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 Multi-stage multi-product multi-period production planning with 

sequence-dependent setups in closed-loop supply chain 

 

 

Abstract  

This paper studies multi-stage multi-product multi-period capacitated production 

planning problem with sequence dependent setups in closed-loop supply chain. In this 

problem, manufacturing and remanufacturing of each product is regarded consequently, 

and in addition to the setup for changing products, a setup while changing the processes 

is needed. To formulate the problem, a mixed-integer programming (MIP) model is 

presented. Four MIP-based heuristic named non-permutation and permutation 

heuristics, using rolling horizon are utilized to solve this model. Moreover, a simulated 

annealing algorithm using a heuristic to provide initial solution is developed to solve the 

problem. To calibrate the parameters of the proposed simulated annealing algorithm, 

Taguchi method is applied. The numerical results indicate the efficiency of the proposed 

meta-heuristic algorithm against MIP-based heuristic algorithms. 

Keywords Production planning, Closed-loop supply chain, Sequence dependent 

setup, Rolling horizon, Simulated Annealing algorithm, Flow shop. 

1. Introduction 

The management of return flows has been increasingly paid attention by researchers 

during last two decades. Contrary to traditional supply chain where the products flow 

from manufacturers to customers, in closed-loop supply chain, the manufacturers often 

collect the used products from the customers and reprocess them for a higher profit or 

reduce the negative environmental effects. 

In published literature in the field of closed-loop supply chain, numerous studies 

have been made and a large number of models have been developed. Stindt and 

Sahamie (2014) classified the quantitative studies of closed-loop supply chain in four 

groups of network design, production planning, product returns management, and 

forecasting. In closed loop supply chain there are different options for recovery such as 

reuse, repair, remanufacturing, refurbishing, retrieval and recycling; in which 

remanufacturing that transforms the defective products into an as-good-as new 

condition is attractive in terms of environmental concerns, legislation and economics 

(Stindt & Sahamie, 2014). Ilgin and Gupta (2010) categorized the studies in the field of 

remanufacturing into six groups of forecasting, production planning and scheduling, 

capacity planning, inventory management, and uncertainty effect. 

     Production planning in hybrid systems which includes manufacturing and 

remanufacturing is an important issue in closed-loop supply chain, the purpose of which 

is the optimum usage of production resources to produce the products according to the 

demand in the planning horizon. In these problems, remanufacturing is used as well as 

manufacturing to satisfy demands. 

 Production planning has been paid attention by researchers since early twentieth 

century. It was first studied by Wagner and Whitin (1958); they solved a single-stage, 

single-product, multi-period uncapacitated production planning using a forward 

dynamic programming. Research in the field of production planning is vast and contains 
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numerous topics; one of the most complex of them is lot sizing. Bahl et al. (1987) 

classified the lot sizing problems into four categories according to the number of levels 

and resource capacity. Karimi et al. (2003) classified the lot sizing problems into the 

capacitated lot sizing problem (CLSP), the economic lot scheduling problem (ELSP), 

the discrete lot sizing and scheduling problem (DLSP), the continuous setup lot sizing 

problem (CSLP), the proportional lot sizing and scheduling problem (PLSP) and the 

general lot sizing and scheduling problem (GLSP), all of which are NP-hard in case of 

capacity constraint. Production planning or specifically lot sizing with remanufacturing 

is the focus of the current study. 

Lot sizing in hybrid systems including manufacturing and remanufacturing is 

considered in many studies of closed-loop supply chain. First, Richter and Weber 

(2001) developed reverse Wagner-Whitin model for hybrid lot sizing problem, and 

proved that in the case of constant cost and demand, the optimal policy is starting 

remanufacturing before exchanging to manufacturing process. Yang et al. (2005) 

considered an uncapacitated problem with concave cost functions, and cited that even in 

the case of constant costs, the problem would be NP-hard. This problem is modelled as 

a network flow type formulation, and a polynomial time heuristic has been utilized to 

solve it. Teunter et al.(2006) considered two schemes for setup cost: a common setup 

cost for manufacturing and remanufacturing for single production line; or different 

setup cost for dedicated lines. In case of common production line, an exact polynomial 

time dynamic programming algorithm is presented. For both cases, heuristic methods as 

extensions of Silver-Meal method, Least Unit Cost method, and Part Period Balancing 

method have been proposed. Li et al. (2006) studied a multi-product problem with 

demand substitution, in which a higher quality product can satisfy the demand of a 

lower quality one, in case of large amounts of returned products, a dynamic 

programming method has been proposed to obtain a near optimal solution. Pan et al. 

(2009) investigated the problem with disposal of returned products. This problem has 

been analysed under different scenarios and solved using dynamic programming 

algorithm. Pineyro and Viera (2010) and Z.-H.Zhang et al. (2012) studied the problem 

with different demands for new and remanufactured products.  Zhang et al. (2011) 

considered the startup cost in the first period among periods with positive production, 

Genetic algorithm is developed to solve the problem. Corominas et al. (2012) focused 

on overtime, lost demands and the variety of returned products. The proportion of 

returned products is a nonlinear function of their paid price. To solve the problem, the 

objective function and constraints have been linearized via piecewise functions. Chen 

and Abrishami (2014) assumed separate demand for new and remanufactured products 

and developed a Lagrangian decomposition based method to solve the problem. Li et al. 

(2014) developed a robust tabu search algorithm to solve the problem and evaluated it 

using 6480 benchmark instances. Baki et al. (2014) proposed a new MIP formulation 

for the problem with better bound when integrality constraints are relaxed. They 

developed a dynamic programming based heuristic with some improvement schemes to 

solve the problem. Lee et al. (2015) studied a capacity and lot sizing problem and 

developed two linear programming relaxation based heuristics to solve it. Sifaleras and 

Konstantaras (2015) proposed general variable neighbourhood search (GVNS) 

algorithm to solve the problem. Parsopoulos et al. ( 2015) introduced some modification 

in the problem formulation and developed a modified differential evolution (DE) 

algorithm to solve the problem. Jing et al. (2016) considered the problem with 

backorder and multiple factories to produce new products, remanufactured products, or 

both. They presented three models to consider different cases and proposed an approach 
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based on self-adaptive genetic algorithm with population division (SAGA-PD) to solve 

the problem.  

    The existing uncertainties in closed-loop supply chain which are due to the 

amount and quality of returned products, the reprocessing time, effective yield and 

customer demand, incur the planning complexity  (Stindt & Sahamie, 2014). Some of 

these uncertainties especially uncertain quantity and quality of returned products are 

considered in lot sizing with remanufacturing. Li et al. (2013) considered the stochastic 

and price-sensitive amount and the uncertain quality of returned products. Kenne et al. 

(2012) regarded two machines for manufacturing and remanufacturing with stochastic 

failures and repairs. Mukhopadhyay and Ma (2009) considered the uncertainty of 

demand and returned products’ quality. Shi et al. (2010), Wei et al. (2011) , Naeem et 

al. (2013) and Hilger et al. (2015) considered the uncertainty of the amount of returned 

products and demand. Dong et al. (2011) focused on uncertainty of returned products’ 

quality, the time of returning, and reprocessing time. They regarded inspection, 

recovery, and assembly operations for remanufacturing. Macedo et al. (2016) 

considered the uncertain demand, return rate and setup cost due to quality of returned 

products. They used a two-stage stochastic programming model to deal with the 

uncertainties. 

