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A B S T R A C T

The introduction of automated technologies has raised concern about how this will transform the productivity
and employment. This paper examines the link among automation technologies, productivity and employment
in the long-term using a panel data analysis for 5511 Spanish industrial firms. We test four different hypothesis
and we show the following results: (i) the use of automation technologies predicts some of the main firm
consolidated results, such as sales, added value, exports, innovation and R&D activities; (ii) although the use of
robotics and flexible production systems would boost long-term productivity, computer-aided design and
manufacturing, and data-driven control would either slow down or do not explain productivity. In addition, the
connection between four automation technologies in the explanation of productivity has not been confirmed;
(iii) the use of industrial robots, data-driven control and flexible production systems have been consolidated as a
labour-reducing factor; and (iv) despite this technological labour-reducing effect, the overall complementarity
factor of four automation technologies and human capital enhance long-term trend of employment. Our results
highlight the importance of the implementation of new management methods based on data-driven decision
making and the generation of public policies to support automation skills.

1. Introduction

Industrial robots have been present in business activity for a long
time. Their link with automation technologies (i.e. robotics and artifi-
cial intelligence, big data, Internet of Things, cloud computing or 3D
printing) has, recently, generated a renewed academic interest con-
cerning how and when automation will transform the labour market
and, in particular, their effects on productivity and employment
(Autor, 2015; Frey and Osborne, 2017; Pratt, 2015).

Regarding productivity, the available empirical evidence suggests a
clear link amongst robotic density (robots per worker or hours worked),
labour productivity and economic growth in the period prior to the last
economic crisis that began in 2007 (Graetz and Michaels, 2018).
However, the recent declines in aggregate productivity during the last
decade in the world's leading economies has, once again, opened the
debate about the effects of automation and digitization on the dynamics
of productivity (Byrne et al., 2016). Brynjolfsson et al. (2017) find clear
similarities with the effects of previous waves of new technologies,
especially in the first digital wave. Similar to other general purpose
technologies (GPTs) (Bodrozic and Adler, 2018; Bresnahan and
Trajtenberg, 1995; Trajtenberg, 2018), the full effects of automation

will not become widespread until new waves of related technological
and management innovations materialize. In particular, the authors
point out the existence of clear complementarity relations with in-
vestment and innovation in intangible assets, such as R&D activities,
business process redesign, organizational changes and new labour
skills. In the same vein, Schuelke-Leech (2018) points out that second-
order disruptive technologies, which if interconnected can lead to
Kondratieff long waves, interact with a broad set of institutional, edu-
cational, financial and public policy factors.

Regarding employment, new evidence shows that, in the long term,
we are not moving towards an overall substitution of jobs, but towards
job polarization (Goss et al., 2014). At the same time, the interaction
between automation and employment not only generates a reallocation
of tasks and a displacement of occupations (particularly low-skilled
workers in routine jobs), but also augments human work (especially
skilled workers or new specializations within occupations)
(Bessen, 2016; Ramaswamy, 2018). In this context, the existing litera-
ture has focused on understanding the scope of these labour-aug-
menting and labour-share-displacing processes (Karabarbounis and
Neiman, 2014).

In this context of productivity mismeasurement (Brynjolfsson et al.,
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2018; Syverson, 2017) and less-augmenting and displaced labour
(Autor and Salomons, 2018), firm-level literature has developed the
industry 4.0 construct (hereinafter, I4.0) to study the effects of auto-
mation technologies (Lu, 2017). I4.0 is a multidimensional and con-
stantly evolving construct used to define the current process of digital
transformation in industrial firms, which evolve towards more flexible
production systems, and strategic and operational decision making
based on the analysis of massive data in real time (Porter and
Heppelmann, 2014; Xu et al., 2018).

The literature has pointed out that I4.0 technologies are capable of
generating a broad set of benefits for the industrial firm, ranging from
additive manufacturing, flexible production and customized products
(Brettel et al., 2014; Weller et al., 2015); the support and constant adap-
tation of decision-making (Brynjolfsson and McElheran, 2016;
Michaels et al., 2018; Schuh et al., 2017); resources (especially energy)
management efficiencies (García de Soto et al., 2018) and sustainability
(Bechtsis et al., 2018; De Sousa-Jabbour et al., 2018; Jeschke et al., 2017);
or new and collaborative business models, derived from horizontal in-
tegration and collaboration networks (Wei et al., 2017). However, most of
the available evidence is more related to the research on the I4.0 tech-
nologies implementation factors or how I4.0 modifies the firm value
generation (Frank et al., 2019; Wang et al., 2016), than with the study of
I4.0 consolidated effects on firm results. In fact, the little available evi-
dence on firm results usually works at the level of the expected benefits by
the managers of the firms (Dalenogare et al., 2018).

The aim of this paper is to provide a quantitative analysis of the effects
of automation technologies on the productivity and level of employment
of consolidated Spanish industrial firms. To this purpose, we provide an-
swers to the following questions: are automation technologies able to
predict firm results, such as sales, value added, gross margin, exports or
innovation? What is the effect of automation technologies on productivity
and employment and what is the explanation of that interaction?

Our results show that the use of automation technologies predicts
some of the main firm consolidated results, such as sales, added value,
exports, innovation and R&D activities. However, the effects of auto-
mation technologies on firm productivity are mixed. While the use of
robotics and flexible production systems boost long-term productivity,
computer-aided design and manufacturing, and data-driven control do
not boost productivity. In addition, and regarding employment, the use
of industrial robots, data-driven control and flexible production systems
are consolidated as a labour-reducing factors.

The reminder of the paper is structured as follows: Section 2 reviews
the related literature and Section 3 describes the model and hypothesis
and the empirical specification and data. Section 4 presents the main
results for the effects of automation on productivity and employment,
and Section 5 discusses and concludes.

2. Literature review

Firm productivity drivers are multiple and complex
(Syverson, 2011). Over the last few years, new literature has attempted
to explain the sources of firm productivity in the recent competitive
environment linked to the global knowledge economy
(Venturini, 2015). Regarding knowledge flows, the link between re-
search and development (R&D) and information and communication
technologies (ICT) has been identified in the literature as a set of in-
ternal knowledge externalities to explain firm productivity (Hall et al.,
2013). It has been widely confirmed that R&D is crucial to improve
firms’ technological absorption capacity and, through ICT-related in-
novation, boosting their productivity levels (Doraszelski and
Jaumandreu, 2013; Luintel et al., 2014).

However, ICT does not give rise to widespread productivity im-
provements until firms and their workers have achieved the required
educational/training levels, and strategic, organizational, labour and
cultural skills. To fully exploit its growth opportunities, ICT need
changes in organizational and business process, generally linked to

intangible assets (Brynjolfsson et al., 2017). In this context, the effects
of ICT on firm productivity are indirect, especially in SMEs. Com-
plementary relationships are established with other dimensions, in
particular with employees’ training and workplace innovation. These
results add new evidence of a direct link between labour costs and
productivity (Faggio et al., 2010; Mahy et al., 2011). Better trained,
more skilled (in particular concerning digital skills) and committed
workers generate greater returns for firms with regard to productivity
and they obtain higher wages. These spillovers are widely demonstrated
in previous research using firm-level data (for a review of this literature
see Cardona et al., 2013; Díaz-Chao et al., 2015).

Beyond the interaction among the traditional dimensions of
knowledge flows, the recent literature highlights the growing im-
portance of the use of automation technologies, especially robotics and
artificial intelligence (AI), in explaining sectoral and firm productivity
(Brynjolfsson et al., 2018; Graetz and Michaels, 2018). This evidence
connects with the new findings in the literature on firm productivity
divergences, which highlights clear increases in the dispersion of pro-
ductivity. The increase in the productivity gap between global frontier
and laggard firms could reflect technological divergence
(Andrews et al., 2016; Berlingieri et al., 2017) and suggests a new link
between the automation technologies, and firm productivity.

Regarding the effects of automation on employment, on the one
hand, a starting point in the literature has been the empirical ver-
ification of the jobless recovery. Since the 1990s, gross domestic pro-
duct (GDP) recoveries in the US have been accompanied by weak em-
ployment growth (Brynjolfsson and McAfee, 2012). This trend, which
fits with ICT-skills polarization (Michaels et al., 2014), could be ex-
plained by the relationship among digitization, business cycles and
employment skills. During the recession there was a destruction of
middle-skills jobs, usually linked to routine tasks, while during the re-
covery phase these displaced workers had great difficulties transi-
tioning into other jobs (Goos et al., 2014).

However, new research has ostensibly nuanced the approach of jobless
recovery (Graetz and Michaels, 2017). For a large sample of developed
countries, industries and recent economic cycles, a recovery in employ-
ment faster than GDP is highlighted. Neither industries nor middle-skill-
intensive jobs (more exposed to the impact of robotization) have experi-
enced slower job recoveries. This suggests that automation technologies
were not the cause of jobless recoveries outside the US. Indeed, com-
plementary evidence tends to refine the jobless recovery approach.
Muro and Andes (2015) certify that, despite the general trend of em-
ployment losses in the manufacturing industry, the countries with highest
investment in robotics (South Korea, Japan and Germany, among others)
have lost fewer industrial jobs. Likewise, industries with more intensive
robotics use (automotive, electronics, metallurgy and chemistry) differ
from the less intensive industries because they employ more qualified
workers (20% more engineers) and pay higher wages. These results mo-
tivate the interest in studying the predictions for the Spanish case.

On the other hand, the literature has focused on routine-task and
middle-skills employment substitution. Frey and Osborne (2017) esti-
mate the probability of computerization for 702 detailed occupations in
the US. According to their estimations, around 47% of total US em-
ployment (both industrial and services employees) is at high risk of
automation relatively soon (at most in two decades). Along the same
lines, Acemoglu and Restrepo (2017) analyse the impact of industrial
robotization on local labour markets in the US. Their conclusions also
reinforce the substitution hypothesis of industrial employment. Al-
though the effects of robotization on employment appear to be much
more modest than other structural industry transformations (such as
offshoring, the fall in routine employment, or investment in ICT ca-
pital), their impact is negative.

However, these results do not seem to take into account the dy-
namic relationship among automation technologies and labour. In this
context, Acemoglu and Restrepo (2018a, 2018b) have developed a
much more complete framework that, based on task analysis, takes into
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account the dynamic relationship between technology and employ-
ment. According to this approach, automation initially replaces routine
employment, which reduces employment demand and wages. But,
through cost savings and capital accumulation, automation also gen-
erates productivity increases, which improves the demand for non-au-
tomated employment. Nevertheless, in the short term, these counter-
vailing effects would be insufficient, so that gains in productivity would
always be higher than wages, which determines a reduction in the share
of labour in national income. For countervailing forces to be complete it
is necessary to create new non-routine tasks that require or re-
incorporate the workforce into new activities. In this sense and for an
international sample of 40 countries, Dechezleprêtre et al. (2019)
confirm the dynamic relationship between skill-based wages and in-
novations in automation: exogenous increases in low-skill wages lead to
more automation innovations, and increases in high-skill wages tend to
reduce automation innovations. Similarly, Dengler and Matthes (2018)
use this approach in a task-differentiated analysis to correct the labour-
reducing effect of automation technologies in Germany.

Autor and Salomons (2018) use data from 1970 on 28 industries in 18
OECD countries to analyse the effect of automation on employment and
labour share. Their main result is that, during the last four decades, au-
tomation (measured through the increase of total factor productivity, TFP,
or robotics adoption) has increased employment, but also has reduced the
relative weight of labour on added value. Industries with persistent pro-
ductivity growth have reduced, to the same extent, their labour share
(direct labour-share-displacing effect). At the same time, the remaining
industries have not been able to compensate for this direct effect through
employment-augmenting indirect effects linked to input-output linkages,
compositional shifts, or final demand increases. This result has accelerated
from the 1980s and it is more substantial in the 2000s. Dauth et al. (2017)
and Chiacchio et al. (2018) obtained similar evidence from German and
EU-wide data, respectively. Dauth et al. (2017) found that robot adoption
leads to worker reallocation (from industry to services) but has no net
impact on employment or wages. Chiacchio et al. (2018) find that ro-
botization reduces the European employment rate but do not point to
robust and significant results on wage growth.

These findings indicate that automation would boost firm pro-
ductivity, but regarding employment automation would become less
labour-augmenting and more labour-displacing. However, previous
research has mainly focused in robotics and AI at an aggregate or in-
dustry level, while research focusing in firm level analysis is quite
scarce (Seamans and Raj, 2018). The recent literature on I4.0 examines
the effects of automation technologies to cover this field.

From a technological point of view, it has been pointed out that I4.0
integrates traditional physical elements (such as machines or produc-
tion devices) and digital elements (such as sensors and networked
software), with the aim of generating data that lead to a more efficient
way of firm management. These complementarities between physical
and virtual environments surpass the technological dimensions and
extend to all the elements of firm value processes (Szalavetz, 2019). In
this sense, I4.0 can be seen as a new model of organization and man-
agement of the value chains during the life cycle of products or, even, as
a collective concept that brings together new digital technologies and
new ways of firm organization. Considering its technological, strategic,
organizational and production complementarities, I4.0 can be inter-
preted as: “an integrated, adapted, optimized, service-oriented and in-
teroperable manufacturing process that correlates with algorithms, big
data and high technologies” (Lu, 2017, p. 3).

