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Abstract: Information security is a vital concern in Internet of Things (IoT). Traditional security method based on public or
private key encryption scheme is limited by the trade-off between low cost and high level of security. Among different security
solutions, utilising compressed sensing (CS) in combination with the physical-layer security to achieve the security is a
remarkable method. However, in the current literatures, little attention has been given to the area of static environment, which
will lead the risk of information leakage in the CS security model. In this study, the authors propose a new CS security model, in
which circulant matrix is exploited to improve the generation efficiency of the measurement matrix, and binary resilient functions
are utilised to enhance the security. Furthermore, considering the practical application, they present a feasible framework,
named CS security scheme based on frequency-selective, where the frequency-selective feature of the wireless channel is
applied to support the static environment. To verify the effectiveness of the proposed scheme, they conducted experiments and
numerical simulations to evaluate the performance, and the results are satisfactory.

1 Introduction
The Internet of Things (IoT) is a new generation of information
technology, which is an important stage in the development of the
information age [1]. Since a wide range of application scenarios,
the security of IoT is a critical issue, undoubtedly. However, due to
broadcast transmission and stringent resource constraints, data
transmission in the perceptual layer of IoT is prone to interception
and eavesdropping. In these cases, how to achieve a low cost and
complexity but high security policy is still a challenge.

Wireless security in IoT is traditionally achieved on the higher
layers of protocol stack through cryptography approaches,
however, it is hard to overcome the conflict between the aims of
low computational cost and a high level of security, such as
lightweight cryptography. To address the weaknesses of traditional
security policy, physical-layer security (PLS) technology is
emerging to a promising new technique to solve the security
problem in wireless communication. However, based on the current
state of the development of the PLS technology, there are still some
problems in practical application. Such as key-extraction based on
physical layer, the generating rate of the extracted key is still not
enough to satisfy the requirement for transfer speed. In the case of
keyless security in PLS, artificial noise is one of the primary
means, which is undesired in IoT because it will occupy the
additional communication resources. Therefore, more studies need
to be conducted to protect the security of IoT.

Recently, compressed sensing (CS) [2] has been considered in
WSNs and IoT [3]. CS changes the rules of data acquisition in the
information system, where the data or signals can be efficiently
sampled and accurately reconstructed with much fewer samples
than Nyquist theory [4]. It can prolong the lifetime of the
perceptual node network and increase the transfer efficiency of
valid data. Furthermore, the ability of CS to ensure security
received some attention in the past, such as in [5, 6]. In general,
using the measurement matrix as the symmetric key for encryption
and decryption is a most direct and effective method to achieve
security. In [7], the author demonstrated that CS-based encryption
does not achieve Shannon's definition of perfect secrecy, but can
provide a computational guarantee of secrecy. While, Mayiami et

al. [8] proposed that under some conditions, based on CS the
perfect secrecy can be achievable, and these conditions are not
difficult to satisfy in the practical application of CS. Therefore,
address to the practical application of IoT, the key problem is how
to efficiently construct the measurement matrix and guarantee the
security of this matrix.

Surprisingly, in combination with the PLS technology, the CS
security model can achieve a better effect. Dautov and Tsouri [9,
10] presented that based on one of the PLS technology, i.e. key-
extraction based on physical layer, a CS security framework was
established, which can realise securing while sampling in wireless
body area networks (WBANs). However, there still exist some
problems in the practical application, which has been given limited
attention in previous works. In IoT, static environment is the main
application scenario, while this situation may lead to some
potential harms. First, static environments will lead to a stationary
signal over a period of time, which may produce a non-random
measurement matrix which may dissatisfy the restricted isometry
property (RIP) condition. It will result in the failure of compression
and reconstruction in CS. Second, lower randomness under the
static environments may cause the extracted secret information to
become too simple and easy to be imitated. Moreover, Herman and
Strohmer [11] showed that an adversary who has no need to obtain
a precise legitimate measurement matrix still be able to reconstruct
the compressed signal to some extent based on a similar matrix.
Therefore, further investigation is needed in the area of the CS
security scheme based on PLS.