 One of the most common complexities in lot sizing problems is setup time, which is 

usually associated with changing tools and cleaning machines. Sequence-dependent 

setup time is one of the most complex setups where the setup time of current product 

depends on the previous scheduled product. Sequence-dependent setup time in lot sizing 

problem for single machine has been considered by many researchers; Gupta and 

Magnusson (2005) developed a heuristic method to solve the lot sizing problem with 

sequence dependent setups and proposed a procedure to achieve a lower bound for the 

problem. Almada-Lobo et al. (2007) proposed two linear mixed-integer programming 

(MIP) models for CLSP with sequence dependent setup time and cost, and developed a 

five-step heuristic approach to solve the problem. Kovács et al. (2009) presented a new 

approach to model the CLSP with sequence dependent setup time; in which they 

introduced a binary variable to indicate whether a product is produced or not, and 

consider prespecified efficient sequences. Almada-Lobo and James (2010) proposed a 

neighbourhood search algorithm to solve the CLSP with sequence-dependent setup 

time. Menezes et al. (2011) studied the problem with non-triangular setups and solved 

some examples using CPLEX software. James and Almada-Lobo (2011) considered the 

CLSP with sequence-dependent setup in systems with parallel machines. They proposed 

an iterative neighbourhood search heuristic based on MIP formulation to solve the 

problem. 

The multi-stage production system with complex setups in lot sizing problem has 

been studied in recent years. Mohammadi et al. (2010) proposed a multi-product, multi-

period lot sizing problem with sequence dependent setups and setup carry-over in a flow 

shop. To formulate the problem, for each machine and each period, N (the number of 

products) setups are considered, and artificial setups from one product to the same one 

are permitted. They used a rolling-horizon and fix-and-relax heuristics to solve the 

problem. Mohammadi et al. (2011) proposed a genetic algorithm to solve the lot-sizing 

problem with sequence dependent setups in permutation flow shop. Ramezanian et al. 

(2013) considered a flow shop system and modelled the problem more efficiently than 

Mohammadi et al. (2010) and  Mohammadi et al. (2011) using starting and completion 

time of production. They solved the problem using rolling horizon framework in 

permutation cases. Mohammadi (2010) and Mohammadi and Jafari (2011) considered 

the problem in flexible flow shops and developed MIP-based iterative approaches to 
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solve the problem. Ramezanian et al. (2013) considered the problem with uncertain 

processing times and demand and developed a hybrid simulated annealing (SA) 

algorithm  to solve it. Ramezanian et al. (2016) studied the problem in flexible flow 

shop environment and used rolling horizon heuristic and particle swarm optimization 

algorithm (PSO) to solve the problem. Urrutia et al. (2014) and Wolosewicz et al. 

(2015) considered the job shop systems and assumed that schedule of processing 

products are predetermined. Although the sequence dependent setups have been 

considered in many lot sizing studies, none of them consider remanufacturing. 

Considering the real characteristics such as multi-stage production system and 

complex setups like sequence dependent setup and setup carry-over makes the lot sizing 

problem more complex in terms of modelling and solving, but multi-stage production 

system with complex setups is not considered in the previous studies of closed loop 

supply chain. Therefore, the motivation for this study is developing a more 

comprehensive model considering the multi stage system with complex setups including 

sequence dependent setup and setup carry-over, and remanufacturing in order to 

implement in complicated industries such as auto car factory. 

To the best knowledge of our literature review, the conducted studies of lot sizing in 

closed loop supply chain considered a single stage production system with simple 

setups. Therefore, the main contribution of the current study is considering a multi-stage 

lot sizing problem with sequence dependent setups and setup carry-over in closed loop 

supply chain, in which it is required to determine the scheduling and sequencing of 

processes beside products.  The preservation of setup over idle period is also considered 

in this study.   A mixed integer programming is introduced to formulate the problem 

and the problem is solved by rolling horizon heuristic methods and a SA algorithm. 

Moreover, Taguchi method is applied to calibrate the SA parameters. 

The paper is organized as follows. Section 2 gives the problem assumptions and the 

MIP model to formulate the problem. Heuristic methods, SA and Taguchi methods are 

introduced in section 3. Section 4 includes computational results; and eventually, 

section 5 is devoted to the conclusions and suggestions for further researches. 

2. Problem assumptions and formulation  

2.1. Assumptions 

The following assumptions are made for the problem under study:  

 Both manufacturing and remanufacturing processes are performed on the same line, 

and a product change as well as an alteration in the process need a setup. 

 Shortage is not permitted. 

 The setup times are dependent on the sequence of products and processes, and the 

setup costs are also sequence dependent and proportional to the setup times. 

 Setup carry-over from one time period to the next is possible. 

 The setup time from product i to product j  is always smaller than or equal to the 

summation of setup times from product i  to product k  and from product k  to 

product j , which is referred as triangular inequality. 

 The production system is a flow line, and there is one machine in each stage with 

limited time capacity. 
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 Processing at a stage could only be started if a sufficient amount of the required 

components from the previous stage are available; which is called vertical 

interaction. 

 In the beginning of planning horizon, machines are set up for a specific process of a 

specific product. 

 The final products obtained from both manufacturing and remanufacturing 

processes have similar qualities and are named service products, which are utilized 

to satisfy demands.  

 The inventories of intermediate products from manufacturing and remanufacturing 

are stored separately.  

 The returned products are available in the beginning of each period. 

 Returned products have different quality levels. The remanufacturing time and cost 

depend on these quality levels. 

 Defective products of manufacturing are used for remanufacturing, as well as 

returned products. 

 The initial inventories are all zero. 

 When machine setup for product j  finishes, the machine is ready to perform the 

first process of product j .   

2.2. Mathematical model 

Our modelling approach is similar to Ramezanian et al. (2013) and the following 

notations are used in the model formulation: 

Indices: 

Product type indices , ', , ',i i j j n  

Process type indices, 1l  implies manufacturing, and 2l   refers to 

remanufacturing 
, , ', , 'l k k q q  

I   Index of production stage m  

Index of planning period t  

Index of quality level of returned products 'l  

Parameters: 

Planning horizon (the number of planning periods) T  
Number of products N  

Number of production stages  M  
Number of quality levels of returned products L  

Capacity of machine m  required to manufacture a unit of product j   ,j mb  

Required capacity for remanufacturing a unit of product j  with quality level 

'l  in stage m  
', ,'l j mb  

Capacity of machine m  in period t  ,m tC  

Demand for product j at the end of period t  ,j td  

Holding cost per unit of new product j in stage m  ,mjh  

Holding cost per unit of remanufactured product j with quality level 'l in ', ,m'l jh  
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stage m  

Holding cost per unit of service product j  jhs  

Holding cost per unit of returned product. j .with quality level 'l  ',l jhr  

Manufacturing cost per unit of product j in stage m and period t  ,m,tjp  

Remanufacturing cost per unit of product j with  quality level 'l in stage m

and period t  
', ,m,t'l jp  

Sequence-dependent setup time when switching from product i  to product j

in stage m . If i j , 
, , 0i j mS  ; Otherwise,

 , , 0i j mS    , ,i j mS  

Sequence-dependent setup cost when switching from product i  to product j

in stage m . If i j , 
, , 0i j mW  ; Otherwise,

 , , 0i j mW    , ,i j mW  

A fraction of new product j which is defective and retains quality level 'l  ',l jr  

