Ubiquitous
Systems (Mobiquitous 2013), January 2013.

[25] A. Bhattacharyya, S. Bandyopadhyay, A. Pal, “Adapting protocol
characteristics of CoAP using sensed indication for vehicular analytics”,
11th ACM Conference on Embedded Networked Sensor Systems,
SenSys, 2013.

[26] A. Ukil, S. Bandyopadhyay, A. Bhattacharyya, A. Pal, T. Bose,
“Lightweight security scheme for IoT applications using CoAP,”
Internation Journal of Pervasive Computing and Communications, vol.
10, pp. 372-392, 2014.

Fig. 9. Session-establishment in standard DTL-PSK [4][5].

687