In this paper, we propose a new CS security model based on
resilient functions and circulant matrix, and give a feasible
framework based on frequency-selective for IoT, called CS security
scheme based on frequency-selective (CSSS-FS). More
specifically, we exploit the circulant matrix to improve the
generating efficiency of the measurement matrix, and utilise a
binary resilient function to guarantee the security. Considering the
practical application, we use the frequency-selective feature of the
wireless channel as the effective means to overcome the static
application scenario. Moreover, by means of experiments and
numerical simulation based on real-world database, i.e. MIT-BIH
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arrhythmia database, the performance of the proposed scheme was
evaluated.

The remaining of this paper is organised as follows: Section 2
contains an introduction to CS and security. We introduce the
proposed CS security model in Section 3, and describe the
proposed framework, i.e. CSSS-FS, in Section 4. Section 5 is
devoted to an account of experiments and simulations to evaluate
our method, followed by the discussion and conclusion of this
study in Section 6.

2 Preliminaries and problem statement
2.1 Compressed sensing

CS is one of the important progress in the field of signal
processing, and it is expected to break through the Nyquist–
Shannon sampling theorem. In general, CS contains two stages, i.e.
sensing and reconstruction stages, and the sensing stage includes
the process of sparse transformation and compressed measurement.
In this study, we focus on compressed measurement in CS. Herein,
we simply introduce this technology.

Suppose ω ∈ RN × 1 is an unknown source vector with only a
few non-zero entries; then, ω through noisy measurements is given
by

t = Φω + v (1)

where t ∈ RM × I is an available measurement vector, Φ ∈ RM × N

(M ≪ N) is a known measurement matrix, and any M columns of
Φ are linearly independent (i.e., satisfies the RIP condition [2]),
v ∈ RM × 1 is an unknown noise vector. Furthermore, if signal ω is
not sparse itself, it may be represented as a sparse signal in some
orthonormal basis Ψ, i.e. ω = ΨTx is a sparse signal.

While the sampling process is simply a random linear
projection, the reconstruction process to recover the original signal
x from the received measurements y is highly non-linear. More
precisely, the CS theory suggests the following reconstruction
algorithm based on the l1-minimisation of the transform coefficient
vector u:

min ∥ u′ ∥1 s . t . y = Φu′ (2)

This is a convex optimisation problem that conveniently reduces to
a linear program known as basis pursuit or other related
reconstruction algorithms.

CS can significantly reduce the number of sampling points and
improve the system efficiency. In addition, many signal processing
methods can be utilised to achieve the sparse transformation, such
as Fourier transform and wavelet transform, hence, in practice,
many popular signals can be easily transformed to sparse domain.
Therefore, in wireless sensor networks (WSNs) and the IoT, there
is ample research for leveraging this technology to improve the
performance of the system. Next, we will discuss the security in
CS.

2.2 Achieve security by CS

In general, CS does not provide information theoretic security (or
called perfect secrecy) but can be viewed as a computationally
secure cryptosystem [7]. Thus, as the computational power
increased, there is the risk for information leaking in this model.
Fortunately, under some conditions, based on CS, the perfect
secrecy condition introduced by Shannon can be achievable [8].
These conditions contain: the number of measurements is equal or
greater than two times of sparsity level of the messages, the
measurement matrix satisfies RIP, and the number of source
messages goes to infinity [8]. In fact, these conditions are not
difficult to satisfy in some practical application of CS, such as our
previous work [12]. Thus, considering the application in IoT, the
security model based on CS is focused on how to construct an
efficient and secure measurement matrix under various scenarios,
such as static environment.

3 CS security model based on resilient functions
and circulant matrix
3.1 System setup

Consider a wireless communication system consisting of two
legitimate nodes (Alice and Bob) and an eavesdropper (Eve), as
shown in Fig. 1. Let hAB and hBA denote the legitimate channels,
and hAE and hBE denote the wiretap channels. According to the key
extraction technology which is one of PLS, Alice and Bob can
extract the similar information Zi

(AB) and Zi
(BA) based on the channel

features, respectively. Through quantisation and reconciliation,
they can acquire a same bit sequence, denoted as (s1, s2, …, sm).
Similarly, based on the wiretap channels hAE and hBE, Eve can
receive the correlation information, and finally obtains an
estimated sequence (s~1, s~2, …, s~m). The system shown in Fig. 1 can
apply to the most of wireless communication scenarios. Next,
based on this system, we use the resilient functions to establish a
security vector. 