The amount of returned product j with quality level 'l  in period t  ', ,l j tu  

Sequence-dependent setup time when switching from process l of product j

to process k in stage m . If l k , 
, , , 0l k j mr  ;Otherwise,

, , , 0l k j mr   , , ,l k j mr  

Sequence-dependent setup cost when switching from process l  of product j  

to process k in stage m . If l k , 
, , , 0l k j mc  ; Otherwise, 

, , , 0l k j mc   , , ,l k j mc  

Machines are set up to produce product 0j  in the beginning of planning 

horizon 
0j  

Machines are set up to perform process 0l in the beginning of planning 

horizon 
0l  

A large real number bigM  

Continuous decision variables: 

Inventory of new product j in stage m  at the end of period t  , ,j m tI  

Inventory of remanufactured product j with quality level 'l in stage m  at the 

end of period t  
', , ,'l j m tI  

Inventory of service product j at the end of period t  ,j tIs  

Inventory of returned product j with quality level 'l  at the end of period t  ', ,l j tIr  

Manufacturing amount of product j in stage m and period t  , ,j m tx  

Remanufacturing amount of product j with quality level 'l in stage m and 

period t  
', , ,'l j m tx  

Manufacturing starting time for product j on machine m in period t  , ,j m tso  

Manufacturing completion time for product j on machine m in periodt  , ,j m tco  

Remanufacturing starting time for product j on machine m in period t  , ,' j m tso  

Remanufacturing completion time for product j on machine m in period t  , ,' j m tco  

0, if exactly one product is produced in stage m and period t ; non-negative 

value, otherwise. 
,m t  

0, if exactly one process of product j  is performed in stage m  and periodt ; 

non-negative value, otherwise. 
, ,' j m t  
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Binary decision variables: 

1, if the setup changes from product i  to product j in stage m and period t ; 

0, otherwise. 
, , ,i j m ty  

1, if the setup changes from process l to process k of product j in stage m

and period t ; 0, otherwise. 
, , , ,l k j m tz  

1, if process l of the product j  is performed in stage m  and period t ; 0, 

otherwise. 
, , ,l j m tv  

1, if product i  is processed last in period 1t   and product j is processed 

first in period t  and stage m ; 0, otherwise. 
, , ,'i j m ty  

1, if setup for product j is carried from period 1t   to period t  in stage m , 

and process l  is the last process of product j in period 1t  , and process k

is the first process of product j in period t and stage m ; 0, otherwise.  

, , , ,'l k j m tz  

1, if manufacturing or remanufacturing of product j  is performed in stage 

m  and period t ; 0, otherwise. 
,m,j tT  

1, if at least one product is produced in stage m  and period t ; 0, otherwise. ,m tw  

1, if product j  is the first product in stage m  and periodt ; 0, otherwise. , ,j m t  

1, if product j  is the last product in stage m  and periodt ; 0, otherwise. , ,j m t  

1, if process l  is the first process of product j  in stage m  and period t ; 0, 

otherwise. 
, , ,'l j m t  

1, if process l  is the last process of product j  in stage m  and period t ; 0, 

otherwise. 
, , ,'l j m t  

It should be mentioned that although
, , ,'i j m ty , 

, , , ,'l k j m tz , 
,m,j tT  and 

,m tw  are defined as 

binary variables, they can be relaxed as 
, , ,0 ' 1i j m ty  ,

, , , ,0 ' 1l k j m tz  ,
,m,0 1j tT   

and ,0 1m tw   during solving. It means that, even if they are considered as continuous 

variables, the value of them would be either one or zero due to structure of the presented 

MIP model. Therefore, it is not necessary to restrict them to be integer. 

With respect to the above-mentioned assumptions and notations, the MIP model would 

be as follows: 

 

 

 

Objective function: 

(1)  

1

, , , , ', , , ', , , , , ,

1 1 1 ' 1 1 1 1 1 1 1

1

', , ', , , ', , ', , , ,

' 1 1 1 1 ' 1 1 1 1

 . ' . ' .

h' . ' . .

N M T L N M T N M T

j m t j m t l j m t l j m t j m j m t

j m t l j m t j m t

L N M T L N T T

l j m l j m t l j t l j t j t j t

l j m t l j t j t

Min p x p x h I

I hr Ir hs Is



         



        

  

 

  

  
1

2 2

, , , , , , , , , , , , , , , , , , ,

1 1 1 1 1 1 1 1 1

.( ' ) .( ' )

N

N N M T N M T

i j m i j m t i j m t l k j m l k j m t l k j m t

i j m t l k j m t

w y y c z z
        



  



 
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Equation (1) represents the objective function which minimizes the sum of the setup 

costs, holding costs, and costs of manufacturing and remanufacturing. 

 

Inventory balance constraints: 

(2)  l', j,t l', j,t 1 ', j,t ', , , 1 ', ,1,. ' ;  l l j j M t l j tIr Ir u r x x  l' = 1,...,L; j = 1,...,N; t = 1,...,T      

(3)  
j,t 1 ', , , ' , , j,t j,t

' '

(1 ). '
L L

l j j M t l j M t

l l

Is r x x Is d ; j = 1,...,N;t = 1,...,T          

(4)  , , -1 ,m, , , ,m 1, ; 1,..., ; 1,..., -1; 1,...,j m t j t j m t j tI x I x  j N m M t T       

(5)  
 

', , , -1 ', ,m, ', , , ', ,m 1,' ' ' ' ; 1,..., ; 1,..., -1; 1,...,l j m t l j t l j m t l j tI x I x  j N m M t T       

Equation (2) indicates the production of remanufactured products from returned 

products and defective products. Equation (3) guarantees the demand for products in 

each period. Equations (4) and (5) indicate the inventory balance constraint for new 

products and remanufactured products in intermediate stages, respectively. 

 

Setup-forcing constraints: 

(6)  ,m, 1, , ,. ; 1,..., ; 1,..., ; 1,...,j t j m tx bigM v  j N m M t T     

(7)  ', ,m, 2, , ,

'

. ; 1,..., ; 1,..., ; 1,...,
L

l j t j m t

l

x bigM v  j N m M t T     

Equations (6) and (7) determine whether processing new manufactured products and 

remanufactured products are performed, respectively. 

 

Capacity constraints: 

(8)  , , , ; 1,..., ; 1,..., ; 1,...,j m t m tco C  j N m M t T     

(9)  , , ,' ; 1,..., ; 1,..., ; 1,...,j m t m tco C  j N m M t T     

 

Equations (8) and (9) show the capacity constraint of each machine in each period. 

 

Calculating completion time: 

(10)  , , , , , , ,. ; 1,..., ; 1,..., ; 1,...,j m t j m t j m j m tco so b x  j N m M t T      

(11)  , , , , ', , ', , ,

' 1

' ' ' . ' ; 1,..., ; 1,..., ; 1,...,
L

j m t j m t l j m l j m t

l

co so b x  j N m M t T


      

Equations (10) and (11) indicate the relation between the starting time and the 

completion time of new products and remanufactured products, respectively. 

