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The buffer sizing problem is a big challenge for high speed network routers to reduce buffer cost without

throughput loss. The past few years have witnessed debate on how to improve link utilization of high speed

networks where the router buffer size is idealized into dozens of packets. Theoretically, the buffer size can

be shrunk by more than 100 times. Under this scenario, widely argued proposals for TCP traffic to achieve

acceptable link capacities mandate three necessary conditions: over-provisioned core link bandwidth, non-

bursty flows, and tens of thousands of asynchronous flows. However, in high speed networks where these

conditions are insufficient, TCP traffic suffers severely from routers with tiny buffers.

To explore better performance, we propose a new congestion control algorithm called Desynchronized

Multi-Channel TCP (DMCTCP) that creates a flow with parallel channels. These channels can desynchronize

each other to avoid TCP loss synchronization, and they can avoid traffic penalties from burst losses. Over a

10 Gb/s large delay network ruled by tiny buffer routers, our emulation results show that bottleneck link uti-

lization can reach over 80% with much fewer number of flows. Compared with other TCP congestion control

variants, DMCTCP can also achieve much better performance in high loss rate networks. Facing the buffer

sizing challenge, our study is a new step towards the deployment of optical packet switching networks.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Router buffer needs to be large enough to accommodate the dy-

namics of TCP congestion control. The traditional guidance on main-

taining a fully utilized link while TCP ramps up its congestion window

suggests a Bandwidth-Delay-Product (BDP). Equivalently, this rule-of-

thumb decides the amount of buffering by B = C × RTT [1], where C

is the capacity of a bottleneck link and RTT is the Round-Trip-Time

of a TCP connection flowing through the router. However, for a typi-

cal RTT of 250 ms, a router with a C = 40 Gb/s link capacity requires

10 Gb of buffering, which poses considerable challenges to design and

cost of networks.

As BDP keeps growing, larger and more expensive buffers will

also exert higher interference on TCP flows. Studies [2,3] argue that

large buffers tend to induce TCP loss synchronization, because large

buffers prolong TCP’s control loop and enlarge queuing dynamics.

Recent studies [4,5] proposed a tiny-buffer model to significantly

reduce buffer to a size of O(log W), where W is congestion window

size. They recommended that a few dozen packets of buffering can
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uffice an acceptable link load for TCP traffic (e.g., 75% utilization).

heoretically, the buffer size can be shrunk by more than 100 times.

his model has been examined with promising results from several

Gb/s network experiments [6].

Although the above works suggest that a tiny buffer may be suffi-

ient for a relatively large bandwidth, they assume that tens of thou-

ands of TCP flows are neither bursty nor synchronous. In fact, such

raffic relies on the Internet backbones, where tens of thousands of

ows are spread out through over-provisioned core links. In addi-

ion to the backbone networks, nowadays most universities and re-

earch laboratories provide high speed access networks to support

arge scale scientific research. The bandwidth for such networks has

een growing increasingly in the order of Gb/s. In a typical setup,

outers have only a very small amount of buffers, but it is still not

lear whether such small amount of buffers is sufficient to serve the

ast growing bandwidth.

We argue that existing tiny buffers are not sufficient to meet the

andwidth requirement in high speed networks especially in the ac-

ess networks. This is because: (i) the access links have congestion,

ii) the network traffic is bursty, and (iii) the number of flows is at

east one order of magnitude smaller to reach an ideal level of asyn-

hronism.

Therefore, it is critical to provide a TCP solution for high speed

ccess networks with tiny buffers. First, the solution can meet the

http://dx.doi.org/10.1016/j.comcom.2015.07.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2015.07.010&domain=pdf
mailto:ccui@cct.lsu.edu
mailto:xuelin@cct.lsu.edu
mailto:cchiu1@lsu.edu
mailto:pkondi1@lsu.edu
mailto:sjpark@cct.lsu.edu
mailto:trysjp@hotmail.com
http://dx.doi.org/10.1016/j.comcom.2015.07.010


C. Cui et al. / Computer Communications 69 (2015) 60–68 61

b

t

r

b

i

l

b

c

m

c

l

n

s

b

p

d

i

r

t

c

l

m

t

w

W

t

w

m

2

fi

t

t

i

t

m

C

t

t

w

e

c

(

p

n

f

s

s

E

w

I

w

b

a

v

d

a

n

Fig. 1. Heuristic comparison of the aggregated traffic throughput between TCP syn-

chronization and TCP desynchronization.
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andwidth requirement of end users that have high speed connec-

ivity. Second, it can reduce the challenge of deploying all-optical

outers that are limited by buffer size [7] but succeeding in huge

andwidth and low power cost. Third, it can reduce router complex-

ty, making them easier to build and easier to scale. And last but not

east, it can minimize the queuing delay and jitter that are intrinsic to

uffer size.