3.2 Security vector based on resilient functions

Resilient functions were introduced in [13] for key distribution and
generation of random strings in the presence of faulty processors.
Based on the threshold characteristic, we exploit resilient function
to enhance the security of the measurement matrix. Herein, a
binary resilient function is used, and the definition is as follows.
 
Definition 1: [13]: Let n ≥ m ≥ 1 be integers and suppose

f :{0, 1}n → {0, 1}m (3)

where f is a function that accepts n input bits and produces m
output bits. Suppose t ≤ n be an integer, and t arbitrary input bits
out of n are fixed by an adversary, and the remaining n − t input
bits are chosen independently at random. Then f is said to be t-
resilient by which an output of every possible m-tuple is equally
likely to occur.

The process of establishing the security vector based on the
binary resilient functions, can be stated as Theorem 1 as follows:
 
Theorem 1: Let us consider the communication system in Fig. 1.
Let f be an (n, m, t) resilient function, and set
f (z1

AB, z2
AB, …, zn

AB) = f (z1
BA, z2

BA, …, zn
BA) = (s1, s2, …, sm) and

f (z1
E, z2

E, …, zn
E) = (s~1, s~2, …, s~m). Let the eavesdrop probability be

1 − p, i.e. Pr(zi
E ≠ zi1

AB) = Pr(zi
E ≠ zi

BA) = p. If

p ≥ lim
n → ∞

(n − t)
2n (4)

We have Pr ((s~1, s~2, …, s~m) = (s1, s2, …, sm)) → 1/2m, i.e.
(s1, s2, …, sm) is independent of (s~1, s~2, …, s~m).

Fig. 1  General eavesdropping communication system
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Proof: Suppose Eve takes exactly arbitrary t bits from the
communication of Alice and Bob. Obviously, there are randomly
and independently t bits correctly taken in (z1

E, z2
E, …, zn

E). About
half of the remaining n − t bits will be correct and the other bits
remain to incorrect on average when n approaches to infinity or
many frames are repeated. Therefore, the total number of error bits
in (z1

E, z2
E, …, zn

E) will be (n − t)/2 on average, which leads to
Pr (zi

AB ≠ zi
E) → (n − t /2n) (zi

AB ≠ zi
E and zi

BA ≠ zi
E are statistically

equal). If Pr (zi
AB ≠ zi

E) = Pr (zi
BA ≠ zi

E) ≥ limn → ∞ (n − t /2n), it
means no more than t bits in (z1

E, z2
E, …, zn

E) are correctly taken from
(z1

AB, z2
AB, …, zn

AB) or (z1
BA, z2

BA, …, zn
BA). Based on Definition 1, the

output (s~1, s~2, …, s~m) recovered from (z1
E, z2

E, …, zn
E) tends to

uniformly distributed over m vector space, i.e.
Pr ( f (z1

E, z2
E, …, zn

E) = (s~1, s~2, …, s~m) si j
= s~il

) = 2−m, where
0 ≤ j, l ≤ t. Thus, we have (s1, s2, …, sm) is independent of
(s~1, s~2, …, s~m) when p ≥ limn → ∞ ((n − t)/2n). □

3.3 Security measurement matrix based on circulant matrix

Up to now, we have obtained a security vector from Theorem 1.
Based on this vector, measurement matrix can be established.
Furthermore, in order to improve the generation efficiency, we
consider circulant matrix as the structure of measurement matrix,
where forming a matrix only needs a small amount of vectors by a
simple operation. Formally, this process can be stated as Inference
1 as follows:
 