 

Scheduling production of products: 

(12)  , , , 1, ; 1,..., ; 2,..., ; 1,...,j m t j m tso co  j N m M t T     

(13)  , , , 1,' ' ; 1,..., ; 2,..., ; 1,...,j m t j m tso co  j N m M t T   
 

(14)  
, , , , , , , , , , , , 1, , ,. (1 ) (1 ' );

1,..., ; 1,..., ; ; 2,..., ; 1,...,

j m t i m t i j m i j m t i j m t j m tso co S y bigM y bigM

 i N j N i j m M t T

     

    
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(15)  
, , , , , , , , , , , , 1, , ,' . (1 ) (1 ' );

1,..., ; 1,..., ; ; 2,..., ; 1,...,

j m t i m t i j m i j m t i j m t j m tso co S y bigM y bigM

i N j N i j m M t T

     

    
 

(16)  
, , , , , , , , , , , , 2, , ,' . (1 ) (1 ' );

1,..., ; 1,..., ; ; 2,..., ; 1,...,

j m t i m t i j m i j m t i j m t j m tso co S y bigM y bigM

i N j N i j m M t T

     

    
 

(17)  
, , , , , , , , , , , , 2, , ,' ' . (1 ) (1 ' );

1,..., ; 1,..., ; ; 2,..., ; 1,...,

j m t i m t i j m i j m t i j m t j m tso co S y bigM y bigM

 i N j N i j m M t T

     

    
 

(18)  , , , , 2,1, , , 2,1, , 2,1, , ,' (1 ) . ; 1,..., ; 1,..., ; 1,...,j m t j m t j m t j m j m tso co bigM z r z j N m M  t T        

(19)  , , , , 1,2, , , 1,2, , 1,2, , ,' (1 ) . ; 1,..., ; 1,..., ; 1,...,j m t j m t j m t j m j m tso co bigM z r z  j N m M t T        

 

Equations (12) and (13) represent that the processing of product j in stage m could 

begin if only the processing of this product has finished in stage 1m  . Equations (14)-

(17) represent that if processing of product j  is planned after product i on machine m , 

the first process of product j could only begin if the processing of product i  has 

finished on this machine, and the setup for product j has been performed. Equations 

(18) and (19) indicate that the last process of product j  on machine m , could only 

begin if the first process of product j has been completed on this machine, and setup for 

the last process has been performed. 

 

Sequencing the products: 

(20)  , , , , ,

1 1,i j 1

1; 1,..., ; 1,...,
N N N

i j m t j m t

i j j

y T m M t T
   

     
  

(21)  
2 2 2

,k, , , , , ,

1 1, 1

1; 1,..., ; 1,..., ; 1,...,l j m t l j m t

l k l k l

z v  j N m M t T
   

      
 

(22)  

2

, , , , ,

1

2. ; 1,..., ; 1,..., ; 1,...,l j m t j m t

l

v T  j N m M t T


   
  

(23)  , , , , ,

1,i j

; 1,..., ; 1,..., ; 1,...,
N

i j m t j m t

i

y T  j N m M t T
 

   
 

(24)  , , , , ,

1,i j

; 1,..., ; 1,..., ; 1,...,
N

j i m t j m t

i

y T j N m M t T  
 

     

 

Equations (20) and (21) indicate that changing products and processes require setup. 

Equation (22) implies that if at least one process of product j is performed, , ,j m tT would 

be 1. Equations (23) and (24) indicate that product j can only be within a sequence of 

products if it is produced in stage m  and period t . 

 

Set up carry-over of products: 

(25)  , , ,

1

. ; 1,..., ; 1,...,
N

j m t m t

j

T bigM w  m M t T


  
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(26)  , , ,

1

1 ( 1). ; 1,..., ; 1,...,
N

j m t m t

j

T N  m M t T


    
 

(27)  , , ,

1

; 1,..., ; 1,...,
N

j m t m t

j

w m M t T  


  
 

(28)  , , ,

1

; 1,..., ; 1,...,
N

j m t m t

j

w  m M t T


    

(29)  , , , , , , ,

1

; 1,..., N; 1,..., ; 1,...,
N

j m t j m t i j m t

i

T y  j m M t T


    
 

(30)  , , , , , , ,

1

; 1,..., ; 1,..., ; 1,...,
N

j m t j m t j i m t

i

T y  j N m M t T


    
 

(31)  , , , , ,2 ; 1,..., ; 1,..., ; 1,...,j m t j m t m t  j N m M t T       

 

(32)  
0 , j, ,1

1

' 1; 1,...,
N

j m

j

y m M


   

(33)  i, , , , ,

1

' ; 1,..., ; 1,..., ; 1,...,
N

j m t j m t

i

y  j N m M t T


   

 
(34)  i, , , , , 1

1

' ; 1,..., ; 1,..., ; 1,...,
N

j m t i m t

j

y  i N m M t T 



   
 

(35)  i, j, ,

1 1

' 1; 1,..., ; 1,...,
N N

m t

i j

y m M t T
 

    

(36)  ', , , 1 , , , 1 , , , , ', , 1

' 1 1, 1 ' 1, '

' ' ; 1,..., ; 1,..., ; 2,...,
N N N N

j j m t i j m t j n m t j i m t

j i i j n i i j

y y y y  j N m M t T  

     

        
 

 

Equation (25) states that in case of producing at least one product, ,m tw  should be one. 

According to Equations (27) and (28), even if  ,m tw   is relaxed as ,0 1m tw  , it would 

be either one or zero; since ,m tw  equals the summation of several binary variables, it 

retains an integer value, on the other hand, since it is defined as ,0 1m tw  , it cannot 

be of a value more than 1. Equation (26) states that if more than one product is 

produced within a period, ,m t  should be positive. Equations (27) and (28) indicate that 

if production is performed in one stage and one period, only one product can be the first 

or last produced product. According to Equations (29) and (30), if a product is not the 

first or last product, the corresponding   or   would be zero, respectively. Equation 

(31) states that if only one product is produced in a period, would be zero. Equations 

(32) indicate that machines are setup in the beginning of the planning horizon for 

product 0j . Regarding Equations (33) and (34), if product j  is the first product in stage 

m  and period t , and product i  is the last product in stage m  and period 1t  , the 

, , ,'i j m ty variable would equal 1. Equation (35) claims that the setup for exactly one 

product is carried over from period 1t   to period t . Equation (36) guarantees the 

preservation of setup related to products over idle period.  
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Set up carry-over of processes: 

(37)  0 0 0 0

2

, , , ,1 , , ,1

1

' ' ; 1,...,l l j m j j m

l

z y m M


 

 
(38)  

2

, , , , ,

1

' ; 1,..., N; 1,..., ; 1,...,l j m t j m t

l

T  j m M t T


   
 

(39)  

2

, , , , ,

1

' ; 1,..., N; 1,..., ; 1,...,l j m t j m t

l

T  j m M t T


   
 

 

(40)  

2

, , , , ,

1

1 ' ; 1,..., N; 1,..., ; 1,...,l j m t j m t

l

v  j m M t T


      

(41)  , , , , , , , ,' ' 2 ' ; 1,2; 1,..., ; 1,..., ; 1,...,l j m t l j m t j m t  l j N m M t T        

 

(42)  , , , , , , , , , ,' ; 1,2; 1,2; ; 1,..., ; 1,..., ; 1,...,l j m t l j m t k l j m tv z  l k l k j N m M t T        

 
(43)  , , , , , , , , , ,' ; 1,2; 1,2; ; 1,..., ; 1,..., ; 1,...,l j m t l j m t l k j m tv z  l k l k j N m M t T        

 

(44)  

2

, , , , , , , , , ,

1

' .(1 ' ) ' ; 1,2; 1,..., ; 1,..., ; 1,...,k l j m t j j m t l j m t

k

z bigM y l j N m M t T


      
 

(45)  

2

, , , , , , , , , , 1

1

' .(1 ' ) ' ; 1,2; 1,..., ; 1,..., ; 1,...,k l j m t j j m t k j m t

l

z bigM y  k j N m M t T 



      
 

(46)  

, , , , , , , l,1, , ,1, , , 1, , ,

1 1

. ' . ' (1 ' );

1,..., ; 1,..., ; 1,...,

N L

j m t i j m i j m t j m l j m t j m t

i l

so S y r z bigM

j N m M t T

 


