
Author’s Accepted Manuscript

Strategic trade in pollution permits

Alex Dickson, Ian A. MacKenzie

PII: S0095-0696(16)30245-5
DOI: http://dx.doi.org/10.1016/j.jeem.2017.04.009
Reference: YJEEM2033

To appear in: Journal of Environmental Economics and Management

Received date: 6 September 2016
Revised date: 15 March 2017
Accepted date: 14 April 2017

Cite this article as: Alex Dickson and Ian A. MacKenzie, Strategic trade in
pollution permits, Journal of Environmental Economics and Management,
http://dx.doi.org/10.1016/j.jeem.2017.04.009

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/jeem

http://www.elsevier.com/locate/jeem
http://dx.doi.org/10.1016/j.jeem.2017.04.009
http://dx.doi.org/10.1016/j.jeem.2017.04.009


Strategic trade in pollution permits

May 26, 2017

Abstract

Markets for pollution have become a popular regulatory instrument. In this article we

investigate the implications of strategic trade in pollution permits. The permit market is de-

veloped as a strategic market game, where all firms are allowed to behave strategically and

their roles as buyers or sellers of permits are determined endogenously with price-mediated

trade. In a second stage, firms transact on a product market and we allow for a variety of

market structures. We identify a unique equilibrium in permit exchange, investigate the

properties of this equilibrium, and consider the effect of strategic behavior in the product

market.

Key words: Pollution market, Market power, Strategic market game.
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1 Introduction

Markets for pollution permits have emerged as a mainstream regulatory instrument. Since

the early adoption of the US Acid Rain Program numerous schemes have been established

to control pollution.1 Behind this spirited regulatory response lies the economic rationale of

least-cost pollution control: aggregate control costs are minimized when players trade pollution

permits. This least-cost result relies on the existence of low transactions costs as well as players

acting competitively.2 Yet players’ strategic behavior in these markets—and the resulting social

losses—are a real concern (Hintermann, 2016a, 2017). The actions of large and influential

players in the market have the potential to distort the equilibrium permit price, reduce the cost

effectiveness of pollution control, and influence the product market equilibrium. Although the

existence of market power and the associated losses may be significant, the fundamental aspects

of this problem—the interactions between players in both the permit and product markets—

are not well understood. In particular, little is known about the formation of equilibria in

the permit market when all players behave strategically and the corresponding impact on the

product market (Montero, 2009).

In this article we adopt a strategic market game to model trade in pollution permits and

consider firms’ subsequent decisions in the product market. In a strategic market game, signals

are quantity-based and the market mechanism that determines the permit price is explicitly

defined. All firms are allowed to behave strategically, and the role of firms as buyers or sellers

of permits is determined endogenously. We demonstrate that there is a unique equilibrium

in which trade in permits takes place, which from the perspective of an economic modeler

is a very desirable facet of a market model. We study the conditions under which permit

trade will occur and the cost effectiveness of the equilibrium, as well as studying the effect of

increased demand in the product market, improvements in abatement technologies and altering

initial permit endowments. In addition, we investigate the effects of different product market

structures as we seek to understand the interplay between market power in the product market

and the permit market equilibrium.

The idea that firms attempt to manipulate the permit market price has long been recognized.

1Examples include the European Union Emissions Trading Scheme (EU ETS), the Regional Greenhouse Gas
Initiative (RGGI), and the California Cap-and-Trade Program. Markets are also commencing in South Korea, China,
and India.

2In early schemes transaction costs appeared to be problematic, for example, in the Fox river (O’Neil et al., 1983)
and RECLAIM (Foster and Hahn, 1995). Yet in most modern permit markets prohibitive transaction costs do not
appear to be a significant problem. Aside from cost effectiveness, a whole host of explanations can be proposed for
explaining inefficiency within schemes, such as the political economy aspects of regulation, compliance issues, and
uncertainty.
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A vast literature has followed the contribution by Hahn (1984).3 In his study, Hahn developed

a permit market model with a single large trader and a price-taking competitive fringe of

small traders (this has since been extended to consider competition between oligopolists in

the presence of a competitive fringe).4 The competitive fringe framework, however, suffers

from two distinct drawbacks: first, exogenous behavioral restrictions must be made in the

model that relegate some firms to the role of price takers that have no market power; second,

the model has the unfortunate consequence that as the competitive fringe shrinks, no trade

will take place amongst large traders even if there are substantial gains from trade between

them. These deficiencies render competitive fringe models inappropriate for studying permit

exchange when there is strategic behavior by all firms.

To overcome the drawbacks of a competitive fringe framework, recent literature has focused

on using the supply function approach of Klemperer and Meyer (1989) to model trade in per-

mits (Malueg and Yates, 2009; Wirl, 2009; Lange, 2012; Haita, 2014).5 In this framework firms

are required to submit supply functions to an auctioneer who then determines the price to clear

the market. Although the supply function approach can analyze strategic trade, a well-known

drawback exists: there is a multiplicity of equilibria. While this approach is descriptively ap-

pealing, identifying a unique equilibrium is a key desiderata, particularly if one then wants to

incorporate subsequent product market decisions in the analysis. To obtain a unique equilib-

rium, Malueg and Yates (2009) assume that each firm’s supply function is similar apart from

the intercept. But this assumption—essentially requiring all firms’ marginal abatement costs to

be linear and have the same slope—has the unfortunate consequence that, under complete in-

formation, the equilibrium price is the same for both strategic and competitive markets. Lange

(2012) uses an equilibrium refinement that identifies a unique equilibrium if it is assumed that

all firms’ marginal abatement costs are linear (but not necessarily the same). Although Lange

(2012)’s assumption of linear marginal abatement costs is not unreasonable with respect to

fixed unrestricted emissions, it does become problematic when one wants to consider decisions

in a subsequent product market. Assuming a linear relationship between permit holdings and

marginal abatement costs will place restrictions on equilibrium production functions and will

limit the scope and applicability of any insights that might be drawn from the analysis. Yet

without this linearity assumption the uniqueness of the supply function equilibrium fails. Thus,

3See Montero (2009) and Reichenbach and Requate (2013) for comprehensive literature surveys on market power
in pollution markets. Using frameworks that model exhaustible resources, market power in pollution markets has
also been considered when pollution permits are storable (Liski and Montero, 2006, 2011).

4See, for example, Westskog (1996) and, more recently, Hagem (2013) that discusses the choice of strategic
behavior.

5For a further discussion see Godal (2011).
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to develop further analysis on the strategic trade in permits, a framework that can circumvent

these problematic dichotomies is required.6

To model permit exchange, we propose a strategic market game (Shapley and Shubik, 1977),

which requires only conventional assumptions (i.e., convex costs) and provides a unique equi-

librium in which permits are traded. In addition, we incorporate firms’ product market de-

cisions following trade in permits. Our model is comprised of two stages. In the first stage,

traders participate in a strategic permit market game, which is based on quantity signals à la

Cournot and involves an explicit price formation mechanism. Traders in the permit market

participate by submitting either an offer (of permits) or bid (of money). A trading post then

aggregates the offers and bids and determines the price of permits in a way that clears the

market. Trade is thus price mediated, and the sides of the market form endogenously: whether

a trader wishes to buy or sell permits depends on their abatement technology and on their con-

jecture of the price in the market, which is determined by their beliefs about the market actions

of other traders. In the second stage, once firms receive their final permit transfer from the

permit market, they transact on the product market, and in our benchmark model we assume

firms are price takers in the product market.

To provide a full equilibrium characterization in the permit market, we follow a three-step

approach that exploits the aggregative properties of the permit market game and takes into

account subsequent product market decisions. In Step 1, we hypothesize a permit price and

consider whether firms would be (potential) buyers or sellers of permits. In Step 2, we consider

the behavior of each side of the market separately at the hypothesized permit price, deducing

the aggregate supply of, and demand for, permits at that price. Finally, in Step 3, we check

whether the hypothesized permit price is consistent with aggregate demand and supply. If so,

then we have identified a Nash equilibrium (given the subsequent product market activity).

We thus identify the conditions under which an equilibrium with trade in permits exists, and

demonstrate that such an equilibrium is unique.

This approach provides a comprehensive, realistic, and tractable structure to analyze strate-

gic trade in permit markets (and the associated product market), and we use the framework to

consider comparative static properties of equilibrium; investigating the effect of improvements

in abatement technologies, changes in initial permit endowments, and changes in product mar-

ket demand. On the basis that industries regulated by cap-and-trade markets are often highly

6We believe that it is important to allow for non-linear marginal abatement costs, particularly when subsequent
product market decisions are considered where our model has a distinct advantage over the supply function ap-
proach of giving a unique prediction of equilibrium and associated comparative statics properties. Whether or not
marginal abatement costs are non-linear could be subjected to empirical validation.
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concentrated (regionally segregated) markets (Wolfram, 1999; Borenstein et al., 2002; Bushnell

et al., 2008), we investigate the effects of market power in the product market by allowing for

alternative product market structures.7 We advance our analysis by first considering that firms

act as independent monopolists on segregated markets to capture a pure market power effect,

and then suppose that firms act as oligopolists competing in the same product market where

strategic issues are of central importance. Using our framework, we highlight three pivotal

avenues in the interaction between strategic permit and product markets: first, the acquisition

of permits has a direct effect on production decisions due to the effect on the cost structure of

the firm; second, there is an indirect (strategic) effect since a firm’s permit transactions influ-

ence its own marginal cost that influences the equilibrium in the product market; and third

there is a changing rivals’ costs effect since any permits acquired by one firm cannot be acquired

by another, influencing other firms’ marginal costs which also influences the product market

equilibrium.

Our contribution is twofold. First, we provide a novel framework that models strategic

trade in pollution permits. This allows for the full characterization of the unique equilibrium

in which trade in permits takes place when players are heterogeneous and have general abate-

ment cost functions. Our approach, in a more general setting, eliminates the issue of multiple

equilibria prevalent in the current literature. With such an approach, this provides a tractable

foundation for the evaluation of contemporary cap-and-trade markets when strategic behavior

exists for all market participants. Second, by combining our analysis with alternative product

market structures, we also provide an encompassing model that incorporates many current

regulatory market structures. Our general approach can be used to nest previous attempts

to capture strategic behavior in the product market (e.g., Misiolek and Elder, 1989) as well as

complementing the recent literature on strategic permit markets (Malueg and Yates, 2009; Wirl,

2009; Lange, 2012; Haita, 2014).