Inference 1: Let f be an (n, m, t) resilient function, and set
f (z1

AB, z2
AB, …, zn

AB) = f (z1
BA, z2

BA, …, zn
BA) = (s1, s2, …, sm) and

f (z1
E, z2

E, …, zn
E) = (s~1, s~2, …, s~m). They can form the circulant

matrix

Sm =
s1 s2 … sm

sm s1 … sm − 1

⋮ ⋮ ⋮ ⋮
, S

~
m =

s~1 s~2 … s~m

s~m s~1 … s~m − 1

⋮ ⋮ ⋮ ⋮
(5)

These circulant matrices can be used as the measurement matrix in
CS, and if p ≥ limn → ∞ ((n − t)/2n), depending on S

~
m, an

adversary cannot recover the compressed data when the
measurement matrix is Sm.
 
Proof: Firstly, the proof of that the circulant matrix can be used as
the measurement matrix in CS, has been given in [14]. According
to [14], the circulant matrix does not reduce the quality of the
recovered data in CS. Then, in the process of CS, the lower the
correlation between the measurement matrices in compression and
reconstruction phase, the harder the data to be currently recovered.

This property has been stated by Herman and Strohmer [11]. As a
result, if the CS is security, i.e. the compressed data cannot be
recovered by an adversary, it must satisfy that the legitimate
measurement matrix is independent of the illegitimate one. From
Theorem 1, we can see that (s1, s2, …, sm) is independent of
(s~1, s~2, …, s~m) when p ≥ limn → ∞ ((n − t)/2n). Obviously,
constructed by (s1, s2, …, sm) and (s~1, s~2, …, s~m), Sm and S

~
m are

mutual independent under the same condition. This means that the
illegitimate measurement matrix which is obtained by adversary is
independent of the legitimate measurement matrix in the proposed
CS model. Thus, the CS model in Inference 1 is security.
In addition, considering the communication environment in IoT
and the characteristic of key-extraction based on physical layer,
adversary is hard to obtain more correct bits, which is protected by
channel reciprocity and randomness, i.e. the condition
p ≥ limn → ∞ ((n − t)/2n) is easy to achieve. □

4.4 Proposed security framework
4.1 Scheme overview

As shown in Fig. 2, our mechanism includes three phases: channel
dynamic selection and detection, quantisation and reconciliation,
m-sequence and measurement matrix generation.

i. Channel dynamic selection and detection. This phase is the
initial stage, where the selected channel (or carrier frequency)
is determined and the initial RSSI is collected by Alice and
Bob.

ii. Quantisation and reconciliation. After collecting a set of RSSI,
Alice and Bob compute the value of RSSI to obtain a series of
quantitative values. Through quantisation and reconciliation,
Alice and Bob can acquire a same bits sequence.

iii. M-sequence and cyclic matrix generation. Using the sequence
obtained from ii Alice and Bob generate m-sequence and
construct a security measurement matrix based on resilient
function and circulant matrix.

In the following, we describe our technical details.

4.2 Channel dynamic selection and measurement

Inspired by the authors in [15, 16], we exploit the frequency-
selection channel to increase the entropy of the measured channel
to improve the rate of generated keys from physical layer.
Moreover, considering the actual communication system with
multiple communication channels (such as Zigbee, which is one of
the most used communication technology in IoT and has 16
channels in the 2.4 GHz range), we use dynamic-selection channel
method which is based on the frequency-selective feature to
overcome the application problem of static environment.

Without loss of generality, we consider a system with n
different carrier frequencies, i.e. channels, F = { f 1, …, f n}. First,
Alice and Bob need a pre-set index CH1 ∈ {1, …, n} as the initial
channel. CH1 can be encrypted for further enhance the security.
Then the following dynamic selection sequence is computed by the
formula:

CH j + 1 = ((CH j − E) mod F) + G (6)

where E, F and G are integer parameters, which can be regulated
according to the channel number.

As a result, the sequence CH = {CH1, …, CHn} can be formed.
For example, zigbee communication system has n = 16 different
carrier frequencies, then E = 6, F = 16 and G = 1. Here, it is
noteworthy that Alice and Bob only pre-set very few parameters,
i.e. index CH1, even if augmenting the encryption algorithm, the
computational cost is very small.