I4.0 is based on the use of digital technologies, such as Internet of
Things (IoT), Internet of services (IoS), cloud computing, wireless sensor
networks, or big data to collect data in real time and analyze it in order to
generate useful information and improve the efficiency of manufacturing
systems (Wang et al., 2016). This collection and analysis of massive data
allows the creation of cyber-physical systems (CPS), and, consolidates the
trend to integrated production systems and the servitization of the in-
dustry. The CPS are: “collaborating computational entities which are in

intensive connection with the surrounding physical world and its on-going
processes, providing and using, at the same time, data-accessing and data-
processing services available on the Internet” (Monostori et al., 2016, p.
621). For example, sensor controllers or numerical control machines that
exchange massive data through integrated computer terminals, wireless
applications or cloud computing.

The implications of the introduction of CPS on work organization in-
clude important modifications in the role of human labour within pro-
duction systems. Basically CPS: (1) combine data and information with
products and physical factors of production; (2) monitor and create a
virtual copy of the physical world; and (3) integrate the factory with the
entire product life cycle and with the activities of the supply chains. The
possibilities for autonomous and decentralized decision-making, commu-
nication and cooperation between automation technologies and people in
real time, and the growing transition from products to services by all
agents involved in the networks of value creation, demand new ways of
organizing work. I4.0 also implies important modifications in the role that
people play within the production systems. The tasks in the new value
networks are carried out with smart work approaches (Longo et al., 2017;
Phuluwa and Mpofu, 2018). In this sense, the intelligent work of the I4.0
reconfigure the integrated production systems, which also evolve and fit
with the idea of advanced manufacturing or smart manufacturing: a new
adaptable system where flexible lines automatically adjust production
processes for multiple types of products and changing conditions, which
improves quality, productivity and flexibility, while it helps achieving
customized products on a large scale and in a more sustainable way
(De Sousa-Jabbour et al., 2018).

The use of technologies, work and intelligent production ends up
configuring a final dimension of I4.0: smart products. These com-
plementarities can provide information on the development of new
products/services, new solutions for customers or new opportunities for
service providers (Porter and Heppelmann, 2015). Similarly, the in-
telligent integration of the entire value chain (smart supply chain), from
supplies to distributors and end customers, allows the I4.0 firms the
combination of resources and collaborative manufacturing. For ex-
ample, share resources on industrial platforms, focus on their core
competencies and develop complementary products/services with more
added value (Tao et al., 2018; Zhong et al., 2017).

Regarding the effects of I.40 technologies on firm results, a pio-
neering research, using an international sample of 814 firms that have
used big data and massive data analysis, obtains that the uses of I4.0
technologies are associated with productivity improvements located
between 3% and 7% (Müller et al., 2018). Moreover, they conclude that
the technological intensity and competitive capacity of the industrial
subsector reinforce the ability of firms to improve their productivity.
Outside the technology-intensive sectors or with low competitive
pressure, the effects of big data technologies and massive data analysis
on productivity are not significant. In the same line, Brynjolfsson and
McElheran (2019) use a large sample of 7,100 US manufacturing es-
tablishments and obtain that data-driven decision making (DDD) is
strongly associated with an increasing productivity, especially for early
adopters when adoption rates in the sector were lower.

Expanding the number of 4.0 technologies and the scope of their
results, Dalenogare et al. (2018) contrasted, for a large sample of 2,225
industrial firms in Brazil, the effects of automation on firm results. The
authors analyze the effects of nine different I4.0 technologies: (1)
computer-aided design and manufacturing (CAD/CAM); (2) integrated
engineering systems; (3) digital automation, robotics, IoT and sensors;
(4) flexible manufacturing lines; (5) digital production control systems
type (i.e., ERP or MES); (6) big data; (7) digital products/services; (8)
additive and 3D manufacturing; and (9) cloud computing services, and
aggregate information on expected benefits in three types of firm re-
sults: (1) for the products: customization, quality and reduction of
launch times; (2) for operations: operating costs, productivity, and vi-
sualization and control; and (3) side effects: sustainability and worker
satisfaction. The results of the predictive analysis are mixed. They
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observe that only three of the nine analyzed technologies (computer-
aided design and manufacturing, digital automation and big data)
predict positive operational effects, while additive manufacturing pre-
dicts negative effects. The rest of I4.0 technologies do not predict ex-
pected operating benefits.

Following this literature, our study analyses long-term effects of au-
tomation technologies on productivity and employment for the Spanish
manufacturing firms. For that purpose, we will use four automation
technologies widely analyzed by the literature (Chen and Tsai, 2017;
Dalenogare et al., 2018; Frank et al., 2019; Liao et al., 2017): (1) robot-
ization (R), which refers to the use of industrial robots; (2) computer-aided
design and manufacturing (CADM), which refers to the use of CAD or CAM
technologies: (3) data-driven control (DDC), which refers to the use of
machines, tools or algorithms for numerical control of the activity; and (4)
flexible production systems (FPS), which refers to the use of non-stan-
dardized and high-frequency change production technologies. The postu-
lated hypotheses, related to individual and complementarity effects, are
empirically tested using a large sample of 5,511 firms in the period in-
tervals of 1991–2016 and 2000–2016. The objective of the analysis is to
capture the differential effects since the 2000s. For the best of our
knowledge, it is the first quantitative paper that provides empirical evi-
dence for industrial firms in Spain.

3. Methodology

3.1. Model and hypothesis

Adapting Van Reenen (1997), Kromann et al. (2011) and
DeCanio (2016), our baseline model considers a perfectly competitive
firm operating under constant returns to scale. We assume a constant
elasticity of substitution (CES) production function with three perfect
substitutable inputs (labour, capital and human capital) and four au-
tomation-based technologies of the form:

= + + + + +Q RN CADMN DDCN FPSN K H( ) ( ) ( ) ( )1 1 1 1 1 1 1

(1)

where Q is firm output, N, K and H are firm labour, firm capital and firm
human capital, respectively; R (robotization), CADM (computer-aided
design and manufacturing), DDC (data-driven control) and FPS (flexible
production systems) are labour-augmenting Harrod-neutral automation
technologies, and σ ∈ (0,1) is the constant elasticity of substitution
between labour, capital and human capital.

We assume that robotization, computer-aided design and manu-
facturing, data-driven control and flexible production systems mainly
give rise to an increase in R, CADM, DDC, and FPS. An increase in R,
CADM, DDC and FPS implies that the same amount of labour services
(RN), (CADMN), (DDC) and (FPSN) requires less amount of labour (N).
Assuming that, in perfect competitive environments, real wage (W/P) is
equal to the marginal product of labour, and the first-order condition
for labour can be written as:

= +Q N W
P

R CADM

DDC PFS

log log log ( 1)log ( 1)log

( 1)log ( 1)log (2)

In the same way, in perfect competitive environments, we can as-
sume that the marginal product of capital equals the cost of capital (C).
Therefore, the first-order condition for capital can be written as:

=Q log K Clog log (3)

Finally, and following human capital theory, we can assume that the
marginal product of human capital equals the cost of employee edu-
cation and training (T). Therefore, the first-order condition for human
capital can be written as:

=Q log H Tlog log (4)

Combining these three expressions, we can obtain our employment
demand function:

= + + +

+ + + + +

N W
P

R CADM DDC

FPS K C H T

log log ( 1)log ( 1)log ( 1)log

( 1)log log log log log (5)

Alternatively, the labour productivity function can be expressed as:

= +Q N W
P

R CADM

DDC FPS

log log log ( 1)log ( 1)log

( 1)log ( 1)log (6)

where the second equation terms: ( 1)
R CADM DDClog , ( 1)log , ( 1)log , FPS( 1)log , refer

to the total factor productivity based on technological changes (or TFP),
and the first equation term σ log(W/P) refers to labour deepening. When
the elasticity of substitution between labour, capital and human capital
is low (σ < 1) and for given real wages, labour productivity increases in
R, CADM, DDC and FPS. Consequently, employment decreases as long
as output (given level of production) and real wages are remain con-
stant. The decline in employment occurs because the increase in R,
CADM, DDC and FPS implies that less labour is needed to achieve a
given level of labour services (RN), (CADMN), (DDCN) and (FPSN), and
also because the low degree of substitution between labour, capital and
human capital implies a small increase in the use of labour services. In
contrast, when the elasticity of substitution is high (σ > 1), labour
productivity decreases in R, CADM, DDC and FPS (for given real wages),
and employment increases (for given Q). The reason for this is that the
decrease in R, CADM, DDC and FPS implies that more labour is needed
to achieve a given level of labour services (RN), (CADMN), (DDCN) and
(FPSN), and, due to the shift from capital services to labour services,
more labour is needed to achieve a given level of labour services.

Following Eq. (5) we can see that, for a given level of capital and
human capital, real wages and user cost of capital and human capital,
employment increases in R, CADM, DDC and FPS if the elasticity of
substitution is high (σ > 1), but decreases if the elasticity of substitu-
tion is low (σ < 1). Therefore, the implications of automation tech-
nologies on employment are equal to the case of a given level of pro-
duction (Eq. (6)). Recent empirical evidence supports that the value of σ
is below 1 in the case of automation technologies (León-Ledesma et al.,
2010; Harrison et al., 2014).

Thus, we can conclude that, for a given capital and human capital
stock and/or for a given output stock (i.e. in the short term), the impact
of automation technologies on productivity or employment depends on
the size of the elasticity of substitution between labour, capital and
human capital. But, in the long term, output and capitals are en-
dogenous and it is possible to expect that robotization, computer-aided
design and manufacturing, data-driven control and flexible production
systems would reduce the marginal costs of production, which could
encourage investment, productivity and output. Depending on the
elasticity of demand, this improvement in the economic activity could
increase employment in the long term. Hence, despite the fact that
automation technologies tend to reduce employment in the short term,
it may be the case that in the long term this trend will reverse
(Acemoglu and Restrepo, 2018b; Autor and Salomons, 2018;
Brynjolfsson and McElheran, 2019). If the increase in output is high
enough, the net long-term effect of automation technologies on em-
ployment could be positive. In this sense, it is possible to postulate that:
Hypothesis 1. Automation technologies increase labour productivity in
the long term (non-given capitals and/or non-given output stock). This
hypothesis only requires that the elasticity of substitution between
labour, capital and human capital is below 1.

Hypothesis 2. Automation technologies increase employment in the
long run. This hypothesis suggests significant employment creation in
the long term, which would compensate the short-term reduction in
jobs.
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However, similar to the link established between intangible assets,
such as human capital and workplace innovation, and ICT uses in the
first digital wave (Venturini, 2015), we expect that automation tech-
nologies are related one with each other and their use is linked with
different types of firm knowledge flows, especially with human capital
and training. Therefore, we extend our basic model to evaluate the
complementarity effects of automation technologies on firm pro-
ductivity and employment. The conditions of (long-term) flexibility of
output, capitals, real wages and user costs of capital and human capital
are established as in the previous model. It is possible to expect that
complementarities among automation technologies reduces the mar-
ginal costs of production, reinforces productivity and increases the
demand of firm's output (Müller et al., 2018; Dalenogare et al., 2018).
In this situation, the displacing effect on employment in the short term
would be clearly accelerated by the increases in output and human
capital over the long term (Brynjolfsson et al., 2018;
Dechezleprêtre et al., 2019; Longo et al., 2017). In order to accomplish
this long-term analysis, we propose two additional hypotheses:
Hypothesis 3. The complementarity effect among robotization,
computer-aided design and manufacturing, data-driven control and
flexible production systems increases productivity in the long term.

Hypothesis 4. The complementarity effect of automation technologies
and human capital increases employment in the long term.

3.2. Estimation functions and methods

We estimate the relationship among automation technologies, la-
bour productivity and employment using two types of models. The first
model estimates the individual effects of unit labour cost and automa-
tion technologies on productivity and employment (together with ca-
pital per worker and human capital). The second model estimates the
complementarity effects among automation technologies on pro-
ductivity (together with the individual effect of unit labour cost) and
the complementarity effects among automation technologies and
human capital on employment (together with the individual effects of
unit labour cost and capital per worker).

As we have explained in previous sections, we expect that the effects
of automation technologies on productivity and employment depend on
time. We estimate long-term effects in log-levels and we assume that
firm differences in log-levels reflect the differences in productivity and/
or employment in the long term. The stochastic equations of pro-
ductivity (derived from Eq. (6)) and employment (derived from Eq. (5))
in the long term to explain individual effects take the following form,
depicted in Eqs. (7) and (8):

= + + + + +

+ + +

q w p µR D R CADM DDC FPS

u

( ) &it it it it it it it it

se si it (7)

= + + + + + +

+ + + +

w p k µh µR D R CADM DDC

FPS

( ) &

,
it it it it it it it it

it se si it (8)

where lower case letters denote logs and πse and πsi are sector and size
firm dummies. These dummies control for the unobserved hetero-
geneity in the manufacturing sector and firm size. Remember that Rit,
CADMit, DDCit and FPSit represent the use of industrial robots, compu-
ters-aided design and manufacturing, data-driven control and flexible
production systems for firm i in period t. Note that w p( )it refers to the
real labour unit cost, and capital (kit) and human capital (hit) are also
captured. As a result of the importance of R&D activities as a driver of
technological change processes and as an agent for improving firm
performance, especially productivity, and additional variable (R&Dit)
has been incorporated into the functions to be estimated (Coccia, 2009;
Hall et al., 2013; Luintel et al., 2014). In Eq. (5) the uses of both the cost
of capital (log C) and the cost of human capital (log T) affect labour
demand. But, where there are differences in the user cost of capital and

human capital across manufacturing sectors or firm size, these factors
are captured by the fixed effects. This implies that their differences are
constant over time. Also, uit and εit are white noise terms.