We propose a new TCP congestion control algorithm called Desyn-

hronized Multi-Channel TCP (DMCTCP). DMCTCP creates a flow with

ultiple channels. It desynchronizes channels and recognizes burst

ongestion. Therefore, impacts of TCP loss synchronization and burst

osses are avoided. The key ideas behind it are to prevent simulta-

eous sending rate cuts from loss synchronization and to prevent

ending rate penalties from burst losses. The algorithm is inspired

y parallel TCP [8] and Multi-Path TCP [9] (MPTCP), but with the im-

ortant distinctions that various congestion events are detected and

istinguished with different corresponding actions, and that no mod-

fications to or assistance from other layers (e.g., the link layer) are

equired.

The rest of the paper is organized as follows. Section 2 discusses

he related work. In Section 3, we first present typical TCP loss syn-

hronization based on an idealized model of TCP. Then, we derive a

oss desynchronization solution and illustrate performance improve-

ent. Second, we propose two types of congestion, and suggest that

hey should be differentiated in TCP congestion control. In Section 4,

e specify the design of DMCTCP that yields robust performance.

e also show the algorithm implementation that takes advantage of

he MPTCP release supported in the Linux kernel. Compared DMCTCP

ith other TCP variants, Section 5 demonstrates our 10 Gb/s experi-

ental results. The last section concludes the paper.

. Background and related work

TCP loss synchronization has been studied for many years. It is

rstly defined in [10] as that when one flow of a pair has conges-

ions, the synchronization events are these congestions shared with

he second flow in the same RTT. Studies [11,12] confirmed the ex-

stence of TCP loss synchronization and gave quantitative evaluation

hrough Internet experiments and software simulation.

Traffic burstiness can be exaggerated by various packet offload

echanisms that reduce CPU overhead. For example, Interrupt-

oalescing and TCP-Segmentation-Offloading are standard features

hat save CPU cycles and allow the network interface card (NIC)

o do the job of segmentation. Studies [6,13] illustrated that they

ere detrimental to network performance. Later studies proposed

xpensive solutions such as disabling the above mechanisms, spe-

ializing hardware to pace flows [14,15], or enabling Data-Center TCP

DCTCP) [16] over Explicit-Congestion-Notification (ECN). However,

aced flows sometimes suffer in performance when competing with

on-paced short flows [17], and DCTCP requires explicit feedback

rom middleboxes that are not widely deployed.

Active-Queue-Management (AQM) has been an active area of re-

earch over TCP desynchronization. However, when the router buffer

ize is reduced to a few dozen of packets, AQMs (such as Random-

arly-Detection (RED) [18]) are not reliable to desynchronize flows

hen the buffer is small and the line rate is large [2,7,13,19].

Queuing delay also becomes negligible in such tiny router buffers.

t is clear that only loss based TCP congestion control variants work

ell in tiny buffer networks because pure delay based and loss-delay

ased (hybrid) TCP variants [20–23] require detectable queuing delay

s the full or partial symptom of congestion. Among loss-based TCP

ariants, TCP-SACK and TCP-CUBIC [24] are widely deployed as stan-

ard TCP algorithm and default TCP of Linux respectively. These early

lgorithms do not consider TCP desynchronization.

The concept of parallel TCP enables applications that require good

etwork performance to use parallel TCP streams. PSockets [8] at ap-
lication level opens concurrent TCP streams to increase aggregate

CP throughput. However, parallel TCP streams are not only aggres-

ive [25], but they are also not aware of TCP loss synchronization

nd burst congestion. Multi-Path TCP (MPTCP) [9] is a proposed TCP

xtension to use multiple linked paths for a single TCP connection.

t manages data streams called subflows among multiple paths. In

inux kernel, it currently has two implemented congestion control al-

orithms named MPTCP-Coupled [26] and MPTCP-OLIA [27]. MPTCP

s likely to work correctly in the Internet through different middle-

oxes [28]. Study in [29] shows robust performance of MPTCP with

few subflows per-flow in a multiple fat-tree-topology data center

nvironment. But the related buffer sizing issues are not discussed.