According to sequence CH, Alice and Bob can choose channel
f i, i = CH j at the same time to detect the wireless channel at one
slot. By using training sequence or preamble, they can obtain a set

Fig. 2  Block diagram of the proposed framework
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of RSSI values M = (m1, …, m j), and this process can be denoted
as CH → M.

As noted, formula (6) ensures that Alice and Bob have the same
detection channel, and all of the candidate channel can be used.

4.3 Quantisation and reconciliation scheme

After detecting the channels, the value of the RSSI can be
collected, i.e. M = (m1, …, m j). Then, through quantising, we can
obtain a set of secure and random bit sequences. In this study, we
used a quantiser which has multiple quantisation levels and guard
bands, developed in [16, 17], as the quantisation scheme. The
quantisation intervals and guard band values can be determined by

∫
vi − 1

vi − gi

Uh dh = 1 − α
m ; ∫

vi − gi

vi

Uh dh = m
1 − α (7)

where vi and gi are thresholds of the quantisation and guard band, α
is the ratio of the sampling values that are discarded, m is the
number of discrete quantisation values, and h is the sampling
values with probability distribution U.

Meanwhile, in order to extract the same bits, the cascade
protocol [18] of reconciliation can be used, and the hash function
can enhance this process. Finally, Alice and Bob can obtain a series
of identical bits w with entries wi ∈ {0, 1} from the physical layer
of wireless communication. This process can be denoted as
M → w.

It is noteworthy that based on the existing physical layer key-
extraction technology, the rate of extracted bits is generally lower
on the condition of RSSI. However, in this study, we can utilise M-
sequence and circulant matrix to achieve the CS security model
even if the rate of extracted bits is not extremely high, since the
number of the required security bits in the generation of the
security measurement matrix is small.

4.4 M-sequence and partial circulant generation

To implement the proposed CS security model, m-sequence and
circulant matrix are generated. M-sequence is a pseudo random
sequence, which can be generated by linear feedback shift register
(LFSR). Given the state of the previous output (called a seed), the
LFSR uses this seed as the input again, and shifts it into adjacent
positions to produce a single output bit. In this study, we integrate
LFSR and the physical layer key-extraction scheme to produce m-
sequence.

First, based on Theorem 1, we consider w as the input vector,
then w(s) is the output vector, denoted as w → w(s). Next, we see w(s)

as the initial state of LFSR, then the m-sequence can be generated,
denoted as w(s) → w(m). Furthermore, to balance the number of
zeros and ones, we map the binary sequence w(m) to the Bernoulli
sequence B = (b0, b1, …, bN − 1) with entries b ∈ { ± 1}, denoted as
w(m) → B.

Subsequently, sequence B can be easy to construct a circulant
matrix, denoted as B → S. As stated by [14] the partial circulant
matrix (i.e., a part of a circulant matrix) whose entries are ±1
Bernoulli variables can competent as measurement matrix in CS,
and according to Inference 1, this measurement matrix can achieve
the security of transmission.

Furthermore, in order to enhance security, we use the arithmetic
sum of S to enhance the measurement matrix, given by

Φ = ∑
i = 1

L
Si (8)

where L is the number of iterations.
Obviously, the superposition of multiple matrices S can increase

the difficulty for adversary to obtain the correct measurement
matrix. This process can be denoted as S → Φ.

As a result, from channel selection, i.e. CH → M, to security
measurement matrix construction i.e. S → Φ, we establish a
feasible security framework, i.e. CSSS-FS.