Eqs. (9) and (10) depict the productivity and employment functions
with two complementarity effects. Eqs. (11) and (12) depict the pro-
ductivity and employment functions with four and five com-
plementarity effects:

= + + + +

+ + + + + +

q w p µR D RCADM RDDC RFPS

CADMDDC CADMFPS DDCFPS u
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it it it se si it
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RH CADMH DDCH RFPSH
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= + + + + +q w p µR D AUTOM u( ) &it it it it it se si it (11)

= + + + + + +w p k µR D AUTOMH( ) &it it it it it se si it1

(12)

Two-complementarity effects are: RCADM (robotization and com-
puter-aided design and manufacturing), RDDC (robotization and data-
driven control), RFPS (robotization and flexible production systems),
CADMDDC (computer-aided design and manufacturing, and data-
driven control), CADMFPS (computer-aided design and manufacturing,
and flexible production systems), DDCFPS (data-driven control and
flexible production systems), RH (robotization and human capital),
CADMH (computer-aided design and manufacturing, and human ca-
pital), DDCH (data-driven control and human capital), and FPSH
(flexible production systems and human capital). Finally, the four-
complementarity and five-complementarity effects in the productivity
and employment equations are: AUTOM (robotization, computer-aided
design and manufacturing, data-driven control and flexible production
systems) and AUTOMH, which refers to the complementarity effect
between the four technologies of automation and human capital.

The provision of an annual series for a long period of time has al-
lowed us to address the estimation of explanatory factors for the
manufacturing firms’ long-term productivity and employment. With
this objective in mind, we have constructed the arithmetic means of the
variables and indicators for the two established estimation periods. The
first period corresponds to the available set of data and covers from
1991 to 2016. As a result of the progressive adaptation of the in-
formation source to the business context, we have built a second esti-
mation period that covers from 2000 to 2016. In this second period, the
indicators related to the manufacturing firms’ digitization process are
incorporated. The estimation of the hypothesized functions has been
carried out using Ordinary Least Squares (OLS) regression methods. To
capture the effects of automation technologies on some firm results, we
have also performed statistical association analysis and multivariate
predictive studies (continuous and discrete choice models).

3.3. Information source

The information source used for the analysis is the Encuesta sobre
Estrategias Empresariales (Business Strategy Survey, ESEE). The ESEE is
an annual survey of Spanish manufacturing firms conducted by the
Spanish Government's Ministry of Finance and Public Administration.
The questionnaire, answered by the general management of the firm,
provides detailed information on businesses, especially in the areas of
strategic decision-making (prices, costs, markets and investment) and
the value process (human capital, organization, innovation, R&D and
ICT use). In addition, the most important indicators and ratios from
firms’ balance sheets and profit and loss accounts are presented. In this
context, it is important to stress that the ESEE provides panel data re-
presenting Spanish manufacturing businesses covering a broad period
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from 1990 to 2016 (last available year). Consequently, this panel data
permits a very detailed study of the microeconomics of productivity and
employment as well as the analysis of changes in Spanish manu-
facturing firms during various stages of the business cycle (Torrent-
Sellens, 2018).

The ESEE contains segmented information for manufacturing firms
with more than 200 workers (large firms) and firms with 10 to 200
workers (SMEs). As a result of the data collection, SMEs are classified
differently to the European Commission's definition
(European Commission, 2012). In the case of the ESEE, the limit used to
define an SME is 200 employees, while the European Commission uses a
maximum size of 250 workers. This difference is due to the sampling
procedure used by the ESEE. In this survey, all large manufacturing
firms (more than 200 workers) are included in the sample. However, for
SMEs (from 10 to 200 workers), stratified, proportional and systematic
sampling is used by industries (national economic activity two-digit
classification code, NACE) and size of the firm. The sampling excludes
manufacturing micro-firms, i.e. firms with less than 10 workers.

The ESEE also provides detailed information for 20 manufacturing
branches of activity: (1) meat industry; (2) food products and tobacco;
(3) beverages; (4) textiles and clothing; (5) leather and footwear; (6)
wood industry; (7) paper industry; (8) graphic arts; (9) chemical in-
dustry and pharmaceutical products; (10) rubber and plastic products;
(11) non-metallic mineral products; (12) ferrous and non-ferrous me-
tals; (13) metal products; (14) agricultural and industrial machinery;
(15) computer, electronic and optical products; (16) machinery and
electrical equipment; (17) motor vehicles; (18) other transport mate-
rial; (19) furniture industry; and (20) other manufacturing industries.

Appendix A presents detailed information on the structure (size:
Table A.1; and industries: Table A.2) of the sample of firms used. The
analysis of the panel data over time suggests a growing presence of
smaller firms (from 63.3% of SMEs in 1991 to 81.0% of SME in 2016)
and a notable reorientation of the industrial branches of activity. While
in 1991 six industries each accounted for more than 7% of the number
of firms in the sample: textile and clothing (11.3%), food and tobacco
(10.4%), metal products (7.6%), chemical and pharmaceuticals (7.4%),
non-metallic mineral (7.2%) and machinery and electrical equipment
(7.1%), in 2016, specialization had increased significantly and only
three industries accounted for 7% or more of the total number of firms:
food and clothing (13.5%), metal products (12.7%), and chemical and
pharmaceuticals (7.0%).

3.4. Variables and indicators

The dependent variables of the analysis are labour productivity and
employment in manufacturing firms, that we have approximated using
the logarithm of real added value per hour worked (HPT) and the
logarithm of the total staff employed (all contracts) in the firm (EMPL).

To capture the use of automation technologies, we use four di-
chotomous variables that take value 0 when the firm does not use them,
and take value 1 when firm uses them: (1) robotization (R); (2) com-
puter-aided design and manufacturing (CADM); (3) data-driven control
(DDC); and (4) flexible production systems (FPS). Despite the obvious
restrictions that using dichotomous variables imply, their incorporation
to the predictive model allow us to make a relevant contribution: we are
able to assess the impact on firm productivity and employment when
moving from an scenario where automation technologies are not used
to an scenario where these automation technologies are used.
Moreover, the analysis of their complementary relationships will allow
us to study their combined effects on productivity and employment. In
this sense, we have constructed six additional variables that collect the
pairs-complementarity between the four automation technologies, and
four more variables that include the pairs-complementarity between
the technologies of automation and human capital. We have also built a
joint indicator of automation technologies (AUTOM) and its com-
plementarity with human capital (AUTOMHC). All these

complementarity relationships have been calculated through the mul-
tiplication of the input variables, with the objective of capturing which
firms use jointly the identified technologies.

Real wages were approximated using an indicator of labour costs
per worker (LCW), the capital stock of the firm was approximated using
the logarithm of financial assets per worker (KW), and the human ca-
pital stock of the firm (HC) was measured using the logarithm of the
percentage of employees with tertiary (university) education (bache-
lor's degree level and higher). R&D activities have been captured
through a dichotomous variable (R&D) that takes value 0 when the firm
neither performs nor contracts R&D activities, and takes value 1 when
the firm carries out and/or contracts R&D activities.

Regarding the sectoral (πse) and size (πsi) dummies, we have con-
structed four additional variables that capture the non-observed hetero-
geneity in the models. From the average values of productivity, R&D ex-
penditure and proportion of employees with university education we have
constructed three dichotomous variables that assign value 1 to the manu-
facturing sectors with values of productivity, R&D spending and university
training of employees above the average, and value 0 otherwise. Once
these dichotomous variables were obtained, we have multiplied them by
the firm size variable, which takes value 0 for firms with 200 employees or
less on average in the reference period, and value 1 in the case of firms with
more than 200 employees on average in the reference period.

As a result of these combinations we obtain the following three
variables: (1) LAR_EF (large and efficient firms) identifies large firms
located in manufacturing sectors with above-average productivities; (2)
LAR_HC (large firms with intensity in human capital) identifies large
firms located in manufacturing sectors with an above-average number
of employees with university education; and (3) SME_R&D (SMEs with
R&D intensity) identifies small and medium-sized firms (SMEs) located
in manufacturing sectors with above-average R&D expenditure.

All the variables and indicators expressed in nominal terms have
been deflated using a Paasche index referred to the prices variation of
intermediate consumption. This index has been built on two groups of
goods: producer goods and energy and services acquired. Since we did
not have the relative weights of producer goods and energy we have
added the variation of these two components using a geometric mean
with fixed weights. In this sense, the price index of intermediate con-
sumption would take the following form:

= +PI t V t
V t

PI t V t
V t

PI t( ) ( )
( )

( ) ( )
( )

( ),INTCON
PGE

INTCON
PGE

SER

INTCON
SER (14)

where PIINTCON(t) is the price index of intermediate consumption in
period t (to be calculated); VPGE(t) is the value of the purchases con-
sumed in period t; VINTCON (t) is the value of the intermediate con-
sumption in period t; PIPGE(t) is the price variation of producer goods
and energy between t-1 and t obtained as

=PI t PI t x PI t( ) [( ( )] [( ( )]PGE PG E
0,95 0,5, where PIPG and PIE are the price

indices of producer goods and energy provided by the firm; VSER(t) is
the value of the services acquired in period t; and PISER is the price
index of the services acquired in the period t-1 and t. Appendix B
(Table B.1) presents the descriptive statistics of the variables and in-
dicators used in the analysis.

4. Results

4.1. Descriptive statistics

Table 1 and Fig. 1 show some of the main statistics describing the
value process and the results for the Spanish manufacturing firms.
Firstly, it is important to note the clear diverging trend of productivity
and employment in the analysed period. While real worked-hourly
productivity grew by 3.2% on average in the period 1991–2016, em-
ployment fell by 2.0%. If we index the data in base 100 at the beginning
of the period (1991) and calculate their evolution, the results show us
that productivity would not have stopped growing (until reaching a
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value of 180.3 points in 2016), while employment would have been
reduced about half (50.6 points in 2016).

Regarding automation technologies, and with the aim of providing
more information to international firm evidence, we have segmented
the sample of firms through the uses of industrial robots (robotized
firms versus non-robotized firms). In this sense, a very similar evolution
of productivity is observed, with a gap that has been reduced during the
last ten years. In contrast, employment dynamics have offered ambig-
uous results. Until 2007, the evolution of employment was clearly less
negative in robotized firms. However, during the last decade the ro-
botized firm labour-reducing trend has accelerated, reaching a
minimum of less than 300 employees on average in 2016 (compared to
more than 600 in 1991). In contrast, non-robotized firms have evolved
less negatively in recent years (since 2008 their employment has sta-
bilized at just under 80 employees on average).

As a result of the similar evolution of productivity and the clearly
differentiated dynamics of employment, it is possible to point out that the
jobless recovery has been much more intense in robotized firms, especially
since 2007. The gap between the growth of productivity and employment
has sharply accelerated during the last decade, especially for robotized
firms (more than 140 percentage points of difference in 2016).

To contrast the existence of significant differences between robot-
ized and non-robotized firms, we have carried out various statistical
association tests (ANOVA and Crosstabs). The use of industrial robotics
in Spanish manufacturing firms has evolved positively (from 17.7% in
1990 to a mean average of 39.1% in the period 2000–2016). The
characterization of robotized firms by size and industries (see Table A.3
of Appendix A) indicates a significant presence in the largest firms and
in a few industries, especially food and tobacco, chemical and phar-
maceuticals, metallurgy, ICT and electronics and automotive industries.

Secondly, it should also be noted that the use of industrial robots is
associated with better firm results. From 1991 to 2016, firms that used

robots presented sales levels five times higher than that of firms that did
not use robots, as well as an added value and exports clearly higher on
average. In the same way, robotized firms stand out for being much
better capitalized, having a greater presence of human capital and for
clearly higher R&D expenditure.

Thirdly and regarding productivity, robotized firms are more efficient
and reward and train the labour factor with greater intensity than firms
that do not use robots. Nevertheless, since the 2000s, the acceleration of
productivity growth in non-robotized firms has reduced the gap between
the efficiency levels of robotized and non-robotized firms. Especially in-
teresting is the analysis of the labour share on added value. Our data also
confirm the labour-displacing approach. Between 1991 and 2016, the
percentage of the unit labour cost over the real added value of robotized
firms stood at 61.8%, below that of non-robotized firms (65.7%). This
labour-displacing effect has been accentuated since the 2000s (60.3% for
robotized firms and 66.4% for non-robotized firms between 2000 and
2016, respectively). Finally, robotized firms are more intensive in in-
novation activities and the use of ICT-related technologies. However, since
the 2000s, the innovative dynamics have also slowed down.

4.2. Predictive analysis

We have analysed the predictive capacity of the four automation
technologies identified: industrial robots, computer-aided design and
manufacturing, data-driven control and flexible production systems on
some of the main firm results: sales, added value, exports, gross margin,
product innovation, process innovation and R&D activities. Following
the research methodology on the effects of automation on firm results
(Dalenogare et al., 2018; Brynjolfsson and McElheran, 2019;
Dechezleprêtre et al., 2019), we have contrasted four estimation models
by OLS and three discrete choice estimation models by Binary Logit.
The variables to be explained are the indicators of firm performance,

Table 1
ANOVA and crosstab analysis for manufacturing firms, based on the use of industrial robots.