. Motivation: problems of high speed access networks with tiny

uffers

.1. The TCP loss synchronization analysis

From the standard Additive-Increase/Multiplicative-Decrease

AIMD) TCP congestion control, a simplified macroscopic model for

he steady-state [30,31] is expressed as follows:

verage throughput of a TCP flow = 0.75 · W

RTT
(1)

onsider a particular RTT and segment size, the average throughput

f a flow will be roughly 75% of its largest congestion window W. If

uffer depth is negligible, W will be cut in half when the sending rate

eaches the bottleneck link capacity C. Then it increases by one seg-

ent per-RTT until again reaches W. Therefore, the average through-

ut of a flow in a bufferless bottleneck link is simplified as:

verage throughput of a TCP flow = 0.75 · C (2)

Let a complete TCP loss synchronization event happen when all

he flows experience packet drops in a congestion event. As a result,

ll the flows cut their rates in half and the bottleneck link is under-

tilized at the time. This congestion event includes at least n packet

rops where n is the number of flows. When n is small, it is highly

robable to have many complete loss synchronization events. Fig. 1a

eometrically shows a generalized scenario of complete loss synchro-

ization. As can be seen from the figure, the aggregated traffic win-

ow of three flows is cut in half on each congestion event and it fol-

ows the same sawtooth pattern, no matter what RTT each flow has.

herefore, the bottleneck link utilization becomes 75%.

The above analyses trigger our goal to desynchronize TCP flows. In

rder to desynchronize, each congestion event should ideally include

ne packet drop such that only one flow takes a rate cut. Fig. 1b shows

his idealized TCP desynchronization that improves traffic through-

ut. However, it is impractical to drop only one packet when the

uffer overflows, especially for a tiny buffer that holds only a few
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Fig. 2. Congestion control scenarios of a DMCTCP flow with two channels.
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dozen packets. This means Active-Queue-Management (AQM) mech-

anisms such as Random-Early-Detection (RED) will not work effi-

ciently. They will behave mostly like a drop-tail buffer because when

the buffer is too small, they cannot absorb the large bursts due to the

faster window growth inherent in TCP protocols [2,13,19]. Therefore,

instead of AQM, TCP congestion control becomes the target to find a

desynchronization solution.

As shown in Fig. 1b, dropping the flow that has the largest conges-

tion window will balance fairness among multiple flows [32]. This re-

quires communication among flows so that smaller flows should not

cut rate at the time when the largest flow cuts off. However, none of

the early TCP variants can satisfy this requirement as these variants

manage single-flow per-connection.

3.2. The burstiness analysis

In high speed access networks with tiny buffers, the link utiliza-

tion is most likely to be lower under many contending TCP flows. Not

only because of TCP loss synchronization, but also because of the in-

herent flow burstiness. Worse still, by applying techniques to save

CPU overhead, such as Interrupt-Coalescing and TCP-Segmentation-

Offloading, flow burstiness is exaggerated. As a result, the normal

TCP ACK-clocking is disrupted and packets are burst out of the

NIC at line rate [6,13]. Because these techniques have become de-

sirable for high speed networks beyond 10 Gb/s, burstiness is not

avoidable. Also, it induces complex and expensive solutions to pace

packets.

We consider two types of congestion: (a) bandwidth congestion,

which is caused by the high utilization of bottleneck link among

competing flows and (b) burst congestion, which is caused by ran-

dom burst contention that occurs even when bandwidth utilization

is low. We believe the impact of the second type should be avoided if

such congestion can be distinguished. This brings another challenge

because most loss-based TCP variants use packet losses (duplicated

ACKs) as a signal of bandwidth congestion and verify burst conges-

tion is hard work [33].

4. The DMCTCP congestion control

Inspired by parallel TCP and MPTCP, DMCTCP pursues minimal

TCP loss synchronization and reduces impact of burst congestion.

Similar to a MPTCP flow’s subflows used among available paths, a

DMCTCP flow consists of multiple channels. But these channels carry

split data from upper layer through a single path and reassemble the

data at the receiver. Each channel has an individual congestion win-

dow. By comparing channels through communication, the algorithm

can detect and distinguish loss synchronization and burst congestion.