This article is structured as follows. Section 2 outlines the economic environment and

determines the equilibrium characterization of a strategic market game in the permit market

given that firms subsequently make product market decisions. Section 3 provides a discussion

of the permit market equilibrium. Section 4 provides an illustrative example. Section 5 extends

7Recently, Fowlie et al. (2016) investigated the adoption of market-based instruments (without market power)
on a highly concentrated product market (a regionally segregated cement industry), finding that the establishment
of a market-based instrument coupled with the market-power distortions in the product market generate losses
over-and-above any benefits associated with emissions mitigation. See also Ryan (2012). Earlier literature has also
investigated the connectivity between the permit and product market, which has been framed through a traditional
competitive fringe framework (e.g., Sartzetakis, 1997; Hintermann, 2011). For additional insights see De Feo et al.
(2013).
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the framework to include strategic behavior in the product market. We then conclude in Section

6.

2 The model

2.1 The economic environment

Consider an economic environment that is populated by an index set of firms I = {1, . . . ,N},
where firm i ∈ I has an initial stock of money mi > 0.8 Firms operate in a product market

where the production of goods generates pollution. This pollution is regulated by a cap-and-

trade scheme, and the regulator has a pollution target given by E, which is assumed to be

lower than the aggregate level of unconstrained emissions. Firms have the option to either

hold a permit to cover emission liabilities, or reduce emissions by utilizing (costly) abatement

technologies. Of the E permits the regulator brings into existence, a fraction 0 ≤ μ ≤ 1 of these

may be retained and sold directly on the permit market9, while the remaining Ω ≡ (1− μ)E

permits are allocated to firms as a free initial endowment, with the endowment of firm i being

denoted by ωi ≥ 0. Firms have the opportunity to engage in permit trade where they can sell

some or all of their initial endowment, or buy additional permits; we assume throughout that

the regulator’s fixed supply of permits to the market is modest in relation to the size of the

market in the sense that it does not drive the permit price to zero. We consider a two-stage

environment: in the first stage permit trade results in a distribution of permits among firms,

which becomes common knowledge; in the second stage firms make production decisions in

the product market.

Let xi ∈ R denote firm i’s permit transactions, which have been determined by trading on

the permit market: xi > 0 for purchases of permits and xi < 0 for sales. Let x denote the vector

of permit transactions for all firms, and x−i the vector of all permit transactions excluding that

of firm i. The total number of permits firm i has after trading is ωi + xi and we denote the price

of permits by p; in our model this will be determined by firms’ actions. In the product market

firm i’s output is denoted by zi, and Z = ∑i∈I zi is the aggregate supply of the good. While

we allow for strategic behavior in trading permits, in our baseline model we assume firms act

as price-takers in the product market so the price of the good is considered fixed and denoted

8We assume firms’ initial money holdings are large enough so that their behavior is not constrained by a lack of
money.

9This can, for example, reflect a regulator that auctions a proportion of permits, where the outcome of the auction
is determined by the market mechanism that we subsequently describe. It is assumed μ is common knowledge
among firms and, while it is interesting to consider the incentives of the regulator in setting μ, we take it to be
exogenously given in our model.
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φ; later we consider that firms’ supply decisions in the product market influence the product

price according to an inverse demand relationship Φ(Z). Production of the good generates

pollution and, absent other considerations, the quantity of pollution emitted in producing zi

is given by fi(zi). Any pollution that is not covered by a permit must be abated; accordingly,

pollution abatement required by firm i is ai ≡ fi(zi)− [ωi + xi]. Firms undertaking production

incur direct production costs and pollution abatement costs, so firm i’s total cost of production

is given by Ci(zi, ai).

Assumption. For each firm i ∈ I the functions fi(·) and Ci(·, ·) are twice continuously differentiable;
f ′i , f

′′
i ≥ 0; Cz

i ,C
a
i ≥ 0 with a strict inequality if zi > 0; Czz

i ,Caa
i > 0 and Cza

i ≥ 0; Czz
i C

aa
i − [Cza

i ]2 >

0; and finally Cz
i + f ′i C

a
i = 0 when zi = 0, where superscripts z and a denote derivatives with respect to

output and abatement, respectively.

Firm i’s payoff is comprised of any initial wealth mi, revenue or costs associated with permit

market activity xip, and, after accounting for all costs of production, the profit from productive

activity:

Vi = mi − xip+ ziφ− Ci(zi, fi(zi)− [ωi + xi]).

Once the initial permit endowment has been set (which is common knowledge), firms have

the opportunity to trade permits and the market mechanism will determine the permit trans-

actions. To capture firms’ strategic behavior in the market for pollution permits, we turn to a

model of bilateral oligopoly with a market mechanism in which market actions are quantity-

based and trade is price mediated; no price-taking assumptions are imposed ex ante (in the

permit market) and the role of firms as buyers or sellers of permits is determined endoge-

nously in the market. Such ‘strategic market games’ were introduced by Shapley and Shubik

(1977) to model fully strategic behavior in general equilibrium settings, which we restrict to

the case of two commodities—a good (permits) and money (see Dickson and Hartley, 2008).10

Trade takes place by way of an explicit trading mechanism: there is a ‘trading post’ to which

firms submit an offer of permits to be exchanged for money or a bid of money to be exchanged

for permits, depending on whether they want to sell or buy permits.11 The trading post aggre-

10Note that Dickson and Hartley (2008) provide a tractable analysis of a simplified version of the framework of
Shapley and Shubik (1977) in which strategic behavior of both buyers and sellers in the market for a single good
is considered. Here we extend this analysis to consider the interplay between two related markets—the permit
market and subsequent product market—where the outcome in one determines the margins of decision-making in
the other.

11This is in contrast to the existing literature on strategic trade in pollution permits (e.g., Hahn, 1984; Hintermann,
2011) that invariably assumes the presence of a ‘competitive fringe’ necessitating a ‘black box’ (auctioneer) approach
to market clearing.
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gates the offers and bids of all firms, augments the supply from firms with any fixed supply of

permits from the regulator, and determines the price of permits as the ratio of the total amount

of money bid to the total number of permits offered for sale. Exchanges are then determined

according to the offers and bids made and the resulting market price. Trade is therefore price

mediated, and each individual firm considers that their actions influence the price of permits.

Whether a firm wishes to buy or sell permits will depend on any initial endowment of permits

they received, their abatement technology and their belief about the price in the market.

Formally, firm i can make an offer of permits 0 ≤ qi ≤ ωi to be exchanged for money, or

make a bid of money 0 ≤ bi ≤ mi to be exchanged for permits.12 We assume that firms only

buy permits from their initial money holdings and we rule out firms making ‘wash trades’, i.e.,

contemporaneously buying and selling permits. The set of strategies available to firm i ∈ I is

therefore

Si = {(bi, qi) : 0 ≤ bi ≤ mi, 0 ≤ qi ≤ ωi, bi · qi = 0}.

If a firm has no initial endowment of permits so ωi = 0 then that firm can only act on the

demand side of the market by making a bid for permits; if μ = 1, so the regulator withholds

all permits to sell directly on the market, then this is true for all firms.

The role of the trading post is to aggregate firms’ offers and bids and determine trades.

Let the aggregate bid be B = ∑i∈I bi and the aggregate offer of permits be Q = ∑i∈I qi. If the

regulator withheld permits to supply to the market then the total supply of permits is μE+Q.

If B = 0 or, if μ = 0, Q = 0 then the trading post is deemed closed and any offers or bids that

are made are returned. So long as B > 0 and μE+ Q > 0, the price of permits (denominated

in units of money) is determined as p = B/[μE+ Q], and the number of permits allocated to

firm i (in addition to their initial endowment) is given by

xi =

⎧⎪⎨
⎪⎩

bi/p if bi > 0, qi = 0 or

−qi if qi > 0, bi = 0.
(1)

The change in firm i’s money holdings is thus

−xip =

⎧⎪⎨
⎪⎩
−bi if bi > 0, qi = 0 or

qi p if qi > 0, bi = 0.

12Notice that in this trading environment firms submit a single offer or bid, rather than a schedule of net de-
mands that depends on the price, as in supply function models. Also, throughout this article, it is assumed that a
sufficiently large penalty can be levied on firms for offering more permits than are in their possession, or making
bids that exceed their money holdings, that this will never constitute equilibrium behavior.
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An intuitive interpretation of the mechanism is as follows: on one side, the market mech-

anism receives permits from those firms that want to sell, and on the other it receives money

from those firms that want to buy; then, the total supply of permits is allocated among those

firms that want to buy in proportion to their bids (so each firm that made a bid receives

[bi/B][μE + Q] permits), and for each permit supplied, firms receive a price which is deter-

mined by the ratio of the total amount of money bid to the total number of permits offered for

sale (p = B/[μE+ Q]). Since traders’ market signals are quantity-based, this market mecha-

nism can be seen as an extension of Cournot competition to allow for strategic behavior on both

sides of the market; as with the Cournot model itself, while it may not be a descriptively ac-

curate account of market activity the model manages to sensibly account for strategic behavior

with, as we will see, very plausible outcomes.