1991–2016 2000–2016

Variable/indicator Non-robotized Robotized All Non-robotized Robotized All

Firm outputs
Sales (thousands of euros) 15,382 83,071 40,341⁎⁎⁎ 19,159 92,524 47,900⁎⁎⁎

Added value (thousands of euros) 4,171 19,749 9,918⁎⁎⁎ 4,845 20,702 11,057⁎⁎⁎

Exports (thousands of euros) 4,455 31,824 14,509⁎⁎⁎ 6,282 38,049 18,716⁎⁎⁎

Firm inputs
Capital per employee (thousands of euros) 50.5 83.8 62.9⁎⁎⁎ 63.7 99.6 77.9⁎⁎⁎

Tertiary education of labour (% employees) 10.3 14.2 11.7⁎⁎⁎ 11.9 15.3 13.3⁎⁎⁎

External exp. training per worker (euros) – – – 57.9 114.1 79.8⁎⁎⁎

R&D expenditure (thousands of euros) 152.5 1,128 510.6⁎⁎⁎ 229.1 1,285 641.9⁎⁎⁎

Innovation (% firms)
Product innovation (%) 23.5 23.5 47.0⁎⁎⁎ 19.1 21.5 40.6⁎⁎⁎

Process innovation (%) 35.3 30.9 66.2⁎⁎⁎ 32.9 31.3 64.2⁎⁎⁎

Product and process innovation (%) 18.2 22.3 40.5⁎⁎⁎ 14.9 19.9 34.8⁎⁎⁎

E-commerce (% firms)
B2B: digital purchases from suppliers (%) – – – 25.6 23.7 49.3⁎⁎⁎

B2C: sales to end consumers (%) – – – 8.0 7.5 15.5⁎⁎⁎

B2C: sales to firms (%) – – – 8.1 9.9 18.0⁎⁎⁎

Productivity and employment
Productivity (thousands of euros per worker) 34.7 50.2 40.5⁎⁎⁎ 40.6 55.6 46.5⁎⁎⁎

Productivity (euros per hour worked) 19.7 28.7 23.0⁎⁎⁎ 23.1 31.8 26.5⁎⁎⁎

Employees (number) 90.6 338.3 181.3⁎⁎⁎ 88.7 310.1 175.3⁎⁎⁎

Labour cost (thousands of euros) 2,741 12,211 6.233⁎⁎⁎ 3,219 12,498 6854⁎⁎⁎

Labour cost per worker (euros) 24,855 31,283 27,225⁎⁎⁎ 28,763 34,329 30,943⁎⁎⁎

Labour cost / added value (%) 65.7 61.8 62.8⁎⁎ 66.4 60.3 62.0⁎⁎

N (firms) 3,492 2,019 5,511 2,495 1,604 4,099
% (firms) 63.4 36.6 100.0 60.9 39.1 100.0

Notes: Data in euros and thousands of euros in real terms. The data of robotics use are captured for every 4 years: 1990, 1994, 1998, 2002, 2006, 2010 and 2014. To
obtain the 1991–2016 and 2000–2016 means, we have updated the quadrennial data with the information on robotic uses for the new firms incorporated into the
panel annually. Statistical association analysis: ANOVA for continuous variables and comparison of means (crosstabs) for discrete or dichotomous variables. * p <
0.1; ⁎⁎ p < 0.05, ⁎⁎⁎ p < 0.01. In bold, the percentage of firms higher than expected using normal distribution: standardized corrected residual for counting ≥ 1.9.
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expressed in logistic averages (real terms for continuous variables, and
dichotomous form for innovation and R&D variables), and the ex-
planatory variables are the four automation technologies and the size
and industry dummies. Table 2 shows the results obtained.

OLS regression should be used only if some standard requirements of
the data are achieved, such as normality, linearity, and homoscedasticity
(Hair et al., 2010). The skewness and kurtosis values (reported in
Appendix B: Table B.1) suggest that the variables can be assumed to be
normal distributed (below the threshold of 2.58). Multicollinearity diag-
noses have been addressed testing tolerance and variance inflation factor
(VIF) among the explanatory variables. Given that all these values were
below the threshold tolerance=0.10 and VIF=10.0, multicollinearity may
not be a concern in our regression models (correlation matrix is presented
in Table B.2 of Appendix B). Finally, homoscedasticity was visually ex-
amined and tested in plots of standardized residuals against predicted
value and with Durbin–Watson test (1.5<DW<2.5). We performed four
independent regression models, one for each of the firm results. Four
models were significant (p = =0.000) and explained almost 60% of the
variance of the firm results variables.

The coefficients obtained suggest significant contributions from
robotics, data-driven control and flexible production systems in ex-
plaining firm results. The marginal effects on sales, added value and
export levels of one more robotized firm are 0.168, 0.151 and 0.140
percentage points, respectively. The marginal effects on sales, added

value and export levels of an additional firm using data-driven control
technologies are 0.104, 0.098, and 0.041 percentage points, respec-
tively. And, the marginal effects on sales, added value and export levels
of an additional firm using flexible production systems are 0.102, 0.109
and 0.077 percentage points, respectively. On the contrary, computer-
aided design and manufacturing only has a significant effect on the
explanation of added value (0.033 percentage points). The marginal
effects of automation technologies on gross margin are much weaker:
0.030 (p <0.1) percentage points for the use of industrial robots, and
0.037 (p <0.05) for the flexible production systems.

In order to test the effects of automation technologies on the innovation
and R&D activities, a binary logistic regression analysis was also performed.
The goodness of fit of the three models was high, as confirmed by the values
and levels of significance reached by the Chi-square statistics and the
Hosmer-Lemeshow test (p<0.05). Moreover, the values of Nagelkerke's
statistic indicated that the three models had explanatory power. The value
of this statistic was 18.1% for the product innovation model, 22.5% for the
process innovation model and 32.4% for the R&D activities model.

Regarding automation technologies, we obtain the Odds Ratio (OR)
coefficients (or Exp (β)). Formally, it is usually defined as the ratio of
the odds of a condition occurring in a population group to the odds of it
occurring in another group. It is a measure of the statistical association
between dichotomous variables, which has been widely used because it
is useful for examining the predictive effect of one variable on another,

Fig. 1. Productivity (HPT: real added value per hour worked) and employment (EMP: employee average) dynamics in Spanish manufacturing firms. 1991–2016.
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while the other variables remain constant (ceteribus paribus) in a logistic
regression model. The interpretation of an OR analysis is as follows. If
the value of the OR is less than 1 and the confidence interval (95% CI) is
situated below the unit, the predictive relationship between the two
variables analysed is an inverse relationship. If the value of the OR is
greater than 1 and the confidence interval (95% CI) is situated above
the unit, the predictive relationship between the two variables analysed
is a direct relationship. Whenever the confidence interval (95% CI)
includes the unit, the predictive relationship between two variables
cannot be determined (Green, 2012; Hensher et al., 2015).

The results obtained confirm a high prediction capacity of automation
technologies on innovation and R&D activities. The use of robots and
flexible production systems show high predictive capacity for product
innovation (OR=1.664 and OR=1.569, respectively), process innovation
(OR=2.009 and OR=2.215) and R&D activities (OR=1.905 and
OR=1.861). Otherwise, computer-aided design and manufacturing shows
better predictive capacity for R&D activities (OR=2.031). Finally, data-
driven control predicts process innovation more intensely (OR=1.595).

4.3. Individual effects on productivity and employment estimation

Concerning the analysis of the explanatory factors (individual and
complementary) of productivity and employment for Spanish in-
dustries, and following the methodology of recent international re-
search (Acemoglu and Restrepo, 2018b; Autor and Salomons, 2018;
Brynjolfsson and McElheran, 2019), we have estimated the effects of
automation technologies through multivariate regression analysis by
OLS (introduction method). Table 3 presents the individual effects of
estimating the long-term trend of productivity level (worked-hourly

productivity, HPT). Consistent with Eq. (7), the first column (Model 1)
analyses the effects of labour costs per worker on productivity. The
second column (Model 2) analyses the effects of R&D activities. In the
third column (Model 3), the effects of use of automation technologies
(robots, computer-aided design and manufacturing, data-driven control
and flexible production systems) are incorporated. And, in the fourth
column (Model 4), size and industry dummies are also integrated.

The effects of automation technologies on hourly-worked pro-
ductivity are mixed. While the uses of industrial robots and flexible
production systems have a significant and positive effect, the use of
computer-aided design and manufacturing has a negative effect. Data-
driven control does not exert a significant effect. These individual ef-
fects are robust (increases in the change of adjusted R2 and models p-
value = 0.000) to the inclusion of labour cost per worker, R&D activ-
ities and size and industry dummies as explanatory variables. Tests to
see if the data met the assumption of collinearity indicated that mul-
ticollinearity was not a concern (for all explanatory variables and in-
dicators, Tolerance > 0.10 and VIF < 10; correlation matrix is pre-
sented in Table B.2 of Appendix B). Also, the data met the assumption
of independent errors (Durbin–Watson values between 1.5 and 2.5).

This is evident through column analysis. Jointly the unit labour cost,
R&D activities and the size and industry dummies have significant impacts
with the expected signs. However, the unit labour cost and R&D coeffi-
cients tend to fall as we incorporate more variables to the regression
(Models 3 and 4, compared with Model 1 and 2). In the same way, the
automation technologies coefficients tend to decrease when the size and
industry dummies are incorporated (Model 4 compared to Model 3).

The reduction in the unit labour cost coefficient is related to the
type of investment and efficiency model of the technology-driven firms.

Table 2
Predicted effects of automation technologies in Spanish manufacturing firms. 1991–2016.

OLS estimation Binary logistic estimation

Sales Added value Exports Gross margin Product innovation Process innovation R&D activities

(Constant) 6.200⁎⁎⁎ 5.735⁎⁎⁎ 5.356⁎⁎⁎ 1.961⁎⁎⁎ 0.372⁎⁎⁎ 0.676⁎⁎⁎ 0.289⁎⁎⁎

(0.012) (0.011) (0.029) (0.021) (0.049) (0.047) (0.052)
Use of robots (R) 0.168⁎⁎⁎ 0.151⁎⁎⁎ 0.140⁎⁎⁎ 0.030* 1.664⁎⁎⁎ 2.099⁎⁎⁎ 1.905⁎⁎⁎

(0.018) (0.016) (0.036) (0.030) (0.068) (0.079) (0.072)
CAD/CAM (CADM) 0.008 0.033⁎⁎⁎ 0.015 0.007 1.472⁎⁎⁎ 1.363⁎⁎⁎ 1.595⁎⁎⁎

(0.018) (0.016) (0.036) (0.029) (0.067) (0.073) (0.070)
Data-driven control (DDC) 0.104⁎⁎⁎ 0.098⁎⁎⁎ 0.041⁎⁎ 0.025 1.243⁎⁎⁎ 2.031⁎⁎⁎ 1.278⁎⁎⁎

(0.018) (0.017) (0.038) (0.030) (0.067) (0.068) (0.071)
Flexible production systems (FPS) 0.102⁎⁎⁎ 0.109⁎⁎⁎ 0.077⁎⁎⁎ 0.037⁎⁎ 1.569⁎⁎⁎ 2.215⁎⁎⁎ 1.861⁎⁎⁎

(0.018) (0.016) (0.036) (0.031) (0.068) (0.078) (0.071)
Large & efficient ind. (LAR_EF) 0.059⁎⁎⁎ 0.121⁎⁎⁎ 0.058⁎⁎ 0.090⁎⁎⁎ 0.665⁎⁎ 0.686* 0.809

(0.042) (0.037) (0.075) (0.071) (0.176) (0.213) (0.212)
Large & HC ind. (LAR_HC) 0.548⁎⁎⁎ 0.542⁎⁎⁎ 0.356⁎⁎⁎ 0.028 2.954⁎⁎⁎ 1.798⁎⁎⁎ 5.435⁎⁎⁎

(0.031) (0.027) (0.056) (0.051) (0.134) (0.161) (0.167)
SMEs in R&D ind. (SMEs_R&D) 0.018 0.048⁎⁎⁎ −0.107⁎⁎⁎ 0.092⁎⁎⁎ 0.743* 0.755 0.397⁎⁎⁎

(0.039) (0.035) (0.071) (0.066) (0.167) (0.206) (0.227)
Statistics
N (observations) 5,426 5,414 3,750 4,692 5,492 5,492 5,492
Adjusted R2 0.564 0.602 0.360 0.111
Estimation SE 0.549 0.483 0.949 0.864
F value 1004 1173 301.9 8.748
p value 0.000 0.000 0.000 0.000
Durbin-Watson 1.624 1.606 1.736 1.993
Nagelkerke R2 0.181 0.225 0.324
Chi2 802.1 971.6 1526
Prob. > Chi2 0.000 0.000 0.000
Log-likelihood 6,790 6,052 6,080
p value Hosmer-Lemeshow 0.046 0.017 0.000

The data of automation technologies use are captured for every 4 years: 1990, 1994, 1998, 2002, 2006, 2010 and 2014. To obtain the 1991–2016 and 2000–2016
means, we have updated the quadrennial data with the information on automation technologies use for the new firms incorporated into the panel annually. OLS
estimation: Data in real monetary log-levels. Estimated coefficients: Standardized coefficients. Standard errors of the non-standardized effects in brackets. Binary logit
estimation: Data in dichotomous form: 1, innovation or R&D activities, and 0 not innovation or not R&D activities. Estimated coefficients: Exp(β) or Odds Ratio (OR).
Standard errors of the β effects in brackets.