 

   

  

 

 

(47)  
, , , , , , , ,2, , ,2, , , 2, , ,

1 1

' . ' . ' (1 ' );

1,..., ; 1,..., ; 1,...,

N L

j m t i j m i j m t l j m l j m t j m t

i l

so S y r z bigM  

j N m M t T


 

   

  

 

 

(48)  

2 2

k,l, , , j, j, ,

1 1

' ' ; 1,..., ; 1,..., ; 1,...,j m t m t

l k

z y  j N m M t T
 

   
 

(49)  

2 2

, , , , 1 , , , 1 , , , , 1 , ', , , , , , , ', , , 1

1 ' 1

' (1 ' ) ' (1 ' ) ;

1,2; 1,2; ' 1,2; ; '; 1,..., ; 1,..., ; 2,...,

k l j m t j j m t q l j m t l q j m t j j m t l k j m t

k q

z bigM y z z bigM y z  

l q k q l l k j N m M t T

   

 

      

       

 

 

 

Equations (37) indicate that machines are setup in the beginning of the planning horizon 

for process 0l  of product 0j . Similarly to ,m tw , if , ,j m tT  is relaxed as continuous variable 

between zero and one,  it retains the value zero or one, according to Equations (38) and 

(39). Additionally, according to these equations, only one of the processes of a 

produced product in one period and in a specific stage could be the first or last process. 

Equation (40) states that if both processes of manufacturing and remanufacturing are 

performed in one period,  , ,' j m t  should be positive. Equation (41) indicates that if 

exactly one of the processes is performed,  '  would be zero. Equations (42) and (43) 

show that if a process is not the first or last process of produced product j , the 
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corresponding '  and '  would be zero. Equations (44) and (45) state that if the setup 

for product j  is carried over from period 1t  to period t , and process l  is the first 

process of product j  in stage m  and period t , and process k  is the last process of 

product j  at the end of period 1t  in stage m , the 
, , , ,'k l j m tz  variable would equal 1. 

Equations (46) and (47) show that processing the first process of each product in each 

period is only possible after applying setups. Equation (48) shows that carrying of setup 

for processes of product is only performed under the condition of carrying product j  

setup. Equation (49) guarantees preservation of the setup related to processes over idle

j  period if setup related to products was preserved.  

 

Problem variables: 

(50)  
, , ', , , , ', , , , , , , , , ,m, , ,

', , , , , , , , , , , , ,m, ,

, ' , , , ' , ' , , ,

' , , , ' , ' , , ' , 0

j m t l j m t j t l j t i j m t l k j m t j t j m t

l j m t j m t j m t j m t j m t m t j t m t

I I Is Ir y z T x

x so co so co w  
 

(51)   , , , , , , , , , , , , , , , , , , , ,, , , , , ' , ' 0,1i j m t l k j m t l j m t j m t j m t l j m t l j m ty z v     

 
Equations (50) and (51) indicate the continuous and binary variables of the problem, 

respectively. 

2.3. Restricted models 

Solution space of the original problem includes permutation and non-permutation 

sequences. In permutation sequences, the sequence of products and processes is the 

same in all stages at a period, while in non-permutation sequences, the sequence is not 

the same necessarily. To obtain simplified models to develop heuristic methods two 

restricted models are proposed using elimination of non-permutation sequences of 

solution space. Note that the solution of these simplified models is an upper bound on 

the original problem. 

2.3.1. The first restricted model 

In this model, the sequence of products and processes in all stages at a period is the 

same, so all the variables related to sequence are independent of stages ,i.e., , , ,'i j m ty , 

, , , ,'l k j m tz , ,m,j tT , ,m t , , ,' j m t , ,m tw , , , ,i j m ty , , , , ,l k j m tz , , , ,l j m tv , , ,j m t , , ,j m t , , , ,'l j m t  

and , , ,'l j m t are reduced to , ,'i j ty , , , ,'l k j tz , ,j tT , t , ,' j t , tw , , ,i j ty , , , ,l k j tz , , ,l j tv , 

,j t , ,j t , , ,'l j t and , ,'l j t , respectively; other variables and parameters are similar to 

those of the original model. 

2.3.2. The second restricted model 

In this model, in addition to the same sequence of products and processes in all stages, 

the lot sizes of manufactured and remanufactured products are similar and independent 

of stages, i.e., besides the variables mentioned in the first restricted model, , ,j m tx and 

', , ,'l j m tx are  also reduced to ,j tx and ', ,'l j tx . Since the lot sizes of each manufactured or 
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remanufactured product at different stages are the same, there is no intermediate 

inventory, therefore the variables , ,j m tI
, 

', , ,'l j m tI and Equations (4) and (5) are 

eliminated. The remaining variables and parameters are similar to those of the original 

model. 

3. The proposed solution methods 

3.1. Rolling horizon procedure 

In production planning problems, when there is not sufficient reliable data about 

parameters such as demands of future periods, the rolling horizon method is highly 

applicable. In this case, the decision is made for the first period, and after the passage of 

each period, the model is executed again using updated data. Moreover, rolling horizon 

approach has been utilized to solve multi-period production planning problems with 

known parameters (Mohammadi et al., 2010). In this case, to overcome computational 

infeasibility in large MIP problems, solving the original problem is replaced with 

several smaller problems which could be solved efficiently. In this iterative procedure, 

the planning horizon is divided into three separate sections  which are as mentioned 

below for step k (Mercé & Fontan, 2003): 

 The beginning section which consists of k-1 first periods. In this section, all or some 

of the decisions are made and frozen according to the previous iterations, with 

respect to a freezing strategy. 

 The central section includes kth period in which the problem is entirely considered. 

 The ending section includes final periods (from period k+1 to period T). In this 

section, the model is simplified according to a simplification strategy.      

      This iterative method is represented in Figure 1. 

Fig. 1 Rolling horizon method (Mohammadi et al., 2010) 

At the end of step k, each of these three mentioned sections rolls to the next period and 

step k+1 would be executed. When there is no other ending section, the algorithm will 

stop. The final step- step T- defines all of the decision variables in the planning horizon. 

3.1.1. Rolling horizon heuristic methods 

Based on the approach mentioned in section 3.1, four heuristic algorithms are proposed 

to solve the problem. 

3.1.2. First heuristic method (H1) 

In this method, the original problem is considered and three sections of the algorithm 

would be as below: 

 Beginning section: only binary variables related to the periods of this section are 

frozen. 

 Central section: this section consists of one period in which the problem is entirely 

considered. 

 Ending section: all of the binary variables related to the periods of this section are 

relaxed between zero and one. Besides, Equations 14-19, 44-47 and 49 are ignored 

for the periods of this section. 
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3.1.3. Second heuristic method (H2) 

This method is similar to H1 but in the beginning section all of the variables, including 

continuous and binary variables, are frozen. 

3.1.4. Third heuristic method (H3) 

Pay attention to the fact that the time required to solve the MIP problems would 

exponentially increase with increase in the number of binary variables, two previously 

mentioned algorithms would not be efficient for large size problems. Therefore, in order 

to reduce the number of binary variables to solve the problems, the third heuristic 

algorithm has been developed based on the first permutation model, and the three 

sections of the algorithm are similar with those of the first heuristic method (H1). 

3.1.5. Forth heuristic method (H4) 

This method is similar to the third heuristic method, but is developed based on the 

second permutation model and is more simplified. 