Once permit trading has taken place, permit transactions become common knowledge and

firms engage in production decisions in the product market. In our baseline model we assume

that firms behave as price-takers in the product market by modeling it as a perfectly competitive

market in which the price is fixed at φ. Later in the article, we explore the implications of firms

having market power in the product market.13

2.2 Product market decisions

Let φ denote the price within the perfectly competitive product market. Then the profit of a

typical firm i ∈ I from their product market activity is

π̃i(zi; xi) = ziφ− Ci(zi, fi(zi)− [ωi + xi]). (2)

Once the permit market has cleared and firm i has permit transactions xi, the product market

profit function π̃i(zi; xi) depends only on zi. Firm i ∈ I will seek to choose zi to maximize

π̃i(zi; xi), where the first-order condition is

∂π̃i(zi; xi)
∂zi

≤ 0⇔ Cz
i (zi, fi(zi)− [ωi + xi]) + f ′i (zi)C

a
i (zi, fi(zi)− [ωi + xi]) ≥ φ, (3)

13To ensure tractability in the analysis, we abstract from some characteristics of cap-and-trade markets. As the
permit market analysis presented here is in a static framework, the issues of permit banking and futures trading
are not considered. To include such a system, an additional choice variable can be created in which the firms select
the level of retained permits for future use (allowing for banking) or allow for additional bids and offers to be
made in the futures market. Institutional restrictions of the market—such as the use of price collars and allowance
reserves—can also be introduced by placing exogenous restrictions on the price level. Also, the extent to which
changes in permit prices are passed on to consumers in the product market, while interesting, is not analyzed. Cost
pass-through has seen recent empirical investigation and is commanding increasing attention in the literature—see,
for example, Sijm et al. (2006), Chernyavs’ka and Gulli (2008), and Hintermann (2016b).
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with equality if zi > 0, so firms equate their ‘overall marginal cost’—comprised of the marginal

cost of production and abatement—to the price of the good.14 Since we assume Cz
i + f ′i C

a
i = 0

when zi = 0, the solution will always be interior where the first-order condition holds with

equality, and we denote the solution to (3) by z̃i(xi) > 0.15

The relationship between a firm’s actions in the permit market and their behavior in the

product market is given by

dz̃i(xi)
dsi

=
∂z̃i(xi)

∂xi
∂xi
∂si

, for s = {b, q}, (4)

which follows by virtue of firm i’s product market strategy depending only on its own permit

transactions. Using the implicit function theorem on (3) yields

∂z̃i(xi)
∂xi

=
Cza
i + Caa

i f ′i
Czz
i + 2Cza

i f ′i + Caa
i [ f ′i ]2 + Ca

i f
′′
i
> 0 (5)

under our assumptions. Intuitively, if a firm acquires more permits in the permit market then

less abatement is required for a given level of output. This has two effects relevant for product

market decisions: since Caa
i > 0 the marginal cost of abatement falls; and since Cza

i ≥ 0 the

marginal cost of production falls. Both effects work to favor an increase in product market

output when the firm is in possession of more permits.

To understand the effect of a change in permit transactions on a firm’s profitability in the

product market let us, with a slight abuse of notation, write the optimized profit function in

the product market as

π̃i(xi) = z̃i(xi)φ̃− Ci(z̃i(xi), fi(z̃i(xi))− [ωi + xi]). (6)

Since this is influenced only by xi (and not the permit transactions of other firms), we can write

dπ̃i(xi)
dsi

=
∂π̃i(xi)

∂xi
∂xi
∂si

, (7)

where, by virtue of the envelope theorem applied to (2),

∂π̃i(xi)
∂xi

= Ca
i (z̃i(xi), fi(z̃i(xi))− [ωi + xi]). (8)

14This first-order condition is both necessary and sufficient under the assumptions stated in Subsection 2.1; the
second-order condition is −Czz

i − Caa
i [ f ′i ]

2 − 2Cza
i f ′i − Ca

i f
′′
i < 0.

15Optimal product market output also depends on ωi, which is suppressed for notational convenience.
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Equations (7) and (8) show a direct link between the permit and product markets: this will be

used to investigate firms’ actions within the permit market.

2.3 Permit market equilibrium

Foreseeing the consequences of permit market activity on actions in the product market, each

firm i ∈ I can be seen as solving the problem

max
(bi ,qi)∈Si

mi − xip+ π̃i(xi),

where xi = bi/p − qi, p = B/[μE + Q], and π̃i is defined in (6). This problem is concave in

both bi and qi so the first-order conditions are both necessary and sufficient in identifying a

best response.16

When engaging in permit market activity, a firm affects its product market profitability

(according to (7)) and also its expenditure in the permit market. When choosing s = {b, q} ∈ Si
the firm will balance the marginal change in product market profitability with the marginal

change in permit market expenditure, so that

∂π̃i(xi)
∂xi

∂xi
∂si

≤ ∂xip
∂si

, s = {b, q},

where the inequality is replaced with an equality if si > 0.

Recalling that B is the total money bid, Q is the total supply of permits, and p = B/[μE+Q],

for a buyer of permits for whom s = b, xi = bi/p, and so it follows that ∂xi
∂si

= [1− bi/B]p−1

and ∂xi p
∂si

= 1; as such, the first-order condition for a buyer of permits is

∂π̃i(bi/p)
∂xi

≤
[
1− bi

B

]−1
p, (9)

where the inequality is replaced with an equality if bi > 0.

For a seller of permits for whom s = q, xi = −qi and we have ∂xi
∂si

= −1 and ∂xi p
∂si

=

16This follows by noting that for s = {b, q}, the first derivative of the payoff function is − ∂xi p
∂si

+ ∂π̃i(xi)
∂xi

∂xi
∂si

and so

the second derivative is − ∂2xi p
∂s2i

+ ∂2π̃i(xi)
∂x2i

[
∂xi
∂si

]2
+ ∂π̃i(xi)

∂xi
∂2xi
∂s2i

. When s = b: xi =
bi
B [μE+ Q] so ∂xi

∂bi
= B−bi

B2 [μE+ Q]

and ∂2xi
∂s2i

= − 2[B−bi ]
B3 [μE+ Q]; and xi p = bi so

∂2xi p
∂b2i

= 0. When s = q: xi = −qi so ∂2xi
∂q2i

= 0; and xi p = − qi
μE+QB so

∂xi p
∂qi

= − μE+Q−qi
[μE+Q]2

B and ∂2xi p
∂q2i

=
2[μE+Q−qi ]
[μE+Q]3

B. As noted, ∂π̃i(xi)
∂xi

> 0 and we will subsequently show in Lemma 1 that
∂2π̃i
∂x2i

< 0, which establishes the claim.
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−[1− qi/[μE+Q]]p; consequently, the first-order condition is

∂π̃i(−qi)
∂xi

≥
[
1− qi

μE+Q

]
p, (10)

with equality if qi > 0.

Since firms are heterogeneous in their cost structures, pursuing a standard best-response

analysis of this game would be fruitless as the dimensionality of the problem makes it in-

tractable. Rather than imposing additional assumptions to instil tractability (e.g., restricting

firms to be one of two types), we follow an approach—first presented in Dickson and Hart-

ley (2008) and later extended to the case of ‘interior endowments’, as is the case with permit

exchange, by Dickson and Hartley (2013)—that exploits the fact that firms’ payoffs depend on

other firms’ actions only through their aggregation in B and Q, which themselves influence the

price p. Here we present the reasoning for permit exchange coupled with subsequent product

market decisions. The method allows the construction of supply and demand functions in the

permit market that account for strategic behavior and endogenous formation of the sides of the

market, and can be used to identify a (non-autarkic) permit market equilibrium.17 The method

proceeds as follows.

Step 1: Hypothesize a permit price p, and consider which firms would act on each side of the

permit market if there was a Nash equilibrium with this price. We define

p̃∗i (ωi) ≡ Ca
i (z̃i(0), fi(z̃i(0))−ωi) (11)

as firm i’s marginal abatement cost at its initial endowment and will show (in Proposition

1) that firm i will be a buyer of permits only if p̃∗i (ωi) > p and a seller of permits only

if p̃∗i (ωi) < p (and of course ωi > 0). When considering behavior consistent with a price

p, this allows us to separate the set of firms into those that will potentially buy permits,

and those that will potentially sell.

Step 2a: Hypothesize an aggregate supply of permits, Q, in addition to any supply μE from

the regulator, and consider the individual supplies of those firms that might sell permits

at price p that are consistent with a Nash equilibrium with this Q and p. Then ask

17A quirk of strategic market game models is that if there is no fixed supply to the market from the regulator
autarky (in which no trader makes a bid or an offer) is always an equilibrium. This is clear by noting that if μ = 0
and the bids and offers of all other firms are zero then there is no gain to any firm of making a positive bid or offer.
The same is not true when μ > 0 since if the bids of all other firms are zero any bid, no matter how small, will
appropriate the permits supplied by the regulator. The analysis that follows focuses on identifying non-autarkic
equilibria in which trade takes place (in the case where μ = 0).
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whether firms’ individual supplies are consistent when aggregated, i.e., that individual

supplies aggregate to Q. Let q̃i(p;Q) denote firm i’s supply consistent with a Nash

equilibrium in which the aggregate supply is Q and the price is p (which is given by the

minimum of either the qi that solves (10) or ωi). Then we seek the value of Q such that

∑{i∈I:ωi>0,p∗i (ωi)<p} q̃i(p;Q) = Q, which is the aggregate supply consistent with a Nash

equilibrium in which the price is p. Note that if μ = 1 then ωi = 0 for all i ∈ I and

this step is superfluous: supply of permits will be exogenously given as E whatever the

resulting price.

Step 2b: Hypothesize an aggregate bid B from those firms that might buy permits at price p,

and deduce individual bids consistent with this aggregate bid, which we denote b̃i(p; B)

(this is given by the minimum of either the bi that solves (9) or mi). Seek consistency of

the aggregate bid, i.e., find the value of B such that ∑{i∈I:p∗i (ωi)>p} b̃i(p; B) = B.

Step 3: Seek a consistent price, i.e., a price p such that the consistent aggregate offer from Step

2a and bid from Step 2b satisfy B/[μE + Q] = p, which identifies a non-autarkic Nash

equilibrium.

We begin by establishing Step 1. To do so, we first require the following lemma.

Lemma 1. For each firm i ∈ I, ∂2π̃i(xi)
∂x2i

< 0.

Proof. Recall from (8) that ∂π̃i(xi)
∂xi

= Ca
i (z̃i(xi), fi(z̃i(xi))− [ωi + xi]). As such,

∂2π̃i(xi)
∂x2i

= Cza
i

∂z̃i(xi)
∂xi

+ Caa
i

[
f ′i

∂z̃i(xi)
∂xi

− 1
]

=
∂z̃i(xi)

∂xi
[Cza

i + Caa
i f ′i ]− Caa

i .

In (5) we deduced that ∂z̃i(xi)
∂xi

=
Cza
i +Caa

i f ′i
Czz
i +2Cza

i f ′i+Caa
i [ f ′i ]2+Ca

i f
′′
i
, implying

∂2π̃i(xi)
∂x2i

=
[Cza

i + Caa
i f ′i ]

2

Czz
i + 2Cza

i f ′i + Caa
i [ f ′i ]2 + Ca

i f
′′
i
− Caa

i

=
[Cza

i ]2 − Czz
i C

aa
i − Ca

i C
aa
i f ′′i

Czz
i + 2Cza

i f ′i + Caa
i [ f ′i ]2 + Ca

i f
′′
i

which is negative as a result of our assumptions on cost and pollution generation functions.