4.1. DMCTCP design in detail

Let m (m ≥ 1) be the number of channels of a DMCTCP flow

through a single path. Obviously, at least two channels are required

to compare with each other when congestion happens. We denote

by wi the congestion window of channel i (i ∈ [1, . . . , m]); by wmax =
max{wi, i ∈ [1, . . . , m]}, wmin = min{wi, i ∈ [1, . . . , m]} and wtotal =∑m

i=1 wi the largest, the smallest and the aggregated congestion win-

dow of all the channels at time t; by timei the time stamp of a detected

loss in channel i; and by timec the time stamp of a most recent rate cut

of any channel. We assume all channels have the same Round-Trip-

ime (rtt) because they are through the same path with a negligible

buffer depth. The algorithm is as follows:

• Establish only one channel that follows standard slow-start when

a connection begins.
• Add (m − 1) channels in steady-state and

– for each loss on channel i ∈ m, decrease w by:
i
∗ wi/2 when ((wi = wmax) && (timei − timec) > rtt),
then timec ← timei;

∗ 0, otherwise.

– for each ACK on channel i ∈ m, increase wi by:

∗ 1/wi when wi = wmin;

∗ 1/(wtotal − wmin), otherwise.

DMCTCP is a loss-based algorithm. At the beginning, only one

hannel is used in slow-start phase such that it is compatible with

short TCP flow. In stable phase on the decrease part, as illustrated in

ig. 2a, the algorithm decides only the largest channel can be cut in

alf in a congestion event, and it desynchronizes channels by guaran-

eeing consecutive cuts are avoided within the same congestion event

one rtt interval). As explained in studies [10–12], the granularity of

ne RTT is used to determine if two losses are in the same conges-

ion event. As illustrated in Fig. 2b, when the largest channel has no

oss in a congestion event, the algorithm determines all the losses of

he smaller channel in the same congestion event are caused by burst

ongestion. This is because the largest channel will be more likely

o encounter the bandwidth congestion than the smaller channels;

nd it will be unfair for the smaller channels to yield their bandwidth

hares when the largest channel does not. Therefore, the unnecessary

ate cuts on smaller channels are avoided. In other words, the largest

hannel can be used to probe bandwidth congestion while the other

maller channels can be used to detect burst congestion. On the in-

rease part, for simplicity and compatibility, we choose the same in-

rease rate for the case of wmin channel and the case of rest channels.

his guarantees that when only one channel per-flow (m = 1), DM-

TCP defaults to the standard TCP. However, when m > 1, there is a

mall difference on channels growth. The smallest channel can grow

aster because it is least likely to cut rate as compared with other

hannels. Therefore, the algorithm simulates an increase parameter

= 2 such that the increment of aggregated window wtotal is always

apped at 2/wmin. For further discussion of the impact of these in-

rease and decrease parameters, we will put that as one of our future

ork.

.2. Implementation

We implemented DMCTCP by taking advantage of MPTCP API

eleased in the Linux kernel 3.5.0 [26]. Each subflow in MPTCP is

sed as a channel in DMCTCP, which adopts the subsocket struc-

ure [34]. A master subsocket is responsible for upper layers, and

t moves data among other subsockets as divide and conquer. The

ast-retransmit and fast-recovery algorithms, as well as the Selective-

cknowledgment (SACK) option are inherited in each channel. The

moothed-Round-Trip-Time (srtti) in each channel is used to estimate

tt. The number of channels per-flow can be configured statically or

ynamically by a path manager. As mentioned in the algorithm, there

s only one channel that follows slow start. After a congestion event
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Fig. 3. Steady state behavior of a DMCTCP flow, m = 2.
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appened, all other channels are added and they follow AIMD mech-

nisms with a minimum initial window defined in Linux.

.3. Illustrative examples of DMCTCP

We developed a new packet-sniffing tool and implemented it over

inux network stack at kernel space [35]. By using this tool, we can

learly evaluate DMCTCP. As an example, Fig. 3 shows in stable phase

ach channel’s congestion window with loss points (marked packet

rop events) for a DMCTCP flow with two channels (m = 2). As can be

een from the figure, DMCTCP reacts to the two congestion types: (a)

he smaller channel detects burst congestion, but the largest channel

oes not have any congestion at the time. So the smaller channel can

erely fast retransmit the lost packets without cutting off its send-

ng rate, (b) both the largest channel and the smaller channel detect

ongestions at the same time, but only the largest channel cuts its

ending rate to half. Therefore, multiple channels consecutive cuts

re avoided as desynchronization.

