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a b s t r a c t

Energy Management System (EMS) applications of modern power networks like microgrids have to
respond to a number of stringent challenges due to current energy revolution. Optimal resource dispatch
tasks must be handled with specific regard to the addition of new resource types and the adoption of
novel modeling considerations. In addition, due to the comprehensive changes concerning the multi cell
grid structure, new policies should be fulfilled via microgrids’ EMS. At the same time achieving a variety
of (conflicting) goals in different microgrids requires a universal and a multi criteria optimization tool.
Few of recent works in this area have considered the different perspectives of network operation with
high amount of constraints and decision criteria. In this paper two dispatch-optimizers for a centralized
EMS (CEMS) as a universal tool are introduced. An improved real-coded genetic algorithm and an
enhanced mixed integer linear programming (MILP) based method have been developed to schedule
the unit commitment and economic dispatch of microgrid units. In the proposed methods, network
restrictions like voltages and equipment loadings and unit constraints have been considered. The adopted
genetic algorithm features a highly flexible set of sub-functions, intelligent convergence behavior, as well
as diversified searching approaches and penalty methods for constraint violations. Moreover, a novel
method has been introduced to deal with the limitations of the MILP algorithm for handling the non-
linear network topology constraints. A new aging model of a Lithium-Ion battery based on an event-
driven aging behavior has been introduced. Ultimately, the developed GA-based and MILP-based optimiz-
ers have been applied to a test microgrid model under different operation policies, and the functionality
of each method has been evaluated and compared together.

� 2017 Published by Elsevier Ltd.
1. Introduction

The current worldwide power system transition towards a
smart grid paradigm has invoked a wide variety of attempts to
integrate environmentally friendly renewable energy sources
(RES), distributed dispatchable generators (DDG), energy storage
devices, as well as demand side response (DSR) programs into dis-
tribution grids [1]. The huge amount of integrated distributed
energy resources (DER) units and changes in energy demand intro-
duce a new energy production-consumption pattern in the tradi-
tional structure of the energy systems, which results in
miscellaneous operational challenges to guarantee balance, stabil-
ity, predictability and efficiency in the power networks.

One attractive aggregation approach is the microgrid [2,3],
which can be adapted to a wide variety of new power network
types and market settings. Aside from its capability of switching
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Nomenclature

Acronyms
ASPM adoptive SPM
BSS battery storage system
CEMS centralized EMS
DDG distributed dispatchable generator
DER distributed energy resource
DG diesel generator
DOD depth of discharge
DTX Dynamic-Type crossover
ED economic dispatch
EMS Energy Management System
EOL end of lifetime
FC fuel cell
GA genetic algorithm
GHG greenhouse gas
LL lifetime loss
MG microgrid
MILP mixed integer linear programming
MOP microgrid operation policies
MT micro gas turbine
OPF optimal power flow
PR P-Redispatching
PV photovoltaic generator
RCGA real coded GA
RES renewable energy source
RESC RES curtailment
SBX Simulated Binary Crossover
SN stress-number
SOC state of charge
SPM Semi-Probabilistic Mutation
TPX two point crossover
UC unit commitment
URC unit recommitment
VSO voltage set point optimization
WT wind turbine

Symbols
PFC electrical power of FC
vci, vco cut-in and cut-out wind velocity
vr rated wind speeds
ak externality costs of emission type k
bik emission factor of generating unit i
KAg SOC aging factor for each partial cycle
NPos maximum number of possible cycles
W weighting of different violation types
Vio amount of violation
Tamb ambient temperature
PSTC module maximum power
EM incident irradiance of the modules
ESTC irradiance under standard test conditions
TM temperature of the module
ePV module-dependent proportionality constant
Pr turbine rated power

Variables
CBSS battery aging cost
PPV output power of PV plant
PðvÞ power output of wind turbine
CFDGðPDGÞ operation fuel cost of diesel generator
PDG output active power of diesel generator
CFFCðPFCÞ fuel cost for a fuel cell
CMDGðPDDGÞ maintenance cost
SUCðDDGÞ

startup costs
SDCðDDGÞ

shutdown costs
CEMDDG cost of the environmental externalities
CEvðtÞ cost of event
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between grid-tied and islanded operation modes to enhance sup-
ply reliability, it also serves as a promising solution for coordinat-
ing stakeholder interests and improving network performance [4]
such as congestion relief, voltage control, and loss reduction.