Lemma 1 confirms that if a firm obtains more permits, their marginal abatement cost will

decline. With more permits a firm produces more, as observed in (5). Despite higher output

directly raising the marginal abatement cost (because of a positive cross-partial), the level of

13



abatement falls since the increase in pollution from this higher output is less than the increase

in permit holdings: this provides an offsetting reduction in their marginal abatement cost

(because of convexity of the cost function) that always dominates.

We are now in a position to complete Step 1. The following proposition allows us to under-

stand, once a permit price has been hypothesized, how firms are determined as either buyers

or sellers of permits.18

Proposition 1. If there is a Nash equilibrium with price p then firm i ∈ I will be a buyer of permits

only if p̃∗i (ωi) > p, and a seller of permits only if ωi > 0 and p̃∗i (ωi) < p.

Proof. Let p̃∗i (ωi) > p and assume, by contradiction, that i sells permits. Then qi > 0 and

xi = −qi < 0, so Lemma 1 implies ∂π̃i(xi)
∂xi

> ∂π̃i(xi)
∂xi

∣∣∣
xi=0

≡ p̃∗i (ωi) (see (11)). But from the

first-order condition for sellers, ∂π̃i(xi)
∂xi

=
[
1− qi

μE+Q

]
p < p. As such, p̃∗i (ωi) < ∂π̃i(xi)

∂xi
< p,

yielding a contradiction. Thus, if p̃∗i (ωi) > p for firm i then this firm will only buy permits in

equilibrium. Demonstrating that if p̃∗i (ωi) < p then firm i will only sell permits (but can only

do so if ωi > 0) is similar and so omitted.

Operationally, the consistent behavior of firms is represented using share functions. Take a

typical firm i. If ωi > 0 and p > p̃∗i (ωi) then we know that the firm will only be a seller of

permits at such prices and we consider their behavior consistent with a Nash equilibrium in

which the permit price is p and the aggregate supply of all ‘potential sellers’ (all firms j ∈ I

for whom ωj > 0 and p > p̃∗j (ωj)) is Q > 0. Let σi = qi/Q be firm i’s share of the total

supply from all firms (not including any supply from the regulator); then using (10) we can

deduce that firm i’s optimal share of the total supply is given by its ‘selling share function’

s̃Si (p;Q) = min{σi,ωi/Q} where σi is the solution to

l̃Si (σi,Q, p) ≡ ∂π̃i(−σiQ)

∂xi
−

[
1− σiQ

μE+Q

]
p ≥ 0, (12)

with equality if σi > 0.

It is useful to ascertain the properties of share functions. The share function s̃Si (p;Q) is

implicitly defined, and using the implicit function theorem on (12) reveals that it is decreasing

in Q and non-decreasing in p.19 If μ = 0 the share function is defined for all Q > 0 and study

of (12) reveals that limQ→0 s̃Si (p;Q) = 1− p̃∗i (ωi)
p . On the other hand, if μ > 0 then there will

18This is similar to Dickson and Hartley (2013, Lemma 1); it is included here for the case of permit exchange for
a self-contained treatment.

19Recall from Lemma 1 that ∂2π̃i(xi)
∂x2i

< 0. As such, ∂l̃Si (σi ,Q,p)
∂σi

= −Q ∂2π̃i(xi)
∂x2i

+ Q
μE+Q p > 0 so there is at most

one solution to li(σi,Q, p) = 0: s̃Si (p;Q) is a function. Moreover, using the implicit function theorem on (12) gives
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exist a Qi(p) > 0, defined such that l̃Si (1,Qi(p), p) = 0 at which s̃Si (Qi(p), p) = 1 and below

which the share function is undefined.20

Consider now the case where p < p̃∗i (ωi), when firm i will only be a buyer of permits. The

behavior of firm i consistent with a Nash equilibrium in which the price is p and the aggregate

bid is B > 0 is represented by its ‘buying share function’ s̃Bi (p; B) = min{σi,mi/B} where,

using (9), σi is the solution to

l̃Bi (σi, B, p) ≡
∂π̃i(σiB/p)

∂xi
− [1− σi]

−1p ≤ 0, (13)

with equality if σi > 0.

To deduce the properties of a buyer’s share function, we note that if the aggregate bid is

B and the price is p, the implied demand is B/p; thus, we write firm i’s share function as

s̃Bi (p; [B/p]p). Using the implicit function theorem on (13) reveals that the share function is

strictly decreasing in [B/p] for fixed p, strictly decreasing in p for fixed [B/p], and has the

property lim[B/p]→0 s̃Bi (p; B) = 1− p
p̃∗i
.21

These share functions represent each firm’s consistent behavior at a particular price, with

particular aggregate bids or offers. We now seek consistency of these aggregates to com-

plete Steps 2a and 2b above. Consistency of the aggregate offer from firms at price p requires

the sum of the individual offers of all firms that wish to sell at price p to be equal to the

aggregate offer of all firms, or, dividing both sides of this equation by Q, for the sum of

the share functions to be equal to one. The aggregate selling share function is S̃S(p;Q) ≡
∑{i∈I:ωi>0,p̃∗i (ωi)<p} s̃Si (p;Q): if μ = 0 this is defined for all Q > 0; whereas if μ > 0 it is defined

only for Q ≥ max{i∈I:ωi>0,p̃∗i (ωi)<p}{Qi(p)}. Then at price p the strategic supply, denoted by

∂s̃Si (p;Q)
∂Q = −

∂l̃Si (σi ,Q,p)
∂Q

∂l̃Si (σi ,Q,p)
∂σi

= −
−σi

∂2 π̃i (xi )

∂x2i
+

σiμE
[μE+Q]2

−Q ∂2 π̃i (xi )

∂x2i
+ Q

μE+Q p
< 0 and ∂s̃Si (p;Q)

∂p = −
∂l̃Si (σi ,Q,p)

∂p

∂l̃Si (σi ,Q,p)
∂σi

= − −
[
1− σiQ

μE+Q

]
−Q ∂2 π̃i (xi )

∂x2i
+ Q

μE+Q p
> 0.

20To understand this it helps to visualize the first-order condition. Plotted as functions of σi, the left-hand side

( ∂π̃i(−σiQ)
∂xi

) is increasing in σi and the right-hand side (
[
1− σiQ

μE+Q

]
p) is decreasing in σi. As Q decreases, the left-

hand side decreases and (if μ > 0) the right-hand side increases, giving an increase in the share value. As Q reduces
further, since the left-hand side converges to p∗i (ωi) for all σi as Q → 0 and the right-hand side to p, there will be
a value of Q where the intersection is at σi = 1 and further reductions in Q would give an intersection at σi > 1,
where share functions are undefined.

21The fact that ∂2π̃i(xi)
∂x2i

< 0 (Lemma 1) is again important. With this in mind, note that ∂l̃Bi (σi ,B,p)
∂σi

= [B/p] ∂2π̃i(xi)
∂x2i

−
[1 − σi]

−2p < 0, so we are ensured s̃Bi (p; B) is a function. Using the implicit function theorem, ∂s̃Bi (p;[B/p]p)
∂[B/p] =

−
∂l̃Bi (σi ,[B/p]p,p)

∂[B/p]
∂l̃Bi (σi ,[B/p]p,p)

∂σi

= −
σi

∂2 π̃i (xi )

∂x2i

B/p ∂2 π̃i (xi )

∂x2i
−[1−σi ]−2p

< 0. In addition, ∂s̃Bi (p;[B/p]p)
∂p = −

∂l̃Bi (σi ,[B/p]p,p)
∂p

∂l̃Bi (σi ,[B/p]p,p)
∂σi

= [1−σi ]
−1

B/p ∂2 π̃i (xi )

∂x2i
−[1−σi ]−2p

< 0. The

limit is a consequence of taking limits in (13) as [B/p]→ 0.
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Q̃(p), is identified as that level of Q where

S̃S(p;Q) = 1. (14)

This augments any fixed supply from the regulator μE to give the total supply of permits to

the market.

The properties of the aggregate selling share function determine the nature of the strategic

supply function. For a given p, all firms for whom ωi > 0 and p̃∗i (ωi) < p will be included in

S̃S(p;Q) and since each s̃Si (p;Q) is continuous and decreasing in Q, S̃S(p;Q) will inherit this

property implying Q̃(p), where defined, is a function. When p changes, the share functions of

those firms who remain sellers change in a smooth way, and those firms who become sellers

as the price rises (or drop out of the set of sellers as the price falls) again do so in a smooth

way, implying that S̃S(p;Q) is continuous in p and consequently Q̃(p) varies continuously in

p. Moreover, consideration of the equation implicitly defining Q̃(p) reveals it is non-decreasing

in p.22 We will let P̃S denote the price above which strategic supply Q̃(p) is defined, the form

of which depends on whether the regulator withheld permits to supply directly to the market

(since this influences the properties of share functions, particularly what they look like when

Q is small), and the value of which depends on firms’ marginal abatement costs at their initial

endowment. If μ > 0 then P̃S = mini∈I:ωi>0{p∗i (ωi)}, while if μ = 0 then P̃S is uniquely defined

by the equation

∑
{i∈I:ωi>0,p̃∗i (ωi)<P̃S}

1− p̃∗i (ωi)

P̃S
= 1. (15)

The reason for this is that for p > P̃S (however it is defined) the aggregate share function

S̃S(p;Q) exceeds one when Q is small enough and since it is continuous, decreasing in Q, and

no larger than 1 when Q = Ω, it is equal to one at exactly one value of Q: the strategic supply.

Conversely, if p ≤ P̃S, then in the case where μ = 0 it takes a value less than one when Q is

close to zero and, since it is decreasing in Q, this is also true for larger values of Q, so it is never

equal to one; and in the case where μ > 0 no firm has a positive selling share function, so the

aggregate is never equal to one.