⁎ p < 0.1.
⁎⁎ p < 0.05.
⁎⁎⁎ p < 0.01.
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Automation technologies generate a smaller effect of the labour cost in
the productivity explanation, which already starts suggesting that there
exists a labour-share-displacing effect. On the other hand, the reduction
in the coefficient of R&D activities suggests a certain technological
displacement effect. As firms use automation technologies, the role of
previous R&D activities as productivity drivers is reduced. In the same
way, the introduction of size and industry dummies reflects the het-
erogeneity of the firm. Large firms located in human capital-intensive
industries and SMEs located in R&D-intensive industries tend to be
more efficient by themselves, which reduces the effects of labour cost,
R&D and automation technology on productivity.

Especially interesting is the comparison of results between the two
constructed data series: 1991–2016 and 2000–2016. With this compar-
ison, we capture the differential effects on productivity from the 2000s.
For the sake of simplicity we focus on the model that incorporates all the
explanatory variables into the analysis (Model 4). The results obtained
confirm significant and mixed effects from automation technologies on
productivity. From 1991 to 2016, the marginal effect on worked-hourly
productivity level of one more robotized firm is 0.057 percentage points,
and an additional firm that use flexible production systems boosted
worked-hourly productivity by 0.033 percentage points. These results
have accelerated since the 2000s. From 2000 to 2016, the marginal effect
on worked-hourly productivity level of one more robotized firm is 0.064
percentage points, and an additional firm using flexible production sys-
tems boosted worked-hourly productivity by 0.039 percentage points.

Similarly, the contribution of R&D activities has also accelerated
since the 2000s (from 0.056 percentage points in the period 1991–2016
to 0.076 percentage points in the period 2000–2016). Contrary to what
was expected, the use of computer-aided design and manufacturing,
and data-driven control technologies did not have a significant or po-
sitive effect on the explanation of productivity (the former with a sig-
nificant and negative effect that has accelerated since the 2000s, and
the latter with a non-significant effect in the two periods analysed).
Finally, there was also a greater labour-displacing effect. An additional
real euro of labour cost per employee increased worked-hourly pro-
ductivity by 0.679 percentage points between 2000 and 2016,

compared to 0.739 percentage points in 1991–2106.
Table 4 presents the individual effects from estimating the long-term

trend of employment level. Unlike the increasing trend in the worked-
hourly productivity level, the interpretation of results in the estimation of
employment is the opposite. As we have already pointed out in the de-
scriptive results subsection, industrial employment has clearly evolved
downwards during the periods analysed. Therefore, a positive coefficient
implies a positive contribution to the declining trend of employment (i.e. a
positive coefficient implies a decrease in employment), while a negative
coefficient implies a negative contribution to the downtrend in employ-
ment (i.e. a negative coefficient implies an increase in employment).
Consistent with Eq. (8), the first column (Model 1) analyses the effects of
labour costs per worker, capital per worker (financial assets per employee)
and human capital per worker (percentage of employees with tertiary
education) on employment. The second column (Model) 2 integrates the
effects of R&D activities. In the third column (Model 3), the effects of
automation technologies are incorporated. And, in the fourth column
(Model 4), size and industry dummies are also integrated.

Contrary to expectations, the use of automation technologies sig-
nificantly decreases the employment level (positive contribution to the
downtrend in employment). These individual effects are robust (increases
in the change of adjusted R2 and models p-value = 0.000) to the inclusion
of labour cost per worker, capital per worker, human capital per worker,
R&D activities and size and industry dummies as explanatory variables.
The multicollinearity (for all explanatory variables and indicators,
Tolerance > 0.10 and VIF < 10; correlation matrix is presented in
Table B.2 of Appendix B) and error independence (Durbin-Watson values
between 1.5 and 2.5) tests confirm the validity of the proposed model.

Both the unit labour cost and human capital per worker have significant
impacts and with the expected signs: the higher the labour cost, the less
employment; and the more tertiary education, the greater the employment.
However, the capital per worker, R&D activities and the dummies do not
behave as expected: the more capital per worker, the less employment, and
an additional firm that carries out R&D activities, less employment. Large
firms located in efficient and human capital-intensive industries, and SMEs
located in R&D-intensive industries tend to be less labour-intensive.

Table 3
Labour productivity (added value per hour worked, HPT), individual explanatory factors in Spanish manufacturing firms. 1991–2016 and 2000–2016.

1991–2016 2000–2016

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

(Constant) −3.448⁎⁎⁎ −3.316⁎⁎⁎ −3.247⁎⁎⁎ −3.205⁎⁎⁎ −3.592⁎⁎⁎ −3.351⁎⁎⁎ −3.284⁎⁎⁎ −3.230⁎⁎⁎

(0.050) (0.052) (0.054) (0.056) (0.071) (0.075) (0.076) (0.079)
Labour cost/worker (LCW) 0.785⁎⁎⁎ 0.759⁎⁎⁎ 0.746⁎⁎⁎ 0.739⁎⁎⁎ 0.738⁎⁎⁎ 0.699⁎⁎⁎ 0.688⁎⁎⁎ 0.679⁎⁎⁎

(0.012) (0.012) (0.013) (0.013) (0.016) (0.017) (0.017) (0.018)
R&D activities (R&D) 0.080⁎⁎⁎ 0.060⁎⁎⁎ 0.056⁎⁎⁎ 0.101⁎⁎⁎ 0.084⁎⁎⁎ 0.076⁎⁎⁎

(0.005) (0.006) (0.005) (0.005) (0.005) (0.006)
Use of robots (R) 0.062⁎⁎⁎ 0.057⁎⁎⁎ 0.071⁎⁎⁎ 0.064⁎⁎⁎

(0.006) (0.006) (0.006) (0.006)
CAD/CAM (CADM) −0.044⁎⁎⁎ −0.042⁎⁎⁎ −0.059⁎⁎⁎ −0.056⁎⁎⁎

(0.006) (0.006) (0.006) (0.006)
Data-driven control (DDC) 0.013 0.014 0.010 0.011

(0.006) (0.006) (0.006) (0.006)
Flexible production systems (FPS) 0.037⁎⁎⁎ 0.033⁎⁎⁎ 0.041⁎⁎⁎ 0.039⁎⁎⁎

(0.006) (0.006) (0.007) (0.007)
Large and HC industry (LAR_HC) 0.072⁎⁎⁎ 0.079⁎⁎⁎

(0.008) (0.009)
SMEs in R&D industry (SMEs_R&D) 0.061⁎⁎⁎ 0.060⁎⁎⁎

(0.011) (0.013)
Statistics
N (observations) 5,407 5,407 5,407 5,407 4,060 4,060 4,060 4,060
Adjusted R2 0.616 0.622 0.627 0.632 0.545 0.553 0.560 0.565
Estimation SE 0.177 0.176 0.174 0.172 0.174 0.172 0.171 0.170
Change of Adjusted R2 0.616 0.006 0.006 0.005 0.545 0.009 0.008 0.005
F value 8,684 4,446 1,517 1,149 4,854 2,514 863.4 654.9
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Durbin-Watson 1.885 1.865

Note: Real monetary data in log-levels. Regression analysis: Ordinary Least Squares with introduction method. Estimated coefficients: Standardized coefficients.
Standard errors of the non-standardized effects in brackets. *** p < 0.01; ** p < 0.05; * p < 0.1.
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Comparing Model 1 with Model 2 and Model 3, relevant con-
siderations are obtained. In the explanation of the employment reduc-
tion, the coefficients of labour costs per worker and of capital per
worker evolve downwards when the technological variables are in-
corporated into the analysis. In this sense, investment and use of R&D
and automation technologies displace the labour and capital returns.
However, at the same time, an increase in human capital would indicate
greater educational needs for a more appropriate use of R&D and au-
tomation technologies. Similarly, the comparison of Models 3 and 4
also provides relevant conclusions. The introduction of size and in-
dustry dummies reflects firm heterogeneity. Large firms located in ef-
ficient and human capital-intensive industries, and SMEs located in
R&D-intensive industries tend to be less labour-intensive by themselves,
which reduces the effects of labour cost, human capital, R&D and au-
tomation technology on employment.

The comparison of the results obtained for the 1991–2016 and
2000–2016 intervals allows us to evaluate the explanatory factors of the
observed destruction of employment and, more particularly, to analyse
whether they have been accentuated since the 2000s. Regarding the
automation technologies dimension (Model 4), the results obtained
confirm significant and negative effects of robotization, data-driven
control and flexible production systems on employment. From 1991 to
2016, having one more robotized firm reduced employment levels
(increased negative employment trend) by 0.117 percentage points,
while an additional firm using flexible production systems decreased
employment by 0.063 percentage points.

Nevertheless, these negative effects have moderated since the 2000s.

From 2000 to 2016, having one more robotized firm reduced employment
levels by 0.098 percentage points, and an additional flexible production
systems using firm lessened employment by 0.046 percentage points. In
contrast, data-driven control appears as significant in the period
2000–2016, and with a contribution to the fall in employment of 0.033
percentage points. In addition, there are also greater R&D-displacing ef-
fect, and a lower labour-displacing and capital-displacing effects. Human
capital reinforces its positive contribution to employment creation. An
additional firm carrying out R&D activities lessened employment by 0.207
percentage points between 2000 and 2016, compared to 0.182 percentage
points in 1991–2016. An additional real euro of labour cost per employee
decreased employment by 0.151 percentage points between 2000 and
2016, compared to 0.169 percentage points in 1991–2106. An additional
real euro of capital per worker decreased employment by 0.040 percen-
tage points in the 2000–2016 interval, compared to 0.049 percentage
points in the 1991–2016 interval. An additional employee with tertiary
education increased employment by 0.277 percentage points in the
2000–2016 interval, compared to 0.228 percentage points in the
1991–2016 interval.

4.4. Complementarity effects on productivity and employment estimation

The complementarity effects obtained from estimating the long-
term trend of worked-hourly productivity level are presented in Table 5
(two-complementarities, Eq. (9)) and Table 6 (four-complementarities,
Eq. (11)). As in the case of individual effects, the four regression models
comparison suggests a labour-share-displacing and R&D-displacing

Table 4
Employment, individual explanatory factors in Spanish manufacturing firms. 1991–2016 and 2000–2016.

1991–2016 2000–2016

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

(Constant) −3.970⁎⁎⁎ −3.135⁎⁎⁎ −2.408⁎⁎⁎ −0.762⁎⁎⁎ −5.391⁎⁎⁎ −3.608⁎⁎⁎ −2.950⁎⁎⁎ −0.646⁎⁎⁎

(0.204) (0.188) (0.183) (0.146) (0.255) (0.234) (0.227) (0.169)
Labour cost/worker (LCW) 0.406⁎⁎⁎ 0.348⁎⁎⁎ 0.295⁎⁎⁎ 0.169⁎⁎⁎ 0.447⁎⁎⁎ 0.345⁎⁎⁎ 0.301⁎⁎⁎ 0.151⁎⁎⁎

(0.056) (0.051) (0.050) (0.040) (0.066) (0.060) (0.058) (0.043)
Capital/worker (KW) 0.109⁎⁎⁎ 0.057⁎⁎⁎ 0.030⁎⁎ 0.049⁎⁎⁎ 0.099⁎⁎⁎ 0.041⁎⁎ 0.014 0.040⁎⁎⁎

(0.018) (0.016) (0.016) (0.012) (0.020) (0.017) (0.017) (0.012)
Human capital (HC) −0.222⁎⁎⁎ −0.245⁎⁎⁎ −0.227⁎⁎⁎ −0.228⁎⁎⁎ −0.188⁎⁎⁎ −0.242⁎⁎⁎ −0.217⁎⁎⁎ −0.277⁎⁎⁎

(0.024) (0.022) (0.021) (0.017) (0.027) (0.025) (0.024) (0.017)
R&D activities (R&D) 0.386⁎⁎⁎ 0.302⁎⁎⁎ 0.182⁎⁎⁎ 0.444⁎⁎⁎ 0.378⁎⁎⁎ 0.207⁎⁎⁎

(0.015) (0.015) (0.012) (0.014) (0.014) (0.011)
Use of robots (R) 0.195⁎⁎⁎ 0.117⁎⁎⁎ 0.204⁎⁎⁎ 0.098⁎⁎⁎

(0.016) (0.012) (0.017) (0.012)
CAD/CAM (CADM) 0.018 −0.002 −0.004 −0.001

(0.016) (0.013) (0.017) (0.012)
Data-driven control (DDC) 0.009 0.026 0.037* 0.033⁎⁎⁎

(0.016) (0.013) (0.017) (0.012)
Flexible production systems (FPS) 0.130⁎⁎⁎ 0.063⁎⁎⁎ 0.087⁎⁎⁎ 0.046⁎⁎⁎

(0.016) (0.013) (0.017) (0.012)
Large and efficient industry (LAR_EF) 0.385⁎⁎⁎ 0.011

(0.023) (0.028)
Large and HC industry (LAR_HC) 0.319⁎⁎⁎ 0.622⁎⁎⁎

(0.026) (0.020)
SMEs in R&D industry (SMEs_R&D) 0.105⁎⁎⁎ 0.012

(0.032) (0.026)
Statistics
N (observations) 4,479 4,479 4,479 4,479 3,501 3,501 3,501 3,501
Adjusted R2 0.198 0.335 0.399 0.636 0.213 0.380 0.438 0.708
Estimation SE 0.527 0.481 0.457 0.356 0.170 0.169 0.169 0.169
Change of Adjusted R2 0.198 0.137 0.064 0.237 0.213 0.168 0.058 0.270
F value 370.4 565.9 372.6 712.8 316.0 538.1 341.8 774.1
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Durbin-Watson 1.844 1.840

Note: Real monetary data in log-levels. Regression analysis: Ordinary Least Squares with introduction method. Estimated coefficients: Standardized coefficients.
Standard errors of the non-standardized effects in brackets.