5 Evaluation
5.1 Efficiency analysis by experiments

i. Experiment setup: To test our claim, we performed channel
measurements in the time domain using Crossbow's TelosB
motes (MicaZ) as the working devices. The MPR2400 uses the
Chipcon CC2420, IEEE 802.15.4 compliant, ZigBee ready
radio frequency transceiver integrated with an Atmege128L
micro-controller. Here, we consider IEEE 802.15.4 channels
which are divided on 16 channels in the 2.4 GHz range. To
present a static environment, experiments were conducted in a
small quiet conference room, and the execution time was at the
middle of the night. The experiment considers bits extraction
in close proximity of a sensor node (Bob), an AP (Alice) and
an attacker (Eve). Eve is placed on the conference table and
Alice and Eve are placed about 10 inches to the right and to the
left of the Bob, respectively. Using the communication
between a MicaZ node and a programmer board MIB520, we
can observe the value of RSSI. The transmission time per
packet is 1.2 ms, and the test lasts for 10,000 message
exchanges.

ii. Data acquisition: To verify the performance of our scheme to
the static environment, we conduct two sets of experiments:
single channel samples (fixed one of 16 channels) and dynamic
channel samples (hopping among 16 channels) between Alice
and Bob. Fig. 3 shows a snapshot of the obtained data under
the two operating modes. It is evident that the value of the
RSSI is relatively stable under the single channel sampling,
while in the case of dynamic channel, the RSSI still have a
better randomness even under a static environment.

iii. Efficiency of generating matrix: We validate the generation
efficiency of the measurement matrix in the proposed security
framework relative to the reference framework. The proposed
method is given in Section 4, i.e. CSSS-FS, and the reference
method is presented in [9], where the reconstruction matrix is
formed by the Gaussian random matrix. Due to they have
different application scenarios (dynamic and static
environment, respectively), for consistency, we suppose that
they have obtained a same length bits from wireless channel.

iv. Herein, we conduct two sets of experiments to test both types
of matrices corresponding to the proposed and the reference
framework, respectively. In [10], we assumed that there is a
sparse signal R of length N = 256 with t = 30 non-zero elements
that randomly take on value from { ± 1} at random locations.
A compression ratio (CR) of 50% defines the compressed
signal of length M = 128, and according to formulae (1) and
(3), the measurement matrix needs an M × N, i.e.128 × 256
matrix.

v. To simplify the analysis, the security bits extracted from
physical layer are divided into equal parts (known as ‘seed’)
and the length of every seed is m = 15. Under the reference
framework, LFSR can produce 32,768 (128 × 256) bit m-
sequences when seed length is 15 and the primitive polynomial
is x15 + x14 + 1. Thus, the required measurement matrix (i.e.,
Gaussian random matrix) can be reorganised. By contrast,
under the same conditions, the proposed framework can
generate 128 required measurement matrices (i.e., partial
circulant matrix). Fig. 4 shows the number of generated
measurement matrix when the seed number is increasing. We
can see that compared with the reference framework, the
ability of generating the measurement matrix of CSSS-FS
obtains a significant promotion.

vi. Security strength: In this study, we consider the mutual
information as the degree of security. Herein, to estimate the
entropy and mutual information from the small-sample data in
experiments, we use the James–Stein (JS) shrinkage estimator
[19] as the estimate method. JS-type shrinkage is a simple
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analytic device to perform regularised high-dimensional
inference, and ideally suited for small-sample settings.

In our experiments, the transmitted data before compressing and
the decoded data which is reconstructed in CSSS-FS are quantised
to obtain the identical finite set. The measurement set contains the
mutual information between Alice and Bob while between Alice
and Eve. By using the JS shrinkage estimator, the corresponding
data are estimated under different participants and different
distances. 

Table 1 reports the statistics of the results. Each entry in the
table is an average value over 1000 records. It shows that when the
distance between Alice and Eve is reduced, the corresponding
mutual information is increasing. While, the value of the mutual
information of Alice–Bob is pretty stable, which is always
considerably larger than that of Alice–Eve. It implies that Eve is
hard to obtain more useful information about Alice–Bob, where the
gap is protected by physical layer property. 

We then verify the performance of the proposed and reference
framework [9, 10] under the different arithmetic sum of the

measurement matrix and the different matrix type. Fig. 5 shows the
intuitive results, and it is clear that the legitimate users, i.e. Alice
and Bob, have maximum mutual information for all considered
conditions. While the mutual information between the illegitimate
users is decreased when the number of arithmetic sum is
increasing. Moreover, the type of the measurement matrix can
affect the performance of the illegitimate users. More specifically,
in the case of the partial circulant matrix, all of the curve between
Alice and Eve decrease faster and converges to the minimum
value. While, in the case of the Gaussian random matrix, these
curves are more sensitive to the distance. It shows that the
performance of the partial circulant matrix is better than that of the
Gaussian random matrix under the same conditions, and through
the arithmetic sum of the measurement matrix, the gap between
legitimate and illegitimate users can be enlarged. 