On the buyers’ side, we seek to find the consistent level of [B/p], which is the aggre-

22Although ∑{i∈I:ωi>0,p̃∗i (ωi)<p} s̃Si (p;Q) is continuous in p, it is not differentiable at values of p where firms enter
or leave the set of sellers so implicit differentiation cannot be used. Rather, suppose by contradiction that for p′ > p
we have Q̃(p′) < Q̃(p). Then the fact that share functions are decreasing in Q and non-decreasing in p implies

1 = ∑
{i∈I:ωi>0,p̃∗i (ωi)<p}

s̃Si (p; Q̃(p)) ≤ ∑
{i∈I:ωi>0,p̃∗i (ωi)<p′}

s̃Si (p; Q̃(p)) < ∑
{i∈I:ωi>0,p̃∗i (ωi)<p′}

s̃Si (p
′; Q̃(p′)) = 1,

a contradiction.
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gate demand for permits. This requires that individual bids when aggregated exactly equal

the aggregate bid B, or, in other words, the sum of share functions equals one. Defining

S̃B(p; [B/p]p) ≡ ∑{i∈I: p̃∗i (ωi)>p} s̃Bi (p; [B/p]p), the strategic demand for permits, denoted by D̃(p),

is that level of [B/p] which satisfies

S̃B(p; [B/p]p) = 1. (16)

Continuity of the strategic demand function follows by similar deductions to those made

for strategic supply, and study of the condition implicitly defining strategic demand allows us

to deduce that strategic demand is decreasing (strictly) in p.23 The range of prices for which

D̃(p) is defined is p < P̃B, where P̃B is uniquely defined by the equation

∑
{i∈I: p̃∗i (ωi)>P̃B}

1− P̃B

p̃∗i
= 1. (17)

For reasons that are similar to those elucidated for strategic supply, if p ≥ P̃B then the aggregate

share function is less than one for all values of [B/p] so for these prices strategic demand is

undefined, whereas it takes positive values for p < P̃B.

Turning finally to Step 3 and referring to Figure 1, a permit price p is consistent with a

Nash equilibrium in which trade in permits takes place if and only if the strategic supply plus

any supply from the regulator is equal to strategic demand at that price, for only then will

the aggregate offer of permits and bid of money be consistent with the price. Thus, we seek

a price p̂ where μE + Q̃( p̂) = D̃( p̂). Since strategic demand is strictly decreasing in p and

strategic supply is non-decreasing in p, if overall supply and demand cross they do so only

once, implying that there is at most one Nash equilibrium in which trade in permits takes

place: there is a unique non-autarkic Nash equilibrium. If μ = 0 then strategic supply and

demand will only cross if P̃S < P̃B (as observed in Figure 1 Panel (a)); in a Nash equilibrium

with permit exchange the equilibrium aggregate supply of permits to the market from firms is

Q̂ = Q̃( p̂); the equilibrium aggregate bid of money is B̂ = p̂Q̂; the equilibrium supply of each

firm for whom ωi > 0 and p̃∗i (ωi) < p̂ is q̂i = Q̂s̃Si ( p̂; Q̂) and the equilibrium bid of each firm

for whom p̃∗i (ωi) > p̂ is b̂i = B̂s̃Bi ( p̂; B̂). Conversely, if μ = 0 and P̃S ≥ P̃B then there is no

23Suppose by contradiction that p′ > p and D̃(p′) ≥ D̃(p). Then the facts previously deduced that the share
function is strictly decreasing in p (and [B/p]) implies

1 = ∑
{i∈I: p̃∗i (ωi)>p}

s̃Bi (p; D̃(p)p) ≤ ∑
{i∈I: p̃∗i (ωi>p′}

s̃Bi (p; D̃(p)p) < ∑
{i∈I: p̃∗i (ωi)>p′}

s̃Bi (p
′; D̃(p′)p′) = 1,

a contradiction.
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Figure 1: Identification of an equilibrium in bilateral oligopoly. In Panel (a) there is no fixed supply
from the regulator; in Panel (b), where μ > 0, the regulator provides a fixed supply.

Nash equilibrium in which trade in permits takes place; in such circumstances the only Nash

equilibrium is autarky (which, as noted, is always an equilibrium in bilateral oligopoly when

there is no fixed supply to the market) and each firm’s final permit holdings are their initial

endowment. If μ > 0 then, recalling that we assume the regulator’s fixed supply is modest

in relation to demand so the permit price is not driven to zero, the presence of a fixed supply

from the regulator means overall supply and strategic demand always cross (as observed in

Figure 1 Panel (b)), and if p̂ > P̃S there will be some supply of permits from firms, not just the

regulator, in this equilibrium.

3 Features of the permit market equilibrium

With our framework established in the previous section, it is pertinent to consider features

of the permit market equilibrium and the consequences of strategic behavior. In particular

within this section we will focus on the existence, structure, and comparative static properties

of equilibrium, as well as its cost effectiveness in relation to a perfectly competitive outcome

and the welfare losses due to strategic behavior.

3.1 Existence of equilibrium

As we noted previously, when there is no fixed supply from the regulator there is always

an autarkic Nash equilibrium in which no trade takes place. If this exists alongside another

non-autarkic equilibrium the no-trade equilibrium could be ruled out by an equilibrium se-
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Figure 2: The construction of P̃S and P̃B when μ = 0. The upward-sloping function is

∑{i∈I: p̃∗i (ωi)<p} 1− p̃∗i (ωi)
p , which identifies P̃S, and the downward-sloping function, which identifies P̃B,

is ∑{i∈I: p̃∗i (ωi)>p} 1− p
p̃∗i (ωi)

.

lection argument based on the non-autarkic equilibrium being Pareto superior. An interesting

question, however, is whether autarky is the only equilibrium: it is important to understand

whether firms’ strategic behavior in manipulating the permit price leads to trade actually not

taking place. Thus, we want to understand the conditions under which the only equilibrium is

autarky when μ = 0.

The existence of a non-autarkic Nash equilibrium in the market for permits in which μ = 0

hinges on whether P̃S defined in (15) is less than P̃B defined in (17). To better understand

the relationship between these two objects we next elucidate the details of their construction.

Recall that p̃∗i (ωi) ≡ Ca
i (z̃i(0), fi(z̃i(0))− ωi) is firm i’s marginal abatement cost with its initial

endowment of permits. Given an initial distribution of permit endowments which we assume

in this discussion is positive for each firm we can, without loss of generality, re-order firms

according to the magnitude of their marginal abatement cost: p̃∗1(ω1) ≤ p̃∗2(ω1) ≤ · · · ≤
p̃∗N(ωN).

Now we construct two functions that each depend on p. The first function, that identifies

P̃S, is

∑
{i∈I: p̃∗i (ωi)<p}

1− p̃∗i (ωi)

p
, (18)

which is increasing in p. For p ≤ p̃∗1(ω1) the function is undefined; for p̃∗1(ω1) < p ≤ p̃∗2(ω2)

it takes the value 1− p̃∗1(ω1)
p ; for p̃∗2(ω2) < p ≤ p̃∗3(ω3) it takes the value 2− p̃∗1(ω1)+ p̃∗2(ω2)

p ; for

p̃∗n(ωn) < p ≤ p̃∗n+1(ωn+1) it takes the value n− ∑n
i=1 p̃

∗
i (ωi)
p . The second function, that identifies
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P̃B, is

∑
{i∈I: p̃∗i (ωi)>p}

1− p
p̃∗i (ωi)

, (19)

which is decreasing in p and piecewise linear. Working from large values of p to smaller values,

for p ≥ p∗N(ωN) the function is undefined; for p̃∗N−1(ωN−1) ≤ p < p̃∗N(ωN) it takes the value

1− p
p̃∗N(ωN)

; for p̃∗N−2(ωN−2) ≤ p < p̃∗N−1(ωN−1) it takes the value 2− p
p̃∗N(ωN)

− p
p̃∗N−1(ωN−1)

; and

for p̃∗N−n(ωN−n) ≤ p < p̃∗N−n+1(ωN−n+1) it takes the value n−∑N
i=N−n+1

p
p̃∗i (ωi)

.

P̃S is identified by the value of p where (18) is equal to one; P̃B is given by the value of p

where (19) is equal to one. Figure 2 plots these functions for two different economies. From

this it is clear that P̃S > mini∈I{ p̃∗i (ωi)} and P̃B < maxi∈I{ p̃∗i (ωi)}. In Panel (a) the p̃∗i (ωi)s are

widely dispersed and in this case P̃S < P̃B and therefore a non-autarkic Nash equilibrium in

which trade in permits takes place exists in this economy. In Panel (b), however, the p̃∗i (ωi)s

are less dispersed and in this case P̃S > P̃B, so the only equilibrium here involves no trade in

permits.

The dispersion of the p̃∗i (ωi)s measures the gains from trading permits: if they are all equal

there are no gains from trade and as they become more dispersed the gains from trade increase.

As our illustration makes clear, the existence of gains from trade is not sufficient to ensure trade

will take place: p̃∗1(ω1) < p̃∗N(ωN) does not imply P̃S < P̃B. Rather, for a non-autarkic permit

market equilibrium to exist when μ = 0 there must be ‘sufficient’ gains from trading permits.

If the regulator identifies that there are insufficient gains from trade so that trade will not take

place when firms are left to their own devices, they could withhold permits from the initial free

allocation to supply directly to the market, since when μ > 0 there is always an equilibrium in

which permit exchange takes place; this can serve to ‘prime’ trade in the market.

3.2 Structure of the market

In the permit trading model developed in this article the sides of the market form endoge-

nously: whether a firm becomes a seller or buyer of permits in equilibrium depends on their

marginal abatement cost at their initial endowment in relation to the permit price, which de-

pends on the actions of all firms. Since there is nothing in our model to suggest that the permit

price will be the same with strategic behavior as with price-taking firms in a Walrasian model

of permit exchange, prima facie it is unclear whether firms will take the same role as seller or

buyer in these two market structures.

Proposition 2. Let pW be the price of permits in a competitive market, and suppose that there is a permit
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market equilibrium with trade in which p̂ < pW and a firm i for whom p̂ < p̃∗i (ωi) < pW. Then in

a competitive market firm i would be a seller, but when firms are modeled as behaving strategically the

same firm, if active, is a buyer. Also, if p̂ > pW and p̂ > p∗i (ωi) > pW then firm i would be a buyer in

the competitive market, but when firms are modeled as behaving strategically the same firm, if active, is

a seller.