⁎ p < 0.1.
⁎⁎ p < 0.05.
⁎⁎⁎ p < 0.01.
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effect and reflects firm heterogeneity. The unit labour cost and R&D
coefficients tend to be reduced when incorporating automation tech-
nology-based complementarities and size and industry dummies (from
Model 1 and Model 2 to Model 3). In the same way, the coefficients of
automation technologies complementarities are reduced by introducing
the dummies effect (from Model 3 to Model 4). In this sense, automa-
tion technologies complementarities also introduce changes into the
firm efficiency models, with lower contributions from the labour and
R&D factors. At the same time, the location of the firm in large and
human-capital-intensive industries or in R&D-intensive SMEs also re-
duces the contribution of the labour factor, R&D activities and auto-
mation technology complementarities.

The complementary effects obtained are robust (increases in the change
of adjusted R2 and models p-value = 0.000) and the complete model does
not present problems of multicollinearity (for all explanatory variables and
indicators, Tolerance > 0.10 and VIF < 10) or error dependence (Durbin-
Watson values between 1.5 and 2.5). Regarding complementarity effects,
only two of the six complementarities raised have significant effects on
productivity. In addition, with opposite sign: robotization and data-driven
control reinforces productivity, and computer-aided design and manu-
facturing and data-driven control lessen productivity.

The comparison of the coefficients obtained for the two constructed
data intervals (1991–2016 and 2000–2016) suggests two interesting re-
sults. Firstly, it is possible to confirm that the mixed complementarity
effects on productivity have accentuated since 2000s. From 1991 to 2016,
having one more robotized and data-driven control firm increased
worked-hourly productivity level by 0.059 percentage points. This com-
plementarity has boosted since the 2000s. From 2000 to 2016, having one
more robotized and data-driven control firm increased worked-hourly
productivity level by 0.070 percentage points. From 1991 to 2016, having
one more computer-aided design and manufacturing, and data-driven

control using firm decreased productivity by 0.043 percentage points. This
complementarity has worsened since the 2000s. From 2000 to 2016,
having one more computer-aided design and manufacturing, and data-
driven control using firm decreased productivity by 0.045 percentage
points. In addition, the contribution of R&D activities would also ac-
celerated since the 2000s (from 0.059 percentage points in the period
1991–2016 to 0.081 percentage points in the period 2000–2016), while
there is also a labour-displacing effect (labour-cost per worker coefficients:
from 0.743 percentage points in the period 1991–2016 to 0.683 percen-
tage points in the period 2000–2016).

Secondly, we observe that the joint effects of automation technologies
(collected through the complementarity between the four identified
technologies) on productivity have clearly worsened since the 2000s.
While in the 1991–2016 period automation generated a slightly positive
and significant effect on productivity (0.019 percentage points with p
<0.1), in the 2000–2016 period this effect has become non-significant.

The complementarity effects from estimating the long-term trend of
employment level are presented in Tables 7 (two-complementarities,
Eq. (10)) and Table 8 (five-complementarities, Eq. (12)). As in the case
of employment individual effects, the four regression models compar-
ison suggests a labour-share-displacing, R&D-displacing effect and re-
flects firm heterogeneity. Hence, in the explanation of the employment
reduction, the coefficients of labour costs per worker and R&D activities
evolve downwards when the automation technologies and human ca-
pital complementarities are incorporated into the analysis (from Model
1 to Model 2 and Model 3). Large firms located in efficient and human
capital-intensive industries and SMEs located in R&D-intensive in-
dustries tend to be less labour-intensive by themselves, which reduces
the effects of labour cost and R&D activities on employment (Model 1
and Model 2 compared with Model 4).

The complementary effects obtained are robust (increases in the

Table 5
Labour productivity (added value per hour worked, HPT), automation technologies’ two-complementarity explanatory factors in Spanish manufacturing firms.
1991–2016 and 2000–2016.

1991–2016 2000–2016

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

(Constant) −3.448⁎⁎⁎ −3.316⁎⁎⁎ −3.268⁎⁎⁎ −3.222⁎⁎⁎ −3.592⁎⁎⁎ −3.351⁎⁎⁎ −3.313⁎⁎⁎ −3.249⁎⁎⁎

(0.050) (0.052) (0.054) (0.055) (0.071) (0.075) (0.076) (0.079)
Labour cost/worker (LCW) 0.785⁎⁎⁎ 0.759⁎⁎⁎ 0.751⁎⁎⁎ 0.743⁎⁎⁎ 0.738⁎⁎⁎ 0.699⁎⁎⁎ 0.692⁎⁎⁎ 0.683⁎⁎⁎

(0.012) (0.012) (0.013) (0.013) (0.016) (0.017) (0.017) (0.018)
R&D activities (R&D) 0.080⁎⁎⁎ 0.064⁎⁎⁎ 0.059⁎⁎⁎ 0.101⁎⁎⁎ 0.090⁎⁎⁎ 0.081⁎⁎⁎

(0.005) (0.005) (0.005) (0.005) (0.005) (0.006)
R x CADM −0.003 −0.003 −0.028 −0.027

(0.012) (0.012) (0.013) (0.018)
R x DDC 0.061⁎⁎⁎ 0.059⁎⁎⁎ 0.077⁎⁎ 0.070⁎⁎⁎

(0.009) (0.009) (0.010) (0.010)
R x FPS 0.003 −0.001 0.005 0.001

(0.011) (0.011) (0.013) (0.013)
CADM x DDC −0.046⁎⁎⁎ −0.043⁎⁎⁎ −0.049⁎⁎⁎ −0.045⁎⁎

(0.008) (0.008) (0.009) (0.009)
CADM x FPS 0.008 0.006 0.012 0.009

(0.010) (0.010) (0.012) (0.012)
DDC x FPS 0.026 0.026 0.024 0.025

(0.010) (0.010) (0.011) (0.011)
Large and HC industry (LAR_HC) 0.075⁎⁎⁎ 0.083⁎⁎⁎

(0.008) (0.009)
SMEs in R&D industry (SMEs_R&D) 0.062⁎⁎⁎ 0.059⁎⁎⁎

(0.011) (0.013)
Statistics
N (observations) 5,407 5,407 5,407 5,407 4,060 4,060 4,060 4,060
Adjusted R2 0.616 0.622 0.628 0.633 0.545 0.553 0.558 0.563
Estimation SE 0.177 0.176 0.174 0.173 0.173 0.172 0.171 0.170
Change of Adjusted R2 0.616 0.006 0.006 0.005 0.545 0.009 0.005 0.005
F value 8,683 4,446 1,129 912.4 4,854 2,514 639.7 518.1
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Durbin-Watson 1.889 1.873

Note: Real monetary data in log-levels. Regression analysis: Ordinary Least Squares with introduction method. Estimated coefficients: Standardized coefficients.
Standard errors of the non-standardized effects in brackets. *** p < 0.01; ** p < 0.05; * p < 0.1.
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change of adjusted R2 and models p-value = 0.000) and the complete
model does not present problems of multicollinearity (for all ex-
planatory variables and indicators, Tolerance > 0.10 and VIF < 10) or
error dependence (Durbin-Watson values between 1.5 and 2.5).

Contrary to expectations, the complementarity effects of the use of
automation technologies decreases the employment level (positive con-
tribution to the downtrend in employment). Regarding two-com-
plementarity effects and from 1991 to 2016, the results obtained confirm
significant and negative effects of the majority of interactions raised: ro-
bots and data-driven control (0.126 percentage points), robots and flexible
production systems (0.043 percentage points), computer-aided design and
manufacturing and data-driven control (0.111 percentage points), com-
puter-aided design and manufacturing and flexible production systems
(0.050 percentage points) and data-driven control and flexible production
systems (0.077 percentage points). Only the complementarity between
robots and computer-aided design and manufacturing does not have a
significant and negative effect on employment.

In contrast, the complementarities between automation technolo-
gies and human capital have positive and significant effects on em-
ployment. From 1991 to 2016, having one more robotized and human
capital-intensive located firm increase employment trend by 0.058
percentage points, an additional computer-aided design and manu-
facturing using firm located in human-capital intensive industry expand
employment in 0.129 percentage points, an additional data-driven
control using firm located in human-capital intensive industry boost
employment in 0.097 percentage points, and an additional flexible
production systems using firm located in human-capital intensive in-
dustry enhance employment in 0.090 percentage points.

This trend would have been reversed after the 2000s. While the
complementarities of automation technologies tend to have a lower
labour-displacement effect, the complementarities between automation
technologies and human capital tend to have a less positive effect on
employment. In fact, if the set of complementarities between the four
identified automation technologies and human capital is analysed
(Table 8), their contribution to employment growth would have in-
creased: from 0.056 percentage points in the 1991–2016 period to
0.069 percentage points in the period 2000–2016. This trend of in-
dustrial employment from the 2000s is completed with some labour-
displacement and capital-displacement effects slightly lower. On the
contrary, the R&D-displacement effects on employment have been

accentuated: from 0.189 percentage points in the 1991–2016 period to
0.0211 percentage points in the period 2000–2016.

5. Discussion

This study analyses the relationship among automation technologies
for Spanish industrial firms to explain its effect on productivity and
employment. Up to this purpose we test four postulated hypotheses
using a large and long-term sample: 5,511 manufacturing firms in the
period intervals of 1991–2016 and 2000–2016. We aim to capture the
differential effects on productivity and employment since the 2000s.

5.1. Discussion of the descriptive results

First, and following the I4.0 literature, we have identified the uses of
four automation technologies in the industrial firm: industrial robots,
computer-aided design and manufacturing, data-driven control and flex-
ible production systems (Chen and Tsai, 2017; Liao et al., 2017). The re-
sults obtained confirm relevant uses, although not yet majority. None of
the four technologies analysed reaches already a frequency higher than
50% of firms. Moreover, none of the six relations of two complementa-
rities established between the four automation technologies reaches a
third of the industrial fabric. These results suggest the need to study in the
future the implementation factors of automation technologies, especially
in the manufacturing SMEs (more than three quarters of the analysed
sample). The related literature has already pointed out the importance of a
complete approach to explain the set of uses of automation front-end
technologies (Frank et al., 2019). In the same way, previous research also
considers mechanisms including purchase, such as leasing or pay-per-use
(Landscheidt et al., 2018). These new mechanisms could facilitate the
access of SMEs, to be considered in the future.

The descriptive analysis also highlights the jobless recovery approach in
Spanish manufacturing firms (Brynjolfsson and McAfee, 2012; Goos et al.,
2014). While real worked-hourly productivity grew, industrial employment
fell. The comparison between robotized and non-robotized firms indicates
that the jobless recovery was much more pronounced in the former, basi-
cally as a result of labour-reducing effects since 2007. In the same way, the
analysis of the labour share on added value confirms the labour-displacing
approach (Chiacchio et al., 2018; Karabarbounis and Neiman, 2014).
However, the reduction of industrial employment linked to automation

Table 6
Labour productivity (added value per hour worked, HPT), automation explanatory factors in Spanish manufacturing firms. 1991–2016 and 2000–2016.

1991–2016 2000–2016

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

(Constant) −3.448⁎⁎⁎ −3.316⁎⁎⁎ −3.288⁎⁎⁎ −3.232⁎⁎⁎ −3.592⁎⁎⁎ −3.351⁎⁎⁎ −3.338⁎⁎⁎ −3.260⁎⁎⁎

(0.050) (0.052) (0.053) (0.055) (0.071) (0.075) (0.076) (0.078)
Labour cost/worker (LCW) 0.785⁎⁎⁎ 0.759⁎⁎⁎ 0.754⁎⁎⁎ 0.745⁎⁎⁎ 0.738⁎⁎⁎ 0.699⁎⁎⁎ 0.697⁎⁎⁎ 0.685⁎⁎⁎

(0.012) (0.012) (0.012) (0.013) (0.016) (0.017) (0.017) (0.018)
R&D activities (R&D) 0.080⁎⁎⁎ 0.073⁎⁎⁎ 0.065⁎⁎⁎ 0.101⁎⁎⁎ 0.098⁎⁎⁎ 0.086⁎⁎⁎

(0.005) (0.005) (0.005) (0.005) (0.005) (0.006)
AUTOM (R x CADM x DDC x FPS) 0.026⁎⁎ 0.019* 0.014 0.008

(0.007) (0.007) (0.007) (0.008)
Large and HC industry (LAR_HC) 0.083⁎⁎⁎ 0.094⁎⁎⁎

(0.008) (0.009)
SMEs in R&D industry (SMEs_R&D) 0.064⁎⁎⁎ 0.063⁎⁎⁎

(0.011) (0.013)
Statistics
N (observations) 5,407 5,407 5,407 5,407 4,060 4,060 4,060 4,060
Adjusted R2 0.616 0.622 0.624 0.628 0.545 0.553 0.556 0.561
Estimation SE 0.177 0.176 0.175 0.174 0.174 0.172 0.171 0.170
Change of Adjusted R2 0.616 0.006 0.002 0.004 0.545 0.009 0.003 0.005
F value 8,683 4,446 2,971 1,805 4,854 2,514 1,677 1,022
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Durbin-Watson 1.885 1.866

Note: Real monetary data in log-levels. Regression analysis: Ordinary Least Squares with introduction method. Estimated coefficients: Standardized coefficients.
Standard errors of the non-standardized effects in brackets. *p < 0.1; **p < 0.05; ***p < 0.01.
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technologies could be related to different labour structural changes. In our
research, neither indirect (intra-industry and inter-industry) labour-aug-
menting effects (Autor and Salomons, 2018), nor the terciarization of in-
dustrial employment (Dauth et al., 2017), nor the fall in routine employ-
ment and offshoring (Acemoglu and Restrepo, 2017; Dechezleprêtre et al.,
2019; Dengler and Matthes, 2018) have been considered. All these sets of
factors could modify the labour-reducing contribution of automation
technologies. Future directions of research include exploring the influence
of introducing these new components in the analysis.