3.2. Simulated annealing algorithm  

Meta-Heuristic methods are efficient approaches to solve MIP problems, all of which 

apply an intelligent random search in the solution space of the problem to obtain an 

approximately optimal solution. Jans and Degraeve (2007) scrutinized the application of 

meta-heuristic algorithms in lot sizing problems. Simulated annealing (SA) was first 

introduced by Metropolis et al. (1953) and has been applied in a wide range of 

optimization problems. 

     SA starts the search in solution space with an initial solution. In each step, a new 

solution is created in the neighbourhood of the current solution, and would be compared 

with it. If new solution is better than the current solution, it would be accepted; 

otherwise, the acceptance of new solution would be performed according to the 

acceptance probability which obeys Boltzmann distribution. Escaping from local 

optimum solution through accepting less qualified solutions is the main idea in SA. 

With the increase of difference between objective values and algorithm temperature 

reduction, the acceptance probability decreases. SA algorithm temperature would be 

reduced from a relatively high temperature to a temperature near zero according to a 

cooling schedule, and as it reaches a specific temperature, the algorithm will stop 

(Kirkpatrick et al., 1983). 

     The proposed SA is based on the second permutation model. The binary variables of 

the problem are extracted from the solution representation. Substituting obtained binary 

variables, the problem would transform into a linear programming and the solution for 

continuous section would be achieved. In this section, the main characteristics of 

simulated annealing algorithm are introduced. To calibrate parameters of the proposed 

algorithm, Taguchi method is utilized. 

3.2.1. Solution representation 

The solution of problem with N  products, M machines and T periods would be 

considered as a (2,2 )NT  matrix; which is independent of M, since the sequence on all 
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machines is assumed the same. The first row would represent the sequence of products 

and processes; while the second row indicates whether the processes of a product in 

each period have been executed. For product j , 2 1j   and 2 j  imply manufacturing 

and remanufacturing, respectively. The value 1 in the second row represents the 

execution of the corresponding process; while otherwise, it indicates that it is not 

executed. Figure 2 demonstrates the solution for a problem with 3N  , 2M  , 2T  , 

0 1L   and 
0 1j  . Corresponding non-zero binary variables with first part (period) of 

Figure 2 are brought in Table 1. 
 

Fig. 2 Solution representation of problem with N=3, M=2, T=2 

Table 1. Corresponding non-zero binary variables with first part of Fig.2 

y1,2,1
 T3,1

 T2,1
 T1,1

 Z1111

 
y'111

 

β3,1
 α1,1

 v1,3,1
 v1,2,1

 v1,1,1
 y2,3,1

 

β'1,3,1
 

β'1,2,1
 

β'1,1,1
 

α'1,3,1
 

α'1,2,1
 

α'1,1,1
 

3.2.2. Initial solution  

There are various methods to generate an initial solution to start simulated annealing 

algorithm. In this paper, M solutions have been generated by developing the procedure 

proposed by Mohammadi et al. (2011) and the best of them would be selected as the 

initial solution. In fact, the first row of the solution is obtained from this heuristic 

method, and the second row is a vector with the length of 2NT , all elements of which 

equal 1. 

Creating M solutions with heuristic method 

This method should be repeated for M times. The products are arranged in a decreasing 

order according to 
N

j,m i,j,m

i=1

W = W ; 1,...,j N . Afterwards, the product with the 

highest j,mW  among non-located products would be put into a location where the 

summation of setup costs of products would be minimal. This procedure continues up to 

the point that all of the products be specified a location. After determining the sequence 

of products, the setup costs for the processes of each product would be compared. For 

instance, if the value 1,2,j,mc  is lower than 2,1,j,mc , primarily manufacturing and then 

remanufacturing of product j would be executed. In this method, the sequence of 

products in different periods would be equal.  

3.2.3. Neighbourhood search scheme  

In every temperature level, it is required that an appropriate search method be used to 

search the neighbourhood of the current solution. According to the structure of the 

represented solution, two neighbourhood search methods for sequencing and production 

decisions are applied as below: 

First method 



  

 

 

17 

 

In this method which is utilized to improve the sequence of products and processes, 

period t is first randomly selected. Thereafter, a ( , , )l j t  and a ( , , )k i t  are randomly 

chosen, and would be swapped in a column form.  

Second method 

This method is applied to determine decisions about execution of manufacturing and 

remanufacturing of products. A ( , , )l j t  would be randomly chosen. If the value of the 

selected array is 1, it would change to zero, and vice versa.  

 In each temperature, neighbourhood search would be repeated for 2N  times. If the 

number of accepted solutions in any temperature exceeds a specific value, the search in 

that temperature would stop. The first and the second methods would be applied with 

specific probabilities P and 1-P, respectively. 

3.2.4. Cooling schedule 

Temperature would gradually decrease through the progress of the algorithm from a 

high value 

 ( iT ) to a temperature near zero with a specific pattern which is defined as bellow: 

 

1i iT T                                                                                                                    (52) 

where α (0,1)  is a constant value. 

3.2.5. Termination criterion  

If fT< T , or the specific number of accepted solutions in several consecutive 

temperatures equals zero, the SA algorithm will stop. 

3.2.6. Attitude of encountering constraints 

In the proposed model, manufacturing and remanufacturing of each product are planned 

to be performed consecutively. To create a feasible solution, it is required that the arrays 

corresponding to manufacturing and remanufacturing of each product be consecutive in 

each solution. Regarding the act of first neighbourhood search method, this order might 

not be obeyed. Consequently, to create a feasible solution a repair procedure has been 

applied to modify the obtained solution. In this approach for each array, if the array 

relates to the manufacturing (remanufacturing) process of a product, the array 

corresponding to the remanufacturing (manufacturing) process of the same product 

would be located right after that, and the rest arrays between these two arrays, would 

move to the right. To encounter the demand and capacity constraints, a penalty attitude 

has been considered. In this regard, Equations (3), (8) and (9) are replaced with 

Equations (53), (54) and (55), respectively. 

, 1 ', , ' , , , ,

' '

1 ( (1 ). ' ) / ;

1,..., ; 1,...,

L L

j t l j j t l j t j t j t j t

l l

Is r x x Is d dr

j N t T  

     

 

 
 

(53)   
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, , , , ,( / ) 1 ;  1,..., ; 1,..., ; 1,...,j m t m t j m tco C vr  j N m M t T    

 (54)   

, , , , ,( ' / ) 1 ' ; 1,..., ; 1,..., ; 1,...,j m t m t j m tco C vr  j N m M t T    

 (55)   

where 
,j tdr  is a positive variable which indicates the violation of the demand constraint 

and 
, ,j m tvr and 

, ,' j m tvr  are positive variables to demonstrate violation of the capacity 

constraints.  

     By considering significant penalty in objective function for violation of demand and 

capacity constraints as mentioned in Equation (56), algorithm will lead toward finding 

feasible solutions.  

   '

, , , , ,

1 1 1 1 1

* *
N M T N T

j m t j m t j t

j m t j t

bigM vr vr bigM dr
    

   
(56)   

where bigM indicates the penalty cost per unit of constraint violation. 

3.2.7. Parameter calibration  

Design of parameters of meta-heuristic algorithms is a fundamentally factor on the 

efficiency of the algorithm, since an inappropriate selection of algorithm parameters 

would lead to its weak performance. In this paper, Taguchi method has been applied to 

calibrate the proposed algorithm parameters. Orthogonal arrays in Taguchi method 

permit the analysis of numerous factors with a small number of experiments. In this 

method, performance measure called signal-to-noise (S/N) ratio is maximized to obtain 

the optimum level of factors. The term ‘signal’ represents the desirable value (response 

variable) and ‘noise’ represents the undesirable value (standard deviation). The S/N 

ratio indicates the mean-square deviation present in the response variable (Taguchi et 

al., 2000). Taguchi method acts as mentioned below, to calibrate the parameters (Wu & 

Hamada, 2011): 

 For each experiment, S/N ratio is calculated. 