Proof. Let p̂ < p̃∗i (ωi) < pW . If firm i was a buyer in a competitive market then xi > 0 and

Ca
i (z̃i(xi), fi(z̃i(xi)) − [ωi − xi]) = pW . But the fact that ∂2π̃i(xi)

∂x2i
< 0 (Lemma 1) implies that

p̃∗i (ωi) ≡ Ca
i (z̃i(0), fi(z̃i(0)) − ωi) > Ca

i (z̃i(xi), fi(z̃i(xi)) − [ωi − xi]) = pW , a contradiction.

Thus, in a competitive market, firm i is a seller. In a strategic market, if firm i is also a seller

then xi < 0 and Ca
i (z̃i(xi), fi(z̃i(xi)) − [ωi − xi]) =

[
1− σ̂i Q̂

μE+Q̂

]
p̂. But then Lemma 1 again

implies Ca
i (z̃i(0), fi(z̃i(0)) − ωi) < Ca

i (z̃i(xi), fi(z̃i(xi)) − [ωi − xi]) so we have the inequality

p̃∗i (ωi) <
[
1− σ̂i Q̂

μE+Q̂

]
p̂ < p̂, a contradiction. The proof of the case p̂ > p̃∗i (ωi) > pW is similar

and so omitted.

Malueg and Yates (2009) present a competing model of fully strategic trade in permits that

relies on the supply function approach of Klemperer and Meyer (1989). Although their focus

is on the role of private information in permit markets, to ensure tractability of the model they

must restrict supply functions to be linear and have the same slope. This has the consequence

that, under the assumption of complete information, the equilibrium price will be equivalent to

the competitive permit price regardless of the distribution of market power (their Proposition

1).24 The equivalence of the equilibrium price between a strategic framework and a perfectly

competitive framework, regardless of the distribution of market power, is a rather unrealistic

feature of the supply function approach. In our bilateral oligopoly framework, the equilibrium

price under strategic behavior is only equal to the competitive price if there is a perfect balance

in strategic manipulation between both sides of the market which, generically, will not be the

case.

3.3 Comparative statics

As observed throughout this article, a number of fundamentals determine how firms trade

permits: firms’ initial endowments; their production (and abatement) technologies; as well as

the demand in the goods market that influences its price. We now consider the influence of

these features on the permit market equilibrium. Throughout our discussion we suppose the

equilibrium involves at least some supply of permits from firms, not just from the regulator;

24This price equivalence may not hold when there exists private information.
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if the equilibrium involves only supply from the regulator overall supply does not change in

the neighborhood of the equilibrium when the economic environment changes, with straight-

forward implications.

Recall that the equilibrium in the permit market is identified by the intersection of the

overall supply and strategic demand functions, the construction of which relies on aggregating

firms’ share functions defined in (12) and (13). A merit of the approach is that the properties

of these share functions are relatively straightforward to deduce, allowing a comparative static

analysis of equilibrium.

A firm’s ‘selling share function’ is determined by the first-order condition ∂π̃i(−σiQ)
∂xi

−
[
1− σiQ

μE+Q

]
p =

0 (see (12)), the left-hand side of which is increasing in σi (as we noted in Footnote 19). As such,

anything that increases [decreases] ∂π̃i(−σiQ)
∂xi

will decrease [increase] the share function. Also

note that strategic supply is determined by ∑{i∈I:ωi>0,p̃∗i (ωi)<p} sSi (p;Q) = 1, the left-hand side of

which is decreasing in Q. Consequently, if a firm’s selling share function decreases [increases]

then, other things equal, strategic supply will decrease [increase], for the range of prices where

this firm would be a seller.

A similar rationale can be made for buyers’ share functions. A firm’s ‘buying share function’

is determined by ∂π̃i(σiB/p)
∂xi

− [1− σi]
−1p = 0 (see (13)), the left-hand side of which is decreasing

in σi. Thus anything that increases [decreases] ∂π̃i(σiB/p)
∂xi

will increase [decrease] the share

function. Again recall that strategic demand is determined by ∑{i∈I: p̃∗i (ωi)>p} sBi (p, [B/p]p) = 1,

the left-hand side of which is decreasing in [B/p]. It follows that if a firm’s buying share

function increases [decreases] then strategic demand will increase [decrease], over the range of

prices where this firm would be a buyer.

Now, from (8) we know that ∂π̃i(xi)
∂xi

= Ca
i (z̃i(xi), fi(z̃i(xi))− [ωi + xi]). Our assumptions on

firms’ cost functions then imply that ∂π̃i(xi)
∂xi

will increase [decrease] if (a) there is an increase

[decrease] in demand in the product market that results in an increase in the price, resulting

in z̃i(xi) increasing [decreasing] for all xi; (b) the pollution generated from a given level of

production increases [decreases], where a reduction may be due to, for example, improvements

in abatement technology; and (c) the firm’s initial permit endowment decreases [increases].

Consider a situation, then, where demand increases in the product market leading to an

increase in the product price, which influences all firms. Each firm’s selling share function will

decrease, which decreases the strategic supply of permits, and each firm’s buying share func-

tion will increase, which increases the strategic demand for permits (recall that strategic supply

is an increasing function of p, and strategic demand is strictly decreasing in p). Consequently,
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an increase in demand in the product market increases the equilibrium price of permits. The ef-

fect on the equilibrium volume of permits traded is unclear since, while supply has contracted,

the permit price has increased.

Consider next a situation where abatement technologies become more efficient so less pol-

lution is generated from the production of goods and suppose this influences all firms equally.

Then selling share functions will increase, which will result in an increase in the strategic sup-

ply of permits, and buying share functions will decrease resulting in a reduction in strategic

demand for permits. The effect of more efficient abatement technologies is to reduce the equi-

librium price of permits, but the effect on the quantity of permits traded is unclear.

If the regulator wishes to reduce total emissions then the effect is to decrease all firms’ sell-

ing share functions which reduces strategic supply, and increase their buying share functions

which increases strategic demand. The consequence will be upward pressure on the equi-

librium price of permits. Note, however, that changes in permit endowments are often not

undertaken in a uniform way. For example, we may consider a situation where a regulator

changes policy from an equitable distribution of permits to a distribution where more highly

polluting firms receive more permits. Suppose that with an equitable distribution of permits

the equilibrium price is p̂ and suppose further that the regulator increases the endowment of

permits to those who are buyers (i.e., for whom p̃∗i (ωi) > p̂) and reduces the endowment of

permits to sellers (i.e., those firms for whom p̃∗i (ωi) < p̂). For those firms that received a

greater [smaller] endowment, their buying share function reduces [increases] and their selling

share function increases [reduces], with the necessary implication that for all p ≥ p̂ strategic

demand reduces and, likewise, for all p ≤ p̂ strategic supply also reduces. Consequently, the

equilibrium quantity of permits traded will decline under the new regulation. In fact it is even

possible that under an equitable distribution of permits where P̃S < P̃B, a change to the initial

endowment towards a ‘grandfathered’ distribution of permits contracts both the strategic sup-

ply and demand enough to make P̃S ≥ P̃B, so no trade in permits takes place: referring back to

Figure 2, grandfathering may shift the economy from a situation depicted in Panel (a), to that

depicted in Panel (b).25 The effect on the equilibrium permit price when there remains a non-

autarkic equilibrium is unclear, and even if aggregate emissions decline it does not necessarily

follow that the permit price will increase.

25Note that if a firm’s p̃∗i (ωi) under an egalitarian distribution of permits is low then it will increase under
grandfathering, whereas if p̃∗i (ωi) is high it will decrease under grandfathering, thus reducing the gains from trade.
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3.4 Cost efficiency of equilibrium

If trade in permits does take place (either in the presence of an external supply from the

regulator or if P̃S < P̃B) will this equilibrium reduce pollution levels to E in a cost-effective

way? If we were willing to assume that firms act as price-takers then the standard Walrasian

equilibrium of the permit market would be used to describe equilibrium. Well-known results

tell us that at the Walrasian equilibrium marginal abatement costs will be equalized; thus,

whenever gains from trade in permits exist trade will take place, and emission reductions will

be achieved in a cost-effective manner (Montgomery, 1972). In our model, consider two firms

i and j that are active in a non-autarkic equilibrium with permit price p̂, where i is a seller of

permits (p̃∗i (ωi) < p̂) and j is a buyer of permits (p̃∗j (ωj) > p̂). Then it follows from (9) and (10)

that

[
1− σ̂iQ̂

μE+ Q̂

]−1
Ca
i (z̃i(x̂i), fi(z̃i(x̂i))− [ωi + x̂i]) = p̂ = [1− σ̂j]Ca

j (z̃j(x̂j), fj(z̃j(x̂j))− [ωj + x̂j]).

(20)

From (20), the following proposition is immediate.

Proposition 3. In any permit market equilibrium in which trade takes place there exist i, j ∈ I for whom

Ca
i (z̃i(x̂i), fi(z̃i(x̂i))− [ωi + x̂i]) < Ca

j (z̃j(x̂j), f j(z̃j(x̂j))− [ωj + x̂j]),

so emissions reductions are not achieved in a cost-effective manner, unless all firms are negligible (so

σ̂i ≈ 0 for all i ∈ I).

This implies that between any buyer and seller (with non-negligible market share), further

cost reductions are possible by transferring more permits from the seller to the buyer. All firms

in bilateral oligopoly behave strategically; those that sell permits will restrict supply to try to

increase the price, those that buy will restrict their bids to put downward pressure on the price.

These strategic tensions combine to result in generic inefficiencies in the final determination of

permit transactions.

We can explore the welfare losses of permit exchange in more depth by considering the

dead-weight loss associated with strategic trade in permits. To do this, we will construct com-

petitive supply and demand functions assuming firms in the permit market are price takers.

As noted, the equilibrium in this case exhausts all gains from trade and, since we consider

traders as firms and their payoffs are quasi-linear, welfare losses from a restriction in trade can

be measured by the area between the supply and demand curves between the volume of trade
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that takes place and the volume of trade that would take place in a competitive market. For

each of these permits that are not traded the difference between demand and supply gives the

difference in the marginal abatement costs that remain because of a reduced volume of trade.