5.2. Discussion of the predictive analysis

The results of the predictive analysis indicate a remarkable ex-
planatory capacity of the automation technologies on some of the main
firm results (Dalenogare et al., 2018; Müller et al., 2018). The uses of
industrial robots, data-driven control and flexible production systems are
able to predict sales, value added and exports. In contrast, computer-aided
design and manufacturing have much more limited explanatory cap-
abilities. In the same way as for the gross margin, the marginal effects of

automation technologies are much weaker, suggesting that more adequate
profit models should be based on internal value generation rather than on
competitive external forces (such as market power).

Unfortunately, in this paper we have not been able to analyse the
uses and effects of those automation technologies that are more closely
linked to I4.0, such as IoT, big data, cloud computing or additive
manufacturing and 3D printing. Although, the first official data avail-
able indicate very minor uses (less than 10% of the business fabric), its
accelerated implementation and transformation capacity
(Brynjolfsson and McElheran, 2016; Frank et al., 2019) suggests a fu-
ture line of research for the future.

Additionally, automation technologies have high predictive cap-
abilities on the generation of product and process innovations, and on
the realization of R&D activities. The link among automation technol-
ogies, R&D activities and innovation is especially relevant for the
creation of a competitive advantage. As the literature has repeatedly
pointed out (Coccia, 2012, 2017), firms have great incentives to find
innovative solutions and to generate monopolistic returns and compe-
titive advantages in contexts dominated by technological dynamism.

Table 7
Employment, automation technologies’ two-complementarity explanatory factors in Spanish manufacturing firms. 1991–2016 and 2000–2016.

1991–2016 2000–2016

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

(Constant) −2.431⁎⁎⁎ −1.708⁎⁎⁎ −1.957⁎⁎⁎ −0.465⁎⁎⁎ −2.881⁎⁎⁎ −2.225⁎⁎⁎ −2.543⁎⁎⁎ −0.584⁎⁎⁎

(0.166) (0.162) (0.168) (0.128) (0.218) (0.211) (0.218) (0.172)
Labour cost/worker (LCW) 0.290⁎⁎⁎ 0.236⁎⁎⁎ 0.257⁎⁎⁎ 0.132⁎⁎⁎ 0.282⁎⁎⁎ 0.240⁎⁎⁎ 0.263⁎⁎⁎ 0.124⁎⁎⁎

(0.046) (0.044) (0.046) (0.035) (0.056) (0.054) (0.056) (0.044)
Capital/worker (KW) 0.059⁎⁎⁎ 0.038⁎⁎ 0.040⁎⁎ 0.062⁎⁎⁎ 0.038⁎⁎ 0.017 0.018 0.044⁎⁎⁎

(0.015) (0.014) (0.014) (0.011) (0.017) (0.016) (0.016) (0.012)
R&D activities (R&D) 0.380⁎⁎⁎ 0.293⁎⁎⁎ 0.299⁎⁎⁎ 0.172⁎⁎⁎ 0.421⁎⁎⁎ 0.348⁎⁎⁎ 0.358⁎⁎⁎ 0.200⁎⁎⁎

(0.015) (0.015) (0.015) (0.011) (0.014) (0.014) (0.014) (0.011)
R x CADM 0.092⁎⁎⁎ 0.084⁎⁎⁎ 0.010 0.081⁎⁎⁎ 0.072⁎⁎ 0.039*

(0.032) (0.034) (0.026) (0.033) (0.036) (0.028)
R x DDC 0.094⁎⁎⁎ 0.095⁎⁎⁎ 0.126⁎⁎⁎ 0.155⁎⁎⁎ 0.140⁎⁎⁎ 0.129⁎⁎⁎

(0.025) (0.032) (0.024) (0.026) (0.034) (0.026)
R x FPS 0.104⁎⁎⁎ 0.074⁎⁎⁎ 0.043⁎⁎ 0.049⁎⁎ 0.032 0.016

(0.031) (0.033) (0.024) (0.034) (0.035) (0.027)
CADM x DDC −0.038⁎⁎ 0.074⁎⁎⁎ 0.111⁎⁎⁎ −0.037* 0.065⁎⁎ 0.090⁎⁎⁎

(0.023) (0.031) (0.023) (0.024) (0.033) (0.025)
CADM x FPS 0.024 0.035 0.050⁎⁎ −0.003 0.035 0.040*

(0.028) (0.032) (0.024) (0.031) (0.035) (0.027)
DDC x FPS 0.048⁎⁎ 0.044* 0.077⁎⁎⁎ 0.062⁎⁎ 0.073⁎⁎ 0.103⁎⁎⁎

(0.027) (0.034) (0.025) (0.030) (0.038) (0.029)
R x HC 0.031 −0.058⁎⁎⁎ 0.035 −0.041⁎⁎

(0.027) (0.020) (0.027) (0.021)
CADM x HC −0.108⁎⁎⁎ −0.129⁎⁎⁎ −0.116⁎⁎⁎ −0.119⁎⁎⁎

(0.022) (0.017) (0.023) (0.018)
DDC x HC −0.076⁎⁎⁎ −0.097⁎⁎⁎ −0.058⁎⁎ −0.083⁎⁎⁎

(0.019) (0.015) (0.020) (0.015)
FPS x HC 0.028 −0.090⁎⁎⁎ 0.022 −0.089⁎⁎⁎

(0.025) (0.019) (0.028) (0.021)
Large and efficient industry (LAR_EF) 0.059⁎⁎⁎ 0.036⁎⁎

(0.027) (0.030)
Large and HC industry (LAR_HC) 0.568⁎⁎⁎ 0.567⁎⁎⁎

(0.020) (0.021)
SMEs in R&D industry (SMEs_R&D) 0.000 0.020

(0.025) (0.028)
Statistics
N (observations) 4,956 4,956 4,956 4,956 3,758 3,758 3,758 3,758
Adjusted R2 0.337 0.405 0.415 0.673 0.368 0.433 0.443 0.670
Estimation SE 0.489 0.462 0.452 0.334 0.461 0.437 0.430 0.333
Change of Adjusted R2 0.337 0.069 0.010 0.258 0.368 0.066 0.017 0.220
F value 840.1 376.1 266.8 637.0 731.3 320.3 227.7 478.6
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Durbin-Watson 1.768 1.817

Note: Real monetary data in log-levels. Regression analysis: Ordinary Least Squares with introduction method. Estimated coefficients: Standardized coefficients.
Standard errors of the non-standardized effects in brackets.

⁎ p < 0.1.
⁎⁎ p < 0.05.
⁎⁎⁎ p < 0.01.
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However, in the Spanish context where there exists a growing shortage
of public resources for R&D and discrete developments in R&D and firm
innovation (Torrent-Sellens, 2018), the role of public policies is deci-
sive, especially for SMEs (Coccia, 2011, 2018). Therefore, public po-
licies become necessary to provide the use of automation technologies
and R&D activities as a support of technological transformation. The
link between R&D activities, automation and public R&D policies
should be studied in greater depth in the future.

5.3. Discussion of estimation results

We observe significant and growing effects of industrial robots and
flexible production systems on productivity since the 2000s. But, coun-
terintuitevely, computer-aided design and manufacturing, with a negative
and growing marginal effect, and data-driven control, without a sig-
nificant marginal effect on the explanation of productivity, attenuate the
previous positive results (suggesting only partial acceptation of hypothesis
1). Thus, and in the same way previous literature highlights, a mixed
trajectory is confirmed (Dalenogare et al., 2018; Müller et al., 2018).
While the use of robots and flexible production systems would boost long-
term productivity, computer-aided design and manufacturing, and data-
driven control would either slow down or do not explain productivity.

Our analysis of complementarity relationships confirms this mixed
trajectory. While the two-complementarity between robots and data-
driven control would increasingly boost productivity since the 2000s, the
two-complementarity between computer-aided design and manufacturing,
and data-driven control, would diminish productivity from the 2000s. In
this sense, the results obtained give data-driven control an important
complementary role in the explanation of firm productivity. This role
should be investigated in greater depth in the future, especially the tran-
sition from data control to data-based management (Brynjolfsson and
McElheran, 2016; 2019). In any case, the connection between the four
automation technologies in the explanation of productivity has not been
confirmed in our investigation (rejection of hypothesis 3).

These mixed productivity-augmenting effects, as a result of the in-
troduction of automation technologies, could also be generating an
advance in productivity dispersion. As previous evidence suggests

(Andrews et al., 2016; Berlingieri et al., 2017), the increase in the
productivity gap between leader firms, those in the frontier of auto-
mation, and laggard firms, could reveal technological divergence. In
this sense, a future line of research is to further study the role that
automation technological complementarities play in the explanation of
productivity divergences, especially in the case of industrial SMEs.

Regarding employment, individual estimation results confirm sig-
nificant and negative effects of the use of robots and flexible production
systems on employment. However, these negative effects would have
been slightly attenuated since the 2000s. In addition, and from the
2000s, data-driven control has been incorporated as a labour-reducing
factor. These results, which reject hypothesis 2, are in accordance with
previous international evidence (Acemoglu and Restrepo, 2017;
Autor and Salomons, 2018; Dauth et al., 2017). Moreover, the two-
complementarity effects of automation technologies and human capital
boost employment. Similarly, the overall complementarity effect of the
four automation technologies and human capital increases employment
in the long-term, which confirms hypothesis 4.

Thus, the set of complementary relationships between automation
technologies and human capital in the explanation of employment act
in a contradictory way. While the use of automation technologies tends
to reduce employment, when these technologies are combined with
adequate human capital, they tend to increase employment. The
weakness of the compensatory effect of automation technologies could
be explained in several ways. Firstly, by the productivity model in the
Spanish manufacturing firms, which tends to underutilize the compe-
titive potential of automation technologies: the overall effect of auto-
mation technologies on productivity is not significant in the period
2000–2016. Secondly, it could be explained by employment structure
and demand incentives. Automation technologies generate a counter-
balanced effect. Although they increase the importance of human ca-
pital, they reduce the unit labour cost coefficient. The need for more
trained employees, but with a lower weight of their compensation,
would explain the compensation mechanism weakness from the em-
ployees’ demand.

However, there are also favourable results to be extracted from our
research. When the uses of automation technologies are complemented

Table 8
Employment, automation explanatory factors in Spanish manufacturing firms. 1991–2016 and 2000–2016.

1991–2016 2000–2016

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

(Constant) −3.503⁎⁎⁎ −2.433⁎⁎⁎ −1.797⁎⁎⁎ −1.347⁎⁎⁎ −4.947⁎⁎⁎ −2.869⁎⁎⁎ −2.352⁎⁎⁎ −1.237⁎⁎⁎

(0.168) (0.157) (0.155) (0.091) (0.222) (0.209) (0.207) (0.088)
Labour cost/worker (LCW) 0.371⁎⁎⁎ 0.291⁎⁎⁎ 0.238⁎⁎⁎ 0.098⁎⁎⁎ 0.408⁎⁎⁎ 0.279⁎⁎⁎ 0.242⁎⁎⁎ 0.094⁎⁎⁎

(0.047) (0.043) (0.043) (0.033) (0.055) (0.054) (0.053) (0.043)
Capital/worker (KW) 0.131⁎⁎⁎ 0.065⁎⁎⁎ 0.064⁎⁎⁎ 0.067⁎⁎⁎ 0.109⁎⁎⁎ 0.044⁎⁎⁎ 0.047⁎⁎⁎ 0.056⁎⁎⁎

(0.016) (0.014) (0.014) (0.0113) (0.018) (0.016) (0.016) (0.012)
R&D activities (R&D) 0.387⁎⁎⁎ 0.322⁎⁎⁎ 0.189⁎⁎⁎ 0.460⁎⁎⁎ 0.384⁎⁎⁎ 0.211⁎⁎⁎

(0.014) (0.014) (0.011) (0.014) (0.014) (0.012)
AUTOM x HC −0.225⁎⁎⁎ −0.056⁎⁎⁎ −0.182⁎⁎⁎ −0.069⁎⁎⁎

(0.016) (0.013) (0.017) (0.014)
Large and efficient industry (LAR_EF) 0.111⁎⁎⁎ 0.083⁎⁎⁎

(0.028) (0.031)
Large and HC industry (LAR_HC) 0.513⁎⁎⁎ 0.530⁎⁎⁎

(0.021) (0.022)
SMEs in R&D industry (SMEs_R&D) 0.010 0.033⁎⁎

(0.026) (0.030)
Statistics
N (observations) 5,327 5,327 5,327 5,327 4,003 4,003 4,003 4,003
Adjusted R2 0.219 0.350 0.393 0.643 0.229 0.384 0.412 0.640
Estimation SE 0.531 0.485 0.468 0.360 0.513 0.459 0.449 0.351
Change of Adjusted R2 0.219 0.132 0.043 0.249 0.229 0.155 0.029 0.227
F value 747.3 958.8 864.6 1369 595.7 831.8 702.5 1015
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Durbin-Watson 1.734 1.780

Note: Real monetary data in log-levels. Regression analysis: Ordinary Least Squares with introduction method. Estimated coefficients: Standardized coefficients.
Standard errors of the non-standardized effects in brackets. *** p < 0.01; ** p < 0.05; * p < 0.1.
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by an adequate level of human capital, especially with a higher level of
employee training, the effects on employment are positive. This result,
which confirms the well-known complementary relationships between
technological change and human capital (Brynjolfsson et al., 2017),
highlights the decisive importance of employee training to maximize
the effects of automation. An interesting line of future research is to
introduce indicators of internal and external expenditure on training
and analyse different training modalities.