We also found that once loss synchronization is minimized, the

onvergence time of two competing flows is reduced. Fig. 4 illustrates

his feature by comparing the convergence time between two con-

ecutively started (30 s interval) flows. These two flows are compet-

ng a 100 Mb/s bandwidth 100 ms delay bottleneck. The routers have

28 packets in buffer size, which is roughly 15% BDP. The convergence
Fig. 4. Convergence time of two flows in a 100 Mb
ime is defined to be the elapsed time when the congestion window

f the second flow reaches roughly 80% of the first flow. For loss based

ongestion control algorithms, as shown in Fig. 4a and b, the conver-

ence time of two TCP-SACK flows is almost 320 s and the conver-

ence time of two CUBIC flows is almost 120 s. The pure delay based

lgorithm, TCP-Vegas [21], and the loss-delay based algorithm, TCP-

llinois [22], do not converge within the displayed 500 s as shown in

ig. 4c and d. This demonstrates the deficiency of queuing variance as

metric of congestion. However, when we compare the aggregated

ongestion window of each flow in DMCTCP, as shown in Fig. 4e and

, the convergence time is greatly reduced. It reduces more when the

hannel number increases.

In the same 100 Mb/s bandwidth 100 ms delay bottleneck with

5% BDP of buffer, we did another test to observe the congestion win-

ow responses to sudden arrived UDP traffic. Fig. 5 illustrates these

ongestion window responses of selected TCP variants to a 50 Mb/s

DP flow after 30 s. Because the UDP flow has a constant rate, we ig-

ored it in Fig. 5. And since this bottleneck has more than 10% BDP

uffer, we don’t observe any burst congestion. As can be seen, all TCP

ariants start to converge to their fair share at time 30 s. Fig. 5a shows

CP-SACK has smaller bandwidth utilization than the others. Fig. 5b

hows CUBIC have better bandwidth utilization than TCP-SACK, but

t also has more packet drops. For a DMCTCP flow with two chan-

els and three channels, Fig. 5c and d shows DMCTCP can efficiently

tilize available bandwidth by regulating congestion window peaks,

nd these channels are very fair to each other. For a bandwidth uti-

ization reference, the goodput of a 900 s running flow for TCP-SACK

s 36.6 Mb/s, for CUBIC is 42.4 Mb/s, for MCTCP with two channels

s 42.9 Mb/s, and for MCTCP with three channels is 43.7 Mb/s. These

tatistics show that TCP-SACK has the worst bandwidth utilization,

lthough it has the least packet drops.

.4. Determine a good number of channels

It is challenging to determine the best number of channels that

an mitigate impacts of synchronization and burst congestion. On one

and, more channels can achieve better performance. On the other

and, a large number of channels render additional overhead such as

hannel states calculation and send/receive queue management. To
/s bandwidth, 100 ms delay bottleneck link.
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Fig. 5. Congestion window behavior of a TCP flow competing a 50 Mb/s UDP flow in a 100 Mb/s bandwidth, 100 ms delay bottleneck link.

Fig. 6. The idealized aggregated window of various channels per-flow.

Table 1

Numerical examples of ideal link utilization

of a DMCTCP flow.

Number of channels Link utilization

m = 1 75%

m = 2 87.5%

m = 3 91.7%

m = 4 93.8%

m = 5 95%

m = 6 95.8%

m = 7 96.4%

m = 8 96.9%

...

m = 25 99%

l

o

c

4

fl

s

1

s

e

leverage performance and overhead, it is desirable to determine how

many channels are good enough.

Ideally, the aggregated congestion window of a DMCTCP flow

with complete desynchronization is expected to have regular varia-

tion between peaks and valleys. This is geometrically illustrated in

Fig. 6, which shows the aggregated window of two and three chan-

nels per-flow, along with one channel per-flow as the standard TCP

in model (2). Base on the geometric analysis of the sawtooth in Fig. 6,

we find a simplified macroscopic model for a DMCTCP flow in steady-

state1:

average throughput =
(

1 − β

2 · m

)
· C (3)

where β is the decrease parameter in each cut. Apply with β = 1/2

and enumerated m, we get the average link utilization in Table 1.
1 The inference of this simplified throughput model is in Appendix A.

f

3

From Table 1, five channels per-flow can achieve 95% of link uti-

ization. Beyond five channels, the increment is smaller. Consider the

verhead of data reassembling and reordering, we recommend the

hannel number to be five.