Consider then that the permit market is perfectly competitive: firms choose their permit

transactions and a Walrasian auctioneer sets the permit price p to clear the market. Constrain-

ing each firm not to sell more permits than their initial endowment, firms can be seen as solving

the problem

max
{xi :−min{xi ,0}≤ωi}

mi − xip+ π̃i(xi)

where π̃i(xi) is the usual product market profit, defined in (6). The first-order condition is

∂π̃i(xi)
∂xi

= p (21)

where ∂π̃i(xi)
∂xi

= Ca
i (z̃i(xi), fi(z̃i(xi))− [ωi + xi]), as we have previously noted. The solution to

this problem will be denoted xWi (p), and inspection of the first-order condition reveals that if

p < p∗i (ωi) then xWi (p) > 0 and firm i will be a buyer of permits, while if p > p∗i (ωi) then

xWi (p) < 0 and i will be a seller of permits (so long as ωi > 0).

Competitive supply and demand functions can then be constructed by aggregating individ-

ual decisions, also accounting for any fixed supply from the regulator:

SW(p) = −∑
i∈I

min{0, xWi (p)},

DW(p) = ∑
i∈I

max{0, xWi (p)}.

In equilibrium the competitive price of permits pW will satisfy μE+ SW(pW) = DW(pW) and

the aggregate volume of permits traded is denoted QW . Assuming that all firms with no

endowment of permits have p∗i (ωi) ≥ pW , marginal abatement costs are equalized with this

volume of permit exchange, as is readily deduced from the first-order conditions that will hold

for each firm.26

When we consider that firms may behave strategically in permit exchange, we analyze their

behavior using strategic versions of supply and demand. This facilitates simple comparison

with price-taking behavior that is represented by competitive supply and demand functions.

The relationship between competitive and strategic supply and demand in bilateral oligopoly

26If this were not the case, there would be firms in equilibrium that would wish to sell permits but cannot,
in which case their marginal abatement cost would be less than the equilibrium price; if we accounted for this
we should consider the constrained minimized marginal abatement cost difference, which for brevity we do not
pursue.

25



p

Q

D̃(p)

Q̃(p)

DW (p)

SW (p)

Q̂

p̂

QW

pW

Figure 3: Strategic supply and demand compared with their competitive counterparts (assuming μ = 0),
and identification of the welfare loss resulting from the exercise of market power.

(where traders roles are exogenously determined by their endowments) was investigated in

Dickson and Hartley (2008) who demonstrated that strategic versions of supply and demand

lie to the left of their competitive counterparts (Corollaries 7.2 and 7.4). The same results can

be derived in this setting where the side of the market on which a trader acts is determined

endogenously with market outcomes (we omit the detail of this argument). This necessarily

implies, as can be seen in Figure 3, that the volume of trade in permits when firms exercise

market power will be less than if firms were to behave as price takers in the permit market.

Although the effect on the volume of trade is unambiguous, the effect on the permit price is

not: whether the permit price with strategic behavior is higher or lower than with assumed

price-taking behavior depends on the balance of market power between buyers and sellers of

permits in equilibrium. The exception to this is where the regulator supplies permits to the

market and the equilibrium with strategic behavior involves no further supply of permits from

firms, in which case (since strategic demand lies to the left of competitive demand) the permit

price will be unambiguously lower when strategic behavior is considered.

With strategic permit exchange, marginal abatement costs are not equalized due to the

restricted volume of trade in permits between firms: the maximum disparity between marginal

abatement costs is given by the difference between competitive demand and supply at Q̂. Since

payoffs are quasi-linear, competitive supply and demand functions can be used to measure

the dead-weight loss associated with trade in permits being restricted relative to the volume

of trade that exhausts all gains from trade, which is given by the area between competitive

supply and demand between Q̂ and QW (the hatched area in Figure 3). If we considered
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replicating the economy then we could show, as was considered in Dickson and Hartley (2008),

that strategic versions of supply and demand converge to their competitive counterparts as the

number of replications increases without bound. As such, as the number of firms increases the

volume of trade in the Nash equilibrium that accounts for strategic behavior will converge to

the competitive volume of trade that exhausts all gains from trade, and the welfare loss due to

strategic behavior will shrink to zero.

4 Illustrative example

In this section we use an example to demonstrate the method of analysis and some of the

ideas we have presented in the general model. Throughout we assume μ = 0, so the regulator

does not withhold any permits to sell directly on the market. While the general model allows

for all firms to be heterogeneous, in the example we restrict attention to two types of firms:

There are n1 firms of type 1 that have endowment ω1 = 1
θ ω and n2 firms of type 2 that have

endowment ω2 = θω, where θ ≥ 0. All firms are assumed to have the bi-quadratic cost function

Ci(zi, ai) = 1
2z

2
i +

1
2 a

2
i and pollution generation function fi(zi) = zi, so ai ≡ zi − [ωi + xi].

Given permit transactions of xi, the first-order condition governing optimal behavior in the

product market with fixed product market price φ, as given in (3), is

2zi − [ωi + xi] = φ ⇒

z̃i(xi) =
φ + ωi + xi

2
.

As such, p∗i (ωi) =
φ−ωi
2 , and since ω1 < ω2, we have p∗1(ω1) > p∗2(ω2).

In a permit market where all firms are allowed to behave strategically, their behavior consis-

tent with a Nash equilibrium is captured by share functions. Recall that a firm will only be on

the supply side of the market if p̃∗i (ωi) < p, and will only be on the demand side if p̃∗i (ωi) > p.

As such, given that p∗1(ω1) > p∗2(ω2) if p ≥ p∗1(ω1) no firms will be on the demand side, and if

p ≤ p∗2(ω2) no firms will be on the supply side, so we seek an equilibrium in which the price

is between p∗2(ω2) and p∗1(ω1).

For p > p̃∗i (ωi) firm i will be on the supply side of the permit market and their share
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function is given by (12), so selling share functions are governed by the first-order condition

φ−ωi + σiQ
2

= [1− σi]p⇒

s̃Si (p;Q) =
2p− φ + ωi

2p+Q
.

For p < p̃∗i (ωi) firm i will be on the demand side of the market and their share function is

given by (13), so buying share functions are governed by

φ−ωi − σiB
p

2
=

1
1− σi

p⇒

s̃Bi (p; [B/p]) =
φ−ωi +

B
p ±

√
[φ−ωi +

B
p ]

2 − 4B
p [φ−ωi − 2p]

2B
p

.

Now we suppose p∗2(ω2) < p < p∗1(ω1) and construct strategic supply and demand func-

tions where type 1 firms are buyers of permits, and type 2 firms are sellers of permits. For

p < p∗1(ω1) the strategic supply function must satisfy (14), and therefore

n2
2p− φ + θω

2p+Q
= 1⇒

Q̃(p) = n2[θω− φ] + 2[n2 − 1]p

= n2[2p+ θω− φ]− 2p.

Notice that the price above which strategic supply is defined is P̃S = n2
n2−1 p

∗
2(ω2). Turning

next to strategic demand, for p > p∗2(ω2) the strategic demand function must satisfy (16), and

therefore

n1

⎡
⎣φ− 1

θ ω + B
p ±

√
[φ− 1

θ ω + B
p ]

2 − 4B
p [φ− 1

θ ω− 2p]

2B
p

⎤
⎦ = 1⇒

D̃(p) = n1

[
φ− 1

θ
ω− 2

n1
n1 − 1

p
]

regardless of which root is chosen for the buying share function. The price below which

strategic demand is defined is P̃B = n1−1
n1

p̃∗1(ω1). Notice that, as with competitive supply

and demand with quadratic costs, the details of which we elucidate below, strategic supply

and demand are linear functions of the permit price.

Assuming the economy is such that P̃S < P̃B, algebraic manipulation of the equilibrium
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condition reveals the equilibrium price to be

p̂ =
n1 + n2

n1
n1−1n1 +

n2−1
n2

n2

[
φ

2
− n1 1θ ω + n2θω

2[n1 + n2]

]
,

and the equilibrium volume of trade is

Q̂ =
n1n2ω[ n1

n1−1θ − n2−1
n2

1
θ ]

n1
n1−1n1 +

n2−1
n2

n2
− n1n2[ n1

n1−1 −
n2−1
n2

]

[n1 + n2] + 1
n1−1

φ. (22)

If we assume firms act as price-takers in the permit market, the first-order condition gov-

erning their behavior given in (21) is

z̃i(xi)− [ωi + xi] = p⇒

xWi (p) = φ−ωi − 2p,

which is positive (so i is a buyer) if p < p̃∗i (ωi), and negative (so i is a seller) if p > p̃∗i (ωi). A

competitive equilibrium can occur only at prices between p̃∗2(ω2) and p̃∗1(ω1) and for this range

of prices, the competitive supply function takes the form

SW(p) = n2[2p+ θω− φ]

and the competitive demand function takes the form

DW(p) = n1

[
φ− 1

θ
ω− 2p

]
.

The competitive equilibrium occurs at the intersection of these two functions, where the

equilibrium price is

pW =
φ

2
− n1 1θ ω + n2θω

2[n1 + n2]

and the equilibrium volume of trade is

QW =
n1n2ω[θ − 1

θ ]

n1 + n2
.

We see that strategic supply and demand lie to the left of their competitive counterparts, and

note that even when θ > 0 so p̃∗1(ω1) < p̃∗2(ω2)—which implies there are gains from trade—it

may be the case that P̃S ≥ P̃B so there is no Nash equilibrium with permit exchange: for this

not to be the case n1 and n2 need to be large enough. The welfare loss attributable to strategic
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behavior is given by the triangle created between the competitive supply and demand functions

between Q̂ and QW . The reduction in trade from the efficient level that is due to strategic

behavior is given by QW − Q̂ (the analytical expression of which is cumbersome). Inverse

competitive demand is given by PDW(Q) = 1
2 [φ − 1

θ ω − Q
n1
] and therefore the difference in

inverse demand at Q̂ and the competitive equilibrium price is 1
2n1

[QW − Q̂], meaning the loss in

buyers’ surplus due to strategic behavior is 1
4n1

[QW − Q̂]2. Likewise, inverse competitive supply

is PSW(Q) = 1
2 [φ− θω + Q

n2
], and therefore the difference between the competitive equilibrium

price and inverse supply at Q̂ is 1
2n2

[QW − Q̂], meaning the loss in sellers’ surplus due to

strategic behavior is 1
4n2

[QW − Q̂]2. The loss in total surplus, therefore, is [ 1
4n1

+ 1
4n2

][QW − Q̂]2.