Aside from embedded component-level controls for facilitating
island transition and stability maintenance, a large proportion of
microgrid-specific functionalities should be realized by an onsite
Energy Management System (EMS) [5], which not only serves as
an economic optimizer but also monitors and adjusts power flows
in the local network [6]. In comparison with their transmission
level counterparts, microgrid EMS applications with economic
optimization targets are generally faced with more stringent net-
work and emission constraints [2,7]. In addition, such optimal
resource dispatch tasks in microgrids—namely the unit commit-
ment (UC) and economic dispatch (ED) problem—must also be
handled with specific regard to the addition of new resource types
(i.e. storage devices [8] and controllable loads [5] etc.) and the
adoption of novel modeling considerations. In last years, many
works have introduced interesting and practical concepts for intel-
ligent dispatching of integrated DER in the microgrids. Xiaolong
et al. introduce in [9] a building based virtual energy storage sys-
tem model by utilizing the heat storage capability of the building,
which is considered in a dynamic economic dispatch model of the
microgrid. Boroojeni et al. present in [10] an oblivious routing eco-
nomic dispatch algorithm for smart power networks, which
focuses on the economic dispatch while managing congestion
and mitigating power losses.
Please cite this article in press as: Nemati M et al. Optimization of unit commit
mixed integer linear programming. Appl Energy (2017), http://dx.doi.org/10.10
Due to different multi-facet complexity of the microgrid UC &
ED problem, a large number of algorithms have been proposed in
recent years to address this new field of interest. Almost all stan-
dard solution techniques for the classical UC problem have been
further developed and partially adapted to the microgrid applica-
tion settings, which include Lagrangian relaxation [11], mixed inte-
ger linear programming, and meta-heuristic methods such as
particle swarm optimization [12] and genetic algorithm. Amini
et al. investigate in [6] two decomposition methods namely
Lagrangian Relaxation and Augmented Lagrangian Relaxation
which are used to solve security constrained economic dispatch.
Jingrui et al. present in [13] an optimal day-ahead scheduling
model for a microgrid based on a hybrid harmony search algo-
rithm. One of the promising novelties in the mentioned paper is
the consideration of the power flow constraints in the optimization
process. Luhao et al. propose in [14] an integrated scheduling
approach based on robust multi-objective optimization, in order
to minimize operation costs and emissions under the worst-case
realization of uncertainties.

The GA based optimization methods have many advantages in
comparison to other methods. They are commonly applied to solve
different combinatorial optimization problems, which usually con-
tain a high number of potential solutions that makes the applica-
tion of enumeration techniques (e.g. dynamic programming
lagrangian relaxation) problematical. Another promising advan-
tage of the GAs is their flexibility and general applicability. The
solution region may include continuous or disjoint areas feasible
ment and economic dispatch in microgrids based on genetic algorithm and
16/j.apenergy.2017.07.007
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or infeasible parts. Furthermore, non-linearity of the problem in
objective functions or constraints can be handled in the GAs [15].
An important feature of the GAs is their ability of self-
optimization and self-healing. In the optimization process, the
optimizer settings are autonomously and continuously adapted
and the searching zone and focus are adjusted dependent on differ-
ent defined quality factors.

Mariani et al. investigate in [8] an off-line scheduler for the
day-ahead aims at minimizing the cost with regards to the daily
energy rates and considering the forecasts for both consumption
and production. The optimizer is based on a trust-region
method or on a niching genetic algorithm. In [5] a multi-
objective genetic algorithm is used to solve a multi-objective
model to optimize the time allocation of domestic loads within
a planning period of 36 h in a smart grid context. Bei et al. pro-
pose in [16] a combined sizing and energy management
methodology. The sizing problem is solved using a genetic algo-
rithm. The EMS is formulated as a UC problem and is solved
with MILP method.

Due to the high efficiency and modeling flexibility in MILP
method as well as the availability of the promising commercial sol-
vers, MILP is used to solve the UC and ED problem in many recent
works. Parisio et al. [17] have introduced an optimizer for the EMS
based on the MILP, which considers UC, ED of the system. Olivares
et al. [18] use MILP to develop a CEMS for an isolated microgrid
based on rolling horizon optimization. Wu et al. [19] have devel-
oped a high accuracy process based on MILP to optimize a micro-
grid including diesel generator (DG), fuel cell (FC), microturbine
(MT), and battery storage system (BSS) units.

Although many efforts have been made for developing opti-
mization algorithms to manage microgrid operation, few of them
[6,10,16] have considered different perspectives of network opera-
tion in the same optimization or have provided enough flexibility
to work with different networks with a high amount of constraints,
decision criteria and objectives. The previous works have improve-
ment potentials and at least one of the following weaknesses and
problems:

� Low level of flexibility of the optimizer in order to be utilized for
different policies and strategies, and for different kind of micro-
grids (No universal tools).

� Lack of accuracy in the optimization process (e.g. locking in
local optimum).

� Simplification of microgrid component models such as BSS
aging model.

� Simplification of non-linear problems for example for combined
active and reactive power optimization in distribution grids, or
fully neglecting network constraints.

� Absence of enough results validations for optimization methods
from different optimization categories used for different case
studies.

The general idea behind this present work is to narrow the gaps
in the last works with a comprehensive consideration of missing
mentioned points, vital constraints and decisive multi-objectives
of future microgrids’ EMS. The main contributions of this paper
include the followings:

1. The developed optimal scheduling is aimed firstly at minimiz-
ing the total operation cost comprising day-aheadmarket trans-
actions, fuel costs, maintenance costs, network losses, and
Aging costs, while in the same time trying to minimize GHG
emissions of the microgrid.

2. The introduced EMS is also focused on reducing the microgrid’s
dependency on the main grid and the electricity market,
enhancing voltage and power flow quality of the grid, and max-
Please cite this article in press as: Nemati M et al. Optimization of unit commit
mixed integer linear programming. Appl Energy (2017), http://dx.doi.org/10.10
imizing the utilization of the renewable energy inside the con-
sidered region.

3. A new aging model of the Lithium-Ion battery based on an
event-driven aging behavior has been developed and imple-
mented in the investigated EMS. This model considers the
impacts of partial cycles and SOC-rate on the BSS life time.

4. Both optimizers are able to consider simultaneously different -
sometimes conflicting - objectives and constraints under vari-
ous microgrid operation modes and policies.

5. This paper introduces a novel method to deal with the limita-
tions of the MILP algorithm for handling network topology