.5. TCP friendly

We measure the TCP-friendly of a flow variant over a TCP-SACK

ow by calculating Jain’s fairness index [36] from experiments with

ame RTT. These experiments use the same 100 Mb/s bandwidth

00 ms delay bottleneck link that is used in this section. Both flows

tart at same time and last 1200 seconds. The long term goodput of

ach flow is used for calculation of the index where 0 means the worst

airness and 1 means the best.

Fig. 7 shows the fairness indices as we vary the RTTs from 10 to

20 ms. As designed to be the same as the standard TCP, DMCTCP
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Fig. 7. TCP friendly comparison of TCP-SACK, CUBIC and DMCTCP.
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Fig. 8. 10 Gb/s access network testbed.
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Fig. 9. Average bottleneck link utilization as a function of flows without background

traffic, compared with different number of channels per-flow in DMCTCP.
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ith one channel has the best TCP-friendliness. With more channels,

MCTCP becomes more aggressive. When the RTT increases, DMCTCP

ith more than two channels seems to be a little better TCP-friendly.

e attribute this to the reason that slow convergence of TCP-SACK

ends to be a little aggressive when it is competing with DMCTCP. We

bserve that in small BDP networks with RTT less than 40 ms, CU-

IC also has very good TCP-friendliness. However, as BDP increases,

UBIC becomes more aggressive and it becomes the worst beyond

60 ms. As studied in 10 Gb/s experiments [37], the aggressiveness

f CUBIC is expected in very large BDP networks because TCP-SACK

s too conservative to be desirable in such networks. This opens

further discussion that if a network is TCP-friendliness sensitive,

MCTCP can be managed to use only one-channel per-flow.

. Performance evaluation

.1. Methodology

As shown in Fig. 8, we set up a 10 Gb/s dumbbell testbed as an

xample network from the CRON [38] platform. In this testbed, we

valuate the performance of DMCTCP and compare it with some other

CP variants.

Sender and receiver nodes are HP DL160G6 servers with two six-

ore 2.7 GHz processors and 16 GB RAM. Router nodes are SUN Fire

4240 servers with two quad-core 2.7 GHz processors and 8 GB RAM.

ll nodes have Myricom 10Gb/s NICs such that the bottleneck link

ate confirms to be 10 Gb/s. The delay node in the middle is an Anue

GEM optical hardware emulator [39]. This emulator can provide bi-

irectional communication delay and additional packet drop rate.

All the nodes use Ubuntu Server 12.04. Each end-host has a MPTCP

nabled Linux 3.5.0 kernel to test TCP-SACK, CUBIC [24], MPTCP-

oupled [26], MPTCP-OLIA [27] and our implementation of DM-

TCP. These end-hosts have enabled Interrupt-Coalescing and TCP

egmentation-Offloading, and are configured to have a very large

uffer such that the sending rates of flows are limited only by the

ongestion control algorithm. The routers use a normal Linux 3.5.0

ernel with the latest NIC driver.2 FIFO drop-tail queuing policy is

onfigured in each router.
2 Driver version: myri10ge-Linux.1.5.3devel-march-2013. p
Because we use an emulation-based testbed, it is important to

ake our network similar to the real network that has tiny buffers.

e empirically found that more system tunings at data link layer

nd network layer are necessary. To implement a tiny buffer, we

eed to reduce both the tx_ring/rx_ring at layer 2 in NIC and net-

ev_backlog/qdisc at layer 3 in kernel. We modified the NIC driver to

se only 128 ring descriptors, a small portion of the default 1024 size.

hen, we set packet size (MTU) to 8000 bytes because each descrip-

or holds up to 4096 bytes of data. This means a packet requires two

escriptors. We also set netdev_backlog/qdisc to 2. Therefore, our con-

guration emulates a 10 Gb/s network environment with 66 packets

f tiny buffers.

There are four paths from Senderi to Receiveri. We use Iperf traf-

c generator to generate long-lived TCP flows. We also evaluate our

xperiments performed in the context of bursty background traffic,

hich is injected by Router1 and Router4. Two types of flows are

onsidered as the background traffic: short-lived TCP flows and real-

ime UDP flows. We use Harpoon traffic generator to infinitely trans-

it short-lived TCP flows with an average delay of 120 ms. The inter-

rrival times between two successive connections follow exponential

istribution with mean 1 s. The average file size is 1 MB from a to-

al of 200,000 randomly sorted files, which follows Pareto distribu-

ion with the shape parameter alpha = 1.5. These values are realistic,

ased on comparisons with actual packet traces [6]. The aggregated

hroughput of short-lived TCP traffic is averaged at 165 Mb/s, along

ith one additional 300 Mb/s UDP flow as an aggregate of many in-

ividual real-time streams. As a result, the average background traffic

s 4.6% of the bottleneck link capacity.