5.2 Performance analysis in practical application

In this subsection, we use a real-world database, i.e. MIT-BIH
arrhythmia database [20], to validate the compression and
reconstruction performance in CSSS-FS. MIT-BIH arrhythmia
database is most commonly used to study electrocardiograph
(ECG) signal, and it consists of two-lead ambulatory ECG
recordings from 47 subjects. Without loss of generality, we choose
one set of data as our testing object. Moreover, for a quantitative
description, we employ two of the most widely used metrics to
measure the recovery performance in CS [21], and they contain CR
and percentage root-mean-squared difference (PRD).

The CR is defined as

CR =
θorig − θcomp

θorig
× 100 (9)

where θorig and θcomp represent the number of bits required for the
original and compressed signals, respectively. Here the CR is the
compressibility of the ECG data, and it also indicates the ratio of
radio energy consumption saving [21].

The PRD quantifies the error between the original signal vector
x and the reconstructed signal vector x^ , given by

PRD = ∥ x − x^ ∥2

∥ x ∥2
× 100 (10)

The relationship between the PRD and the diagnostic distortion has
been established in [21], and Table 2 lists the resulting classes of
very good quality, good quality, uncertain quality, and the
corresponding PRDs. 

Based on CSSS-FS, we tested heartbeats for 6 s (N = 2161)
from raw ECG signals. Beat records 103, 114, and 207 were
processed by the proposed algorithm and Fig. 6 shows the

Fig. 3  Sampling over signal and dynamic channel
 

Fig. 4  Number of generated measurement matrices (128 × 256) under the
case of increasing seed

 

Table 1 PDR and reconstructions signal quality class
Distance Alice–Bob

(mean)
Alice–Bob
(variance)

Alice–Eve
(mean)

Alice–Eve
(variance)

10 inches 2.56 0.22 0.02 10.24 × 10−4

6 inches 2.56 0.22 0.09 15.11 × 10−4

4 inches 2.56 0.22 0.18 49.35 × 10−4

2 inches 2.56 0.22 0.25 76.29 × 10−4

 

Fig. 5  Experiment results under different distances and different
arithmetic sums
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simulation results. Fig. 6a–c illustrate the recovery signal
simulation performance compared with the original signal of
record-103, 114, and 207, respectively. From these figures, we can
see that in case of high CR (CR = 56.59, 63.9, and 66.68%), signal
reconstruction quality was impressive (PRD = 4.2, 6.3, and 4.3%,
respectively). 

Furthermore, the signal reconstruction quality with a larger
scale of the CR is shown in Fig. 7. It shows that all of the signal
reconstruction quality, i.e. the curves of PRDs, show an upward
trend when the CR increases. Specifically, when the CR is in the
vicinity of 80%, the PRD curves rise sharply, where the
reconstructed signals are unavailable due to the PRD exceeds 10%.
Furthermore, from Fig. 7[AQ3] , we can see that the reconstructed
signal curves based on the proposed security model, i.e. CSSS-FS,
are extremely close to the original curves which are based on
normal CS. It implies that our proposed security model is almost
no impact on the quality of signal reconstruction. These results
show that CSSS-FS can apply to the practical application, and it
does not reduce the algorithm performance in CS. 

6 Conclusion
In this paper, we concentrated on the CS security model uniting
PLS technology for IoT. To solve the problem in the practical
application, we proposed a new security model based on resilient
functions and circulant matrix, and given a feasible framework, i.e.
CSSS-FS. Moreover, by means of experiments and numerical
simulation, we validated our presented scheme. In contrast to
previous works, our main contribution can be treated as a
technology promotion, which is more efficient and applies to more
application scenarios.
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