 For factors which have a significant impact on S/N ratio, the level that maximizes 

the S/N ratio is optimum. 

 For factors which do not have a noticeable impact on S/N ratio but affect response 

variable mean, the best level retains the best objective function. 

 For factors which affect neither S/N ratio, nor the response variable mean, a level 

with the lowest calculation time would be selected. 

     The utilized response variable in this paper is Relative Percentage Deviation (RPD) 

which is preferred to be minimized and defined as below: 

 

min

min

100i
i

OF OF
RPD

OF

 
  
 

 (57)   

 

 where minOF is the best found objective value for a specific problem, and iOF is the 

obtained objective value for i
th

 trial. Since the lower values of response variable are 

preferred, S/N ratio is defined as below: 

2

1

1
/ 10log( )                      

n

i

i

S N RPD
n 

   (58)  

where n is the number of replications. 
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     By recognizing the effective parameters on the efficiency of simulated annealing 

algorithm, calibration of following parameters are considered:  

 Cooling rate : two levels (0.95, 0.975) 

 Initial temperature: three levels (75, 100, 125) 

 Final temperature: three levels (0.05Ti, 0.075Ti, 0.1Ti) 

 Number of neighborhood search: three levels (20, 35, 50) 

 Probability of neighborhood search change: (0.4, 0.5, 0.6) 

 Number of accepted solutions in each temperature to stop the search: three levels (6, 

8, 10) 

     According to the considered levels and factors, the full factorial experiment design 

for mentioned six factors requires 3
5
×2

1
=486 experiments. But, regarding statistical 

theories, it is not necessary to perform all the experiments. Therefore, fractional 

replicated designs are used in this study. To select proper orthogonal array, it is needed 

to calculate the degree of freedom. In the current study, 1 degree of freedom for total 

mean, 1 degree of freedom for the factor with 2 levels and 2 degrees of freedom for 

each factor with three levels (2×5=10) are required. Thus, the sum of required degree of 

freedom would be 1+1+2×5=12. Hence, the appropriate array must have at least 12 

rows. The selected orthogonal array should be able to incorporate the factor level 

combinations in the experiment. Therefore, orthogonal array L18 (2
1
*3

7
) is appropriate 

to implement in this study. Orthogonal arrays layout for parameter design can be seen in 

study conducted by Wu and Wu (2000). 

Since there are five factors with 3 levels in the current study, according to Taguchi 

experimental design procedure, two columns could be remained empty. For each 

experiment of orthogonal array L18, each of the problems given in Table 2 has been 

created using parameters introduced in Table 3, and has been solved for 5 times. Thus, a 

total number of 18×5×5= 450 problems have been solved.  

Table 2. The size of problems used in calibration of parameters 

 

Table 3. The parameters of the problem 

dj,t ~ U(0,180), ul’,j,t ~ U(0,90/L), bj,m ~ U(1.5,2),b’l’,j,m ~ (0.4+(l’-1)p)× U(1.5,2), hj,m ~ U(0.2,0.4), 
h’l’,j,m ~ U(0.15,0.3), hrl’,j ~ U(0.1,0.2),hsj ~ U(0.4,0.8), pj,m,t ~ U(1.5,2),p’l’,j,m ~ (0.4+(l’-1)p)× U(1.5,2), 

Wi,j,m ~ U(35,70), Si,j,m ~ U(35,70),rl,k,j,m ~ U(5,10), cl,k,j,m ~ U(5,10),αrl’,j ~ U(0.01,0.02), Cm,t ~ U(am,bm); 

p=(0.6-0.4)/(L-1), am= 300N+ 200(m-1),bm =300N+ 300(m-1) 

 

S/N ratio and RPD mean value for SA are demonstrated in Figure 3 and Figure 4, 

respectively.  

Fig.3 The mean of S/N ratio at each level of the SA parameters 

Fig. 4 The mean of RPD at each level of the SA parameters 

 According to these figures, Table 4 gives the best levels of factors for this algorithm. 

Table 4. Best levels of the factors for proposed SA 

The optimum level Parameter 

0.975 Cooling rate (α ) 

100 Initial temperature (Ti) 

15×15×15 10×10×10 7×7×7 5×5×5 3×3×3 
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0.05Ti
 

Final temperature (Tf) 

50 Number of neighborhood search (NS length) 

0.6 Probability of neighborhood search change (P) 

8 
The number of accepted solutions in each 

temperature to stop searching in that temperature 

(NA) 

4. Numerical experiments  

To evaluate the efficiency of proposed SA to solve the considered problem, 

computational experiments have been conducted. To compare the performance of 

heuristic methods and SA about solution quality and solution time, 24 problems with 

sizes from 3 3 3N M T      to 15 15 15N M T      are solved. The number 

of quality level is considered as 3 in all instances. The proposed model and MIP-based 

heuristics are coded by GAMS IDE (ver. 24.1.3) software, using CPLEX solver, and SA 

is coded by MATLAB 2013. The required parameters of the problem have been 

obtained by Uniform distributions and are as given in Table 3. All of the problems have 

been executed on a PC with a Core i5 2.53 GHz CPU and a 4GB RAM. 

     To obtain trustworthy solutions, each problem has been solved for 5 times with 

proposed SA method and the best results have been reported. The computational results 

including objective value and solution time obtained by algorithms for all instances 

have been cited in Table 5. Moreover, the objective values of algorithms are compared 

with the exact solutions for small instances.  

Table 5. Computational results for proposed algorithms

SA H4 H3 H2 H1 Exact solution Problem 

size 

(N.M.T) 