.2. Results3

.2.1. Average bottleneck link utilization

The average bottleneck link utilization is calculated by counting

oodputs of all flows. Bi-directional delay (RTT) of each path is fixed

t 60 ms, 120 ms, 180 ms and 240 ms. Long-lived TCP flows are sent

ut in same number. These flows start within [0,10] seconds. One trial

or each test lasts 900 seconds, and repeats three times to get arith-

etic means of the goodputs. Most standard deviations fall in the

ange of ± 4% such that they can be omitted in our results.

We first verify the performance of DMCTCP by increasing the

umber of channels per-flow. Fig. 9 shows the average bottleneck

ink utilization without background traffic. It shows that utilization

ets higher when the number of channels increases. Starting with five

hannels per-flow, nearly 80% link utilization is achieved with only

00 flows. When the number of channels increases, the increment

f utilization becomes smaller. Therefore, it matches our analysis of
3 Readers can find the results of Intra-protocol fairness and RTT fairness from our

revious conference paper [35].
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Fig. 10. Average bottleneck link utilization as a function of flows, compared with different TCP variants.

Fig. 11. Average bottleneck link utilization of 20 flows as a function of packet drop rate,

RTT = 60 ms.

Fig. 12. Global TCP loss synchronization rates of TCP-SACK and DMCTCP (m = 5).

Table 2

Goodput ratio of other TCP vairants over TCP-SACK with different packet

drop rates.

Goodput ratio 10−2 5 × 10−3 10−3 5 × 10−4 10−4

DMCTCP 761% 757% 818% 819% 403%

CUBIC 102% 102% 110% 122% 167%

MPTCP-coupled 180% 162% 139% 132% 118%

MPTCP-OLIA 146% 128% 107% 101% 80%
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determining five channels per-flow. It also shows that the utilization

of 25 channels per-flow starts to be downgraded beyond 60 flows.

This downgrade is likely caused by the overhead of data reassembling

at the receiver side.

Secondly, we compare the performance of DMCTCP (m = 5) with

other TCP variants without and with background traffic. As shown

in Fig. 10a and b, DMCTCP performs best. Compared with TCP-SACK,

the utilization is 60% to 200% higher. Compared with CUBIC, the uti-

lization is 30% to 80% higher. Although we set five subflows per-flow

for MPTCP-Coupled and MPTCP-OLIA, they have close performance to

TCP-SACK. This verifies TCP-SACK, MPTCP-Coupled and MPTCP-OLIA

are conservative under large BDP networks. As shown in Fig. 10b, with

background traffic, the link utilizations are a little higher than these

without background traffic. This is expected because the background

traffic introduces some dynamics on queuing occupancy as in stud-

ies [37,40].

5.2.2. Adding packet drop rate

In study [2], network traffic is in favor of Poisson process and the

loss probability of a tiny-sized buffer running at 95% utilization is ap-

proximately 3.3 × 10−4. Therefore, in the bottleneck, we added an ad-

ditional packet drop rate that follows Poisson process provided by the

hardware emulator [39]. We calculated the average bottleneck link

utilization by aggregating goodputs of 20 long-lived TCP flows with

60 ms RTT. Again, one trial for each test lasts 900 seconds and is re-

peated three times to get arithmetic means. The standard deviations

are small enough (less than 2%) to be omitted.

As shown in Fig. 11, DMCTCP has much better performance than

the other TCP variants. We also assess performance of TCP variants

by showing the ratio of the achieved throughput of the TCP variant

with the achieved throughput of TCP-SACK. Table 2 summarizes these

throughput ratios. We can observe that DMCTCP performance is more

robust in high loss rate networks.