Inspection of the expression for Q̂ in (22) reveals that as both n1 and n2 increase without bound,

the second term in the expression converges to zero, and the first term becomes equivalent to

the expression for QW . As such, as the number of firms increases without bound, welfare losses

due to strategic behavior shrink to zero.

5 Market power in the product market

We now turn to consider non-competitive product market structures and the effect of account-

ing for market power on the permit market equilibrium. In the previous framework it was

assumed that firms were price-takers in the product market; yet it is possible that some ele-

ment of market power may exist. This is, in fact, quite likely as many industries regulated

by a cap-and-trade scheme are highly concentrated, such as the electricity (generation) market

(Wolfram, 1999; Borenstein et al., 2002; Bushnell et al., 2008) and the cement industry (Ryan,

2012; Fowlie et al., 2016).27

The manifestation of market power in a product market is the restriction of supply to in-

crease the price. A simple way to isolate this market power effect is to assume that firms

are independent monopolists in the product market, which would be the case if the output

of their production process was sufficiently differentiated or firms served regional markets.

We deduced in our comparative statics exercise that there is a positive relationship between

firms’ supply in the product market and their net demand for permits, and therefore with the

equilibrium permit price. As such, if firms have market power in the product market and the

supply of goods to the market reduces, the ‘market-power effect’ will suppress net demand

for permits and put downward pressure on permit prices relative to the situation where firms

27Although highly concentrated electricity markets are common, the issue of market power is not guaranteed.
For example, Hintermann (2016b) has recently found that the German electricity market showed no signs of market
power.
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are assumed to be price takers. Our focus in this section, however, is to consider the issues

associated with imperfect competition in a product market, where the strategic importance of

a firm’s cost function (in relation to its competitors) provides a rich link between the product

and permit markets.

The effect of trading permits changes the firm’s cost function for the product market and,

importantly, influences the marginal cost of production. If the market is perfectly competitive

(or if firms serve independent monopolies), this ‘direct effect’ of permit market activity is the

only effect that influences firms’ optimal output. If strategic behavior is considered in the

product market, however, the outcome from engaging in Cournot competition hinges crucially

on the firm’s marginal cost in relation to those of its competitors. This raises two additional

effects of permit market activity: an ‘indirect effect’ that results from the change in the product

market equilibrium attributable to a change in the firm’s own marginal cost; and, since the

total number of permits is fixed, a ‘changing rivals’ costs’ effect that results from a change in

the product market equilibrium attributable to the change in other firms’ marginal costs. These

effects provide an additional incentive to acquire permits, thereby (at least) partially mitigating

the suppressed net demand for permits that occurs due to the existence of product market

power.

To consider the effect of strategic interaction in the product market, suppose that the firms

participating in the permit market then go on to supply the same product market in which

they compete à la Cournot. Since there is now strategic interaction in the product market,

we consider the sub-game perfect equilibrium of this two-stage game. The price in the goods

market will be determined as Φ(Z), which depends on the aggregate supply of all firms Z =

∑n
i=1 zi. Consider a product market subgame in which the vector of permit transactions is

x = {xi}ni=1. In this subgame, we want to deduce the Cournot equilibrium. The payoff function

of firm i in this subgame takes the form

Vi = mi − xip+ πi(zi,Z, xi) where

πi(zi,Z, xi) = ziΦ(Z)− Ci(zi, f (zi)− [ωi + xi]).

When engaging in Cournot competition firms can be seen as maximizing their payoff with

respect to zi, taking the actions of other traders as given, which implies

Cz
i + f ′i C

a
i ≥ Φ(Z) + ziΦ′(Z),
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with equality if zi > 0. Since we assume Cz
i + f ′i C

a
i = 0 when zi = 0 each firm will be active

in a Cournot equilibrium, and we denote by ẑi(Z; xi) the output of firm i consistent with a

Nash equilibrium in which the aggregate supply of all firms is Z, which satisfies the above

first-order condition with equality. A Nash equilibrium in the subgame requires that these

consistent individual supplies are also consistent with the aggregate supply. As such, the

aggregate supply at the Cournot equilibrium in the subgame in which the vector of permit

transactions is x is given by Ẑ(x), defined as that level of Z where

n

∑
i=1

ẑi(Z; xi)− Z = 0. (23)

The equilibrium supply of firm i is then written ẑi(Ẑ(x); xi). Notice that this depends on the

entire vector of permit transactions. Our assumptions on demand and cost functions imply that

individual ‘replacement functions’ ẑi(Z; xi) are decreasing in Z and therefore that ∑n
i=1 ẑi(Z; xi)

is decreasing in Z so there is a unique fixed point and so a unique Cournot equilibrium.28

Returning now to first-stage decisions in the permit market, the reduced-form payoff func-

tion for firm i is

Vi = mi − xip+ πi(ẑi(Ẑ(x); xi), Ẑ(x), xi) where

πi(ẑi(Ẑ(x); xi), Ẑ(x), xi) = ẑi(Ẑ(x); xi)φ(Ẑ(x))− Ci(ẑi(Ẑ(x); xi), f (ẑi(Ẑ(x); xi))− [ωi + xi]).

When considering its optimal action in the permit market, a firm needs to consider the marginal

effect on its permit transactions and the benefits (or costs) that this brings in terms of product

market profitability. With s = {b, q}, the first-order condition governing optimal behavior in

the permit market requires

dπi(ẑi(Ẑ(x); xi), Ẑ(x), xi)
dsi

≤ ∂xip
∂si

.

The right-hand side of this first-order condition is the same as when we assumed the firm is

a price-taker in the product market. The left-hand side, however, is different as it accounts

not only for the direct effect of permit market activity on product market profitability, but

also the indirect and changing rivals’ cost effects. Since this depends on the entire vector of

permit transactions we cannot, without further restrictions, derive strategic supply and demand

functions, nor clearly deduce the properties of the permit market equilibrium. We can, however,

28This method was first used in the analysis of Cournot equilibrium by Novshek (1985).
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consider the influence of strategic behavior in the product market on the incentives firms face

in the permit market.

Decomposing the effect of permit market activity on product market profitability, we find

dπi

dsi
=

∂πi

∂xi
∂xi
∂si

+
∂πi

∂zi
dẑi
dsi

+
∂πi

∂Z
dẐ
dsi

. (24)

Now, in the second term,
dẑi
dsi

=
∂ẑi
∂xi

∂xi
∂si

+
∂ẑi
∂Z

dẐ
dsi

. (25)

In both (24) and (25) the effect on the equilibrium aggregate output dẐ
dsi

can be decomposed into

the direct effect from firm i’s permit market strategy, and the indirect effect that comes through

firm i’s strategy influencing the permit transactions of other firms:

dẐ
dsi

=
∂Ẑ
∂xi

∂xi
∂si

+ ∑
j �=i

∂Z
∂xj

∂xj
∂si

. (26)

Inserting (26) and (25) into the initial decomposition (24) and re-arranging yields the following

proposition.

Proposition 4. For firm i, the effect of permit market activity on product market profitability is:

dπi

dsi
=

∂πi

∂xi
∂xi
∂si

+
dπi

dzi
∂ẑi
∂xi

∂xi
∂si

(27)

+

[
∂πi

∂zi
∂ẑi
∂Z

+
∂πi

∂Z

]
∂Ẑ
∂xi

∂xi
∂si

+

[
∂πi

∂zi
∂ẑi
∂Z

+
∂πi

∂Z

]
∑
j �=i

∂Ẑ
∂xj

∂xj
∂si

.

The first line of (27) captures the direct effect of permit market activity on profit that comes

about from a change in optimal supply; the second line captures the indirect effect of permit

market activity that comes from the change in firm i’s permit transactions influencing the

equilibrium in the product market; and the third line captures the changing rivals’ cost effect

that changes the product market equilibrium indirectly through the effect of firm i’s actions on

the permit transactions of others. Note that in the final term ∂xj
∂si

= 0 for those traders j �= i

that are sellers of permits, since their permit transactions are unilaterally decided by xj = −qj,
so the changing rivals’ cost effect only materializes for firms on the demand side of the permit

market.

The overall effect of accounting for strategic behavior in the product market is ambiguous.

Consider, for example, the decision of a permit buyer that engages in a strategic product market
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compared to a buyer in a competitive product market. Their output in a strategic market will

be less than in a competitive market which will serve to reduce their demand for permits.

However, by acquiring permits the firm lowers its marginal cost relative to others: purchasing

permits reduces its own marginal cost and simultaneously increases the marginal costs of other

permit buyers since any permits acquired by the firm in question cannot be acquired by other

firms. These strategic considerations serve to increase the demand for permits. Which of

these effects dominates depends on a multitude of factors, not least the competitiveness of the

product market and the firm’s market power in that market; developing a full understanding

of the exact nature of this is left for future research.

6 Conclusion

The purpose of this article is to investigate the implications of strategic trade in pollution

markets. By establishing a strategic market game where firms’ roles as buyers or sellers are

determined endogenously, we create a two-stage framework, where in the first stage firms

participate in a price-mediated permit market and, in the second stage, firms select their level

of production.

In the permit market, we use a strategic market game to identify firms’ roles as buyers or

sellers of permits and allow for price-mediated trade. We show that the unique equilibrium

in which permit trade takes place, if one exists, is generically inefficient. Our framework also

shows that strategic trade can alter the structure of the market, as the role of firms (buyers

or sellers) and the equilibrium price are now endogenously determined: buyers (sellers) in a

competitive market can switch their role in a market with strategic trade. Thus we show the use

of strategic trade via a price-mediated strategic market game has fundamental consequences

for the cost efficiency, level of exchange, equilibrium permit price, and structure of the market.

As cap-and-trade markets are now frequently implemented to control major pollution prob-

lems, it is important to identify how, in the presence of non-competitive behavior, the market

equilibrium is established, and, of course, the associated cost inefficiencies. Our approach, by

focusing on endogenous market formation and a price-mediated solution, has identified links

between strategic behavior, cost inefficiency, market formation, and the nature of the equilib-

rium. Further analysis can take this core framework and analyze market formation in specific

cap-and-trade markets, for example, by the inclusion permit banking (dynamic aspects), price

collars, and allowance reserves.
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