5.4. Forecasting managerial and policy implications

Finally, the results suggest certain implications for strategic actions
and public policies to achieve growth and business acceleration. First of
all, it is important to consider the whole set of complementarities that
automation technologies can establish among themselves (platform
effects). From our results, we can derive that data-driven control could
play an important driving role. Through data-drive management the
effects of robotics, computer-aided design and manufacturing and
flexible production systems on productivity and employment could be
increased. However, public support policies become essential in the
Spanish context, which is characterized by SMEs with low technological
intensity and by an environment that allocates few resources to R&D
(Coccia, 2017). Secondly, it is also important to consider the set of
knowledge spillover effects that automation technologies generates on
firm productivity and employment. Partial public policies or manager
actions could be clearly counter-productive. For example, promoting

second-wave digital transformation processes, such as IoT or big data
technologies, without seizing the technological and training mechan-
isms linked to them, could also lead to unexpected results.

6. Conclusion

As a result of the implementation of automation technologies in the
Spanish industrial firms, we prove the inexistence of overall long-term
productivity augmenting, and the existence of overall labour-reducing
and human capital-labour-augmenting effects. The bad news, linked to
the lack of productivity boost and the reduction in employment, are
related to a productivity model that underestimates the competitive
potential of automation technology and a structure of employment that,
despite human capital advances, reduces labour costs per worker. The
good news are linked to the positive effects that the relationship be-
tween automation and human capital has on employment. Moving to-
wards data-driven decision management and investment in automation
technologies that boost productivity and demand (i.e. machine
learning, smart learning systems or big data analytics), should help to
maintain this trend in employment (Acemoglu and Restrepo, 2019). In
this context, strategic management and public policy should lead efforts
to transform firm competitiveness models, human capital and industrial
relations into models that emphasize automation skills. The main ob-
jective should be to increase and develop automation technology uses
to enhance productivity and to transfer productivity improvements to
the labour market in a more effective way.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.techfore.2019.119828.

Appendix A

Table A.1, Table A.2, Table A.3

Table A.1
Descriptive and frequency statistics (dimension: value 0, 200 employees or less; value 1, more than 200 employees) of the sample of Spanish manufacturing firms.
1991–2016.

Descriptive statistics Frequency statistics (valid%)

N Mean S.D. 200 employees or less More than 200

1991 2,059 0.37 0.482 63.3 36.7
1992 1,977 0.34 0.474 66.1 33.9
1993 1,869 0.30 0.460 69.7 30.3
1994 1,876 0.33 0.470 67.1 32.9
1995 1,702 0.33 0.470 67.2 32.8
1996 1,716 0.30 0.460 69.6 30.4
1997 1,920 0.28 0.447 72.4 27.6
1998 1,776 0.29 0.455 70.7 29.3
1999 1,754 0.28 0.448 72.3 27.7
2000 1,870 0.33 0.470 67.0 33.0
2001 1,724 0.32 0.466 68.1 31.9
2002 1,708 0.31 0.464 68.6 31.4
2003 1,380 0.33 0.469 67.3 32.7
2004 1,374 0.33 0.470 67.2 32.8
2005 1,911 0.30 0.460 69.5 30.5
2006 2,023 0.27 0.446 72.7 27.3
2007 2,013 0.28 0.447 72.4 27.6
2008 2,009 0.25 0.431 75.4 24.6
2009 2,015 0.23 0.418 77.4 22.6
2010 2,006 0.20 0.402 79.7 20.3
2011 1,816 0.21 0.405 79.3 20.7
2012 1,869 0.19 0.391 81.2 18.8
2013 1,683 0.18 0.387 81.6 18.4
2014 1,525 0.19 0.393 80.9 19.1
2015 1,666 0.17 0.377 82.8 17.2
2016 1,808 0.19 0.393 81.0 19.0
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Appendix B

Table B.1, Table B.2

Table A.3
Frequency statistics (valid percentages) of industrial robots uses in the Spanish manufacturing firms, by size and industry. 1991–2016 and 2000–2016.

1991–2016 2000–2016

Variable/indicator Non-robotized Robotized All Non-robotized Robotized All

Firm size⁎⁎⁎

200 employees or less 54.2 18.7 72.8 53.1 21.5 74.7
More than 200 employees 9.2 18.0 27.2 7.7 17.6 25.3
Firm industry⁎⁎⁎

Meat 2.4 1.1 3.5 2.6 1.0 3.6
Food and tobacco 6.2 4.0 10.3 6.0 4.7 10.7
Beverage 1.1 1.0 2.2 0.9 1.1 2.0
Textiles and clothing 7.3 1.7 9.0 5.7 1.7 7.4
Leather and footwear 3.3 0.4 3.7 2.9 0.4 3.3
Wood industry 2.3 1.1 3.4 2.3 1.2 3.5
Paper industry 2.1 1.2 3.3 2.2 1.3 3.5
Graphic arts 4.2 1.0 5.2 3.9 0.9 4.8
Chemical and pharmaceuticals 3.8 2.7 6.5 3.6 3.0 6.6
Rubber and plastic 2.9 2.5 5.4 2.8 2.3 5.1
Non-metallic minerals 3.8 3.2 7.0 3.7 3.4 7.1
Ferrous and non-ferrous metals 1.5 1.2 2.7 1.5 1.2 2.7
Metal products 7.3 4.3 11.5 7.1 4.1 11.2
Agricultural and industrial machinery 3.4 2.1 5.6 3.1 2.0 5.1
Computer, electronics & optical 1.5 1.3 2.8 1.2 1.5 2.7
Machinery and electrical equipment 2.2 2.1 4.3 1.8 1.7 3.5
Motor vehicles 1.2 2.8 3.9 1.0 2.9 3.8
Other transport material 1.0 0.8 1.8 0.8 1.2 2.0
Furniture industry 3.8 1.3 5.1 3.2 1.4 4.6
Other manufacturing industries 2.7 1.8 2.4 1.6 0.6 2.2
N 3,492 2,019 5,511 2,495 1,604 4,099
Total% 63.4 36.6 100.0 60.9 39.1 100.0

*** p < 0.01. In bold, the percentage of firms higher than expected in firms using robots: standardized corrected residual for counting ≥ 1.9.

Table B.1
Descriptive and frequency statistics of the variables and analysis indicators. 1991–2016.

Descriptive statistics Frequencies (valid%) Skewness Kurtosis

N Mean S.D. 0 1

Explained variables
HPT (value added per hour worked) 5,503 1.245 0.28 – – −0.254 1.048
EMP (total employment) 5,592 1.749 0.60 – – 0.572 −0.348
Sales 5,523 6.732 0.83 – – 0.302 −0.483
Added value 5,511 6.243 0.77 – – 0.334 −0.422
Exports 3,784 6.042 0.76 – – −0.303 −0.456
Gross margin 4,982 2.077 0.87 – – −0.632 1.782
Product innovation 5,592 0.466 0.50 53.4 46.6 0.136 −1.982
Process innovation 5,592 0.658 0.47 34.2 65.8 −0.667 −1.556
R&D activities 5,592 0.480 0.50 52.0 48.0 0.080 −1.994
Explanatory variables
LCW (labour costs per worker) 5,523 4.373 0.21 – – −0.509 0.468
KW (capital per worker) 5,439 4.382 0.62 – – −0.564 0.539
HCW (% employees tertiary educ.) 4,643 1.017 0.35 – – −0.184 0.323
R (robotics use) 5,511 0.366 0.48 63.4 36.6 0.555 −1.593
CADM (CAD/CAM use) 5,511 0.453 0.49 54.7 45.3 0.187 −1.966
DDC (Data-driven control use) 5,511 0.485 0.50 51.4 49.6 −0.349 −1.879
FPS (Flexible production systems use) 5,511 0.395 0.49 60.5 39.5 0.430 −1.815
R x CADM 5,511 0.245 0.43 75.0 25.0 1.158 −0.659
R x DDC 5,511 0.234 0.41 69.4 30.6 1.256 −0.422
R x FPS 5,511 0.306 0.46 76.6 23.4 0.841 −1.293
CADM x DDC 5,511 0.368 0.48 68.2 32.8 0.548 −1.700
CADM x PFS 5,511 0.285 0.45 71.5 28.5 0.954 −1.089
DDC x FPS 5,511 0.319 0.47 68.1 31.9 0.777 −1.397
R x HC 5,398 0.363 0.52 – – 1.013 −0.511
CADM x CH 5,345 0.465 0.57 – – 0.663 −1.120
DDC x CH 5,299 0.580 0.57 – – 0.276 −1.395

(continued on next page)
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Table B.1 (continued)

Descriptive statistics Frequencies (valid%) Skewness Kurtosis

N Mean S.D. 0 1
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SME_R&D (SMEs & R&D ind.) 5,774 0.110 0.30 66.5 33.5 1.492 1.934

Note: Real monetary data in log-levels. Frequencies of discrete variables in percentages. 0 = no automation technologies use, no innovation, no R&D activities, or no
relevance to sectoral and size dummies; 1 = automation technologies use, innovation, R&D activities or relevance to sectors and size dummies.

Table B.2
Correlation matrix. 1991–2016.

HPT EMP SALES AVAL EXP GMA PINN PRINN R&D LCW KW HC ROB CADM DDC FPS

HPT (Hourly
productivity)

1

EMP (Employment) 0.428⁎⁎ 1
SALES (Sales) 0.658⁎⁎ 0.915⁎⁎ 1
AVAL (Added value) 0.703⁎⁎ 0.939⁎⁎ 0.962⁎⁎ 1
EXP (Exports) 0.462⁎⁎ 0.739⁎⁎ 0.803⁎⁎ 0.773⁎⁎ 1
GMA (Gross margin) 0.341⁎⁎ 0.044⁎⁎ 0.050⁎⁎ 0.153⁎⁎ 0.025 1
PINN (Product innov.) 0.157⁎⁎ 0.321⁎⁎ 0.311⁎⁎ 0.313⁎⁎ 0.205⁎⁎ 0.037* 1
PRINN (Process innov.) 0.227⁎⁎ 0.282⁎⁎ 0.306⁎⁎ 0.307⁎⁎ 0.179⁎⁎ 0.096⁎⁎ 0.398⁎⁎ 1
R&D (R&D activities) 0.327⁎⁎ 0.500⁎⁎ 0.510⁎⁎ 0.514⁎⁎ 0.405⁎⁎ 0.077⁎⁎ 0.492⁎⁎ 0.382⁎⁎ 1
LCW (Labour cost per

worker)
0.784⁎⁎ 0.455⁎⁎ 0.642⁎⁎ 0.658⁎⁎ 0.491⁎⁎ 0.035* 0.133⁎⁎ 0.180⁎⁎ 0.322⁎⁎ 1

KW (Capital per worker) 0.713⁎⁎ 0.379⁎⁎ 0.585⁎⁎ 0.562⁎⁎ 0.419⁎⁎ 0.187⁎⁎ 0.147⁎⁎ 0.193⁎⁎ 0.312⁎⁎ 0.661* 1
HC (Human capital) 0.333⁎⁎ −0.044⁎⁎ 0.101⁎⁎ 0.088⁎⁎ 0.118⁎⁎ 0.078⁎⁎ 0.113⁎⁎ 0.034* 0.155⁎⁎ 0.371⁎⁎ 0.268⁎⁎ 1
ROB (Robots use) 0.300⁎⁎ 0.435⁎⁎ 0.452⁎⁎ 0.453⁎⁎ 0.343⁎⁎ 0.069⁎⁎ 0.261⁎⁎ 0.291⁎⁎ 0.330⁎⁎ 0.286⁎⁎ 0.287⁎⁎ 0.031* 1
CADM (CAD/CAM use) 0.252⁎⁎ 0.312⁎⁎ 0.312⁎⁎ 0.338⁎⁎ 0.233⁎⁎ 0.053⁎⁎ 0.237⁎⁎ 0.253⁎⁎ 0.295⁎⁎ 0.315⁎⁎ 0.204⁎⁎ 0.137⁎⁎ 0.348⁎⁎ 1
DDC (Data-driven

control use)
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FPS (Flexible prod.
systems)
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Notes: Pearson bivariate correlations.
⁎ p<0.05.
⁎⁎ p< 0.01.
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