5.2.3. TCP loss synchronization rate

To better understand the impact of TCP loss synchronization, we

define new formulas of calculating the per-flow or per-channel syn-

chronization rate and the global synchronization rate.
We specify a congestion event happens when there are one or

ore packets dropped simultaneously within a “short” interval �t.

n the time domain, �t is roughly the largest rtt of these flows. There

re two separated congestion events if their �ts are not overlapped.

or a total of n flows through a bottleneck over a “long” measuring pe-

iod τ , we let T denote the total number of congestion events, where

i, k represents a loss event at the kth congestion for flow i such that

i, k = 1 when flow i loses, and li, k = 0 otherwise. Therefore, the to-

al number of loss events Ni for flow i is:
∑T

k=1 li,k = Ni ∈ [1, . . . , T ].

hese dropped packets are either from a single flow or from multiple

ows. The per-flow or per-channel synchronization rate is defined in

ormula (4), which is based on the weighted loss events of a specific

ow or channel i over the total congestion events T:

Ri = Nw
i

T
= 1

T

T∑
k=1

(li,k × weightk) (4)

s mentioned above, the li, k equals 1 when flow i or channel i cuts

ff at the kth congestion event, and the total number of weighted loss

vents Nw
i

of flow i or channel i equals
∑T

k=1 (li,k × weightk) where

he weight (weightk) is calculated based on results from our packet-

niffing tool. For example, 3 out of total n flows or n × m channels are

oss synchronized on the kth congestion so the corresponding weightk

s 3/n or 3/(n × m).

To average n flows or n × m channels synchronization rates, a

lobal TCP synchronization rate is expressed below as a harmonic

ean of them in Formula (5). The n′ equals n for flows or n × m for
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C C

Fig. A.13. Congestion control scenarios of a DMCTCP flow with two channels.
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(5)

We compare the loss synchronization rates of TCP-SACK and DM-

TCP because they closely follow the AIMD policy. Using our TCP

tack sniffing tool, we tested various number of flows without back-

round traffic and with background traffic. Bi-directional delay be-

ween Senderi and Receiveri are fixed at 120 ms, and same number of

ong-lived TCP flows are sent out from Senderi to Receiveri respectively

or 1500 s. After a warm up of 300 s, we calculate TCP loss synchro-

ization rates for 1000 s.

Fig. 12 shows the global TCP loss synchronization rates as a func-

ion of different number of flows or channels. Compared with TCP-

ACK, DMCTCP (m = 5) has synchronization rates roughly one order

f magnitude smaller, which shows that it can desynchronize chan-

els for better performance. We notice that synchronization rates of

MCTCP remain nearly the same beyond 40 flows and the rates of

CP-SACK are a little higher for cases under background traffic. The

eason for the first could be the bottleneck queue causes more losses

s the number of flows increases. And the reason for the second is

robably due to the dynamics of background traffic are taking penal-

ies that help increase loss synchronization on long-lived flows.

. Conclusion

We have shown that popular TCP variants have performance is-

ues in high speed networks with tiny buffers. Based on the anal-

ses, DMCTCP tries to avoid TCP loss synchronization and to avoid

mpact of burst congestion. Our experimental results confirmed that

MCTCP can achieve much higher performance with very good prop-

rties in terms of convergence, TCP-friendliness and fairness.

DMCTCP brings immediate benefits as it does not require mod-

fications to or assistance from other layers and it matches the re-

uirements to deploy all-optical routers in access networks. Because

ueuing delay is minimized, it also significantly reduces the memory

equired for maintaining a large window and is beneficial to latency

ensitive applications.
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ppendix A. Inference of DMCTCP throughput model

As shown in Fig. A.13a, for a single-channel DMCTCP flow’s con-

estion window W in steady-state, if the network buffer depth is neg-

igible, RTT is almost a fixed value and W will be cut in half (β = 1/2)

hen the sending rate reaches the bottleneck link capacity C. Then
t linearly increases by one segment per-RTT until again reaches W.

herefore, the total data transmitted during the time �t is simplified

s:

verage throughput · �t = C · �t − 1/2 · β · C · �t

⇒ average throughput =
(

1 − β

2

)
· C

Ideally, the aggregated congestion window of a DMCTCP flow with

omplete desynchronization is expected to have regular variations.

his is geometrically illustrated in Fig. A.13b, which shows the aggre-

ated window of two channels. The total data transmitted during the

ime �t is simplified as:

verage throughput · �t = C · �t − 2 · 1/2 · β

2
· C · �t

2

⇒ average throughput =
(

1 − β

4

)
· C

For a DMCTCP flow with m channels, therefore, it will have a fine-

rained aggregated congestion window that is desynchronized by

hese channels. The total data transmitted during the time �t is sim-

lified as:

verage throughput · �t = C · �t − m · 1/2 · β

m
· C · �t

m

⇒ average throughput =
(

1 − β

2 · m

)
· C
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