CPU 

time 
obj 

CPU 

time 
obj 

CPU 

time 
obj 

CPU 

time 
obj 

CPU 

time 
obj 

CPU 

time 
obj 

9.037 
4871.86 

(1.06%) 
10.9 

4871.86 

(1.06%) 
11.57 

4866.93 

(0.95%) 
8.54 

4948.26 

(2.64%) 
251.26 

4821.00 

(0%) 
386.56 4821.00 3×3×3 

10.96 
5137.14 

(1.48%) 
11.46 

5143.41 

(1.60%) 
12.07 

5133.7 

(1.41%) 
10.86 

5338.72 

(5.46%) 
267.59 

5062.20 

(0%) 
411.67 5062.20 3×4×3 

12.68 
5003.96 

(0.35%) 
11.87 

5003.96 

(0.35%) 
13.66 

5003.47 

(0.34%) 
11.04 

5199.08 

(4.26%) 
342.87 

4986.55 

(0%) 
487.15 4986.55 3×3×4 

16.96 
4787.43 

(0.70%) 
12.96 

4770.46 

(0.34%) 
18.33 

4769.28 

(0.32%) 
10.68 

5033.23 

(5.87%) 
306.99 

4754.19 

(0%) 
466.55 4754.19 3×3×4 

25.27 
9008.39 

(0.12%) 
133.18 

9008.39 

(0.12%) 
133.39 

9008.34 

(0.12%) 
92.44 

9389.92 

(4.36%) 
5504.56 

9204.28 

(2.3%) 
7200* 8997.38 4×4×4 

15.43 
6768.17 

(1.80%) 
14.95 

6723.23 

(1.13%) 
22.02 

6702.75 

(0.82%) 
14.92 

6999.45 

(5.28%) 
1258.45 

6648.47 

(0%) 
1284.63 6648.47 3×5×3 

17.13 
7064.26 

(1.04%) 
13.27 

7064.26 

(1.04%) 
16.38 

7036.81 

(0.65%) 
11.05 

7093.84 

(1.47%) 
383.05 

6991.35 

(0%) 
538.50 6991.35 3×3×5 

22.57 
6920.7 

(0.50%) 
20.25 

6920.7 

(0.50%) 
24.11 

6918.17 

(0.46%) 
11.7 

7240.04 

(5.13%) 
570.56 

6886.54 

(0%) 
690.99 6886.54 3×3×5 

46.43 
17433.09 

(0.83%) 
126.05 

17447.04 

(0.91%) 
414.82 

17437.3 

(0.86%) 
2898.97 

18362.71 

(6.21%) 
7200* 

18082.6 

(4.59%) 
7200* 17289.3 5×5×5 

76.01 27935.43 5770.2 28489.51 5771.53 28535.81 7200* 29348.98  - - -- 7×5×5 

90.36 28643.25 424.45 28777.21 1740.73 28711.11 3382.73 29654.28   - -- 5×7×5 

57.72 29853.43 3736.67 29711.00 5117.56 29958.18 3288.28 31048.24  - - -- 5×5×7 

123.08 50308.88 6184.2 50371.95 6190.10 50347.99  - - - - -- 7×7×7 

83.1 39868.76 5773.28 40048.4 5773.66 39834.49  - - - - -- 10×5×5 

111.99 39926.76 2952.71 40344.79 4595.03 40329.29  - - - - -- 5×10×5 

66.88 37160.67 5105.58 36968.74 5222.82 37233.20  - - - - -- 5×5×10 

252.05 78533.52 6189.16 82673.58 6194.2 87320.8  - - - - -- 10×7×7 

214.27 77125.21 6187.24 80626.737 6192.68 84602.45  - - - - -- 7×10×7 



  

 

 

21 

 

210.31 77116.97 6493.79 78420.77 6521.13 90129.12  - - - - -- 7×7×10 

987.19 154987.73 7029.7 180446.58  - - - - - - -- 10×10×10 

3204.66 236655.62  - - - - - - - - -- 15×10×10 

2926.89 235696.05  - - - - - - - - -- 10×15×10 

1613.1 224360.18  - - - - - - - - -- 10×10×15 

7200* 498560.03  - - - - - - - - -- 15×15×15 

Note: The percentage values inside the parentheses are the difference between the objective values of algorithms 
against the exact solutions. 
 

Regarding the obtained results, it can be noticed that as the problem size increases, there 

is no possibility to solve the problems with sizes higher than 5×5×5 exactly in 7200 

seconds. Heuristic algorithms also lose their efficiency with increase in the problem 

size, in a way that solving problems with sizes higher than 5×5×5 would not be possible 

with H1 in 7200 seconds. H2–by freezing all of the variables– is able to solve more 

problems with sizes up to 5×5×7. H3 which is based on the first restricted model solves 

problems with sizes up to 7×7×10 by reducing the binary variables of the original 

problem. H4 which is based on the second restricted model, with more simplification 

than H3 is able to solve problems with sizes up to 10×10×10. 

 The quality of solutions obtained from H1 is better than others, because it performs 

based on original problem without any simplification. H2 does not have acceptable 

quality in comparison with other algorithms; because the continuous variables are 

freezed in addition to binary variables in the beginning section of this algorithm, and the 

heuristic capability to find the better solution would be decreased. The solutions 

obtained from H3 are better than those of H4. H4 is based on the second restricted 

model and lot sizes are similar in all stages in this algorithm; but H3 is based on the first 

restricted model and is capable of finding better solution due to possibility of 

determining different lot sizes in different stages. As the size of problems increases, H4 

acts better; since the second restricted model has smaller solution space than that of the 

first restricted model, and exploring its solution space is performed more efficiently in 

large instances within a specific computational time. SA has lower computational time 

in comparison with heuristic methods and can solve all of the problems in reasonable 

time. The quality of solution obtained from SA is close to H3 and H4; however, as the 

problem size increases, this algorithm would have a better quality than others. Since SA 

algorithm is faster than H3 and H4 and has the appropriate search mechanism, it is able 

to explore the solution space more efficiently within a specific computational time, as 

the problem size increases. Hence, simulated annealing algorithm is preferable in 

solving the problem under study. 

5. Conclusion 

This paper studied the complex setups including sequence dependent setups and setup 

carry-over, and flow shop system in lot sizing problem with remanufacturing for the 

first time. A mixed-integer programming model was proposed to formulate the problem. 

Since the problem is NP-hard, four heuristic methods based on rolling horizon 

approach, and a simulated annealing algorithm were proposed to solve the problem. 

Two restricted models were introduced to develop methods to solve large size problems. 

The two first heuristic algorithms including H1 and H2 were based on the original 

model, but the third and fourth heuristics called H3 and H4 were based on the first 

permutation and second permutation models, respectively. The simulated annealing 

(SA) was also based on the second permutation model and uses a heuristic method to 

obtain the initial solution. To calibrate the parameters of the proposed SA, Taguchi 

method was applied, and computational experiments were conducted to evaluate and 
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compare the developed heuristic methods and SA algorithm. According to the 

numerical experiments, the problems with sizes higher than 5×5×5 could not be solved 

exactly in 7200 seconds. H1 is not possible to solve the problems with sizes higher than 

5×5×5 in 7200 seconds. H2 is able to solve problems with sizes up to 5×5×7. H3 solves 

the problems with sizes up to 7×7×10 and H4 is able to solve problems with sizes up to 

10×10×10. The quality of H1 solutions is better than other heuristics, and H2 has the 

worst quality among others. H3 performs better than H4; but as the size of problems 

increases, H4 acts better. SA is faster in comparison with heuristic methods and can 

solve all of the problems in reasonable time. The quality of SA solution is close to H3 

and H4; however, SA performs better for large instances. Therefore, SA algorithm is 

suggested to solve the problem under study.  

This study could be implemented in complicated industries such as car factories. 

Remanufacturing is important from an economic point of view; additionally it could be 

reduce the usage of raw material and is interesting environmentally. Performing 

remanufacturing using returned products is possible by improving reverse logistic and 

using incentive policies such as refunds to gather returned products. It should be noted 

that these activities have their own special considerations and may cause additional 

costs which should be concerned.  

     The issue of uncertainties in remanufacturing such as the quality, amount of returned 

products, and processing time could be a development to the current study. 

Additionally, modelling and solving this problem as a multi-objective problem, 

considering scheduling objectives such as minimizing the maximum completion time 

(makespan) besides the cost minimization, is suggested for further research. 
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Fig. 1 Rolling horizon method (Mohammadi et al., 2010) 

 

 

 

 

 

Fig. 2 Solution representation of problem with N=3, M=2, T=2 
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Fig.3 The mean of S/N ratio at each level of the SA parameters 

 

 

Fig.4 The mean of RPD at each level of the SA parameters 
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                                                         Research highlights 

 A multi-stage lot sizing problem with remanufacturing is modeled. 

 Sequence dependent setups and setup carry-over in a flow shop are considered. 

 A mixed integer programming is introduced to formulate the problem. 

 Rolling horizon heuristics and a SA algorithm are proposed to solve the model. 

 For large size problems SA algorithm would have better solutions than heuristics. 

 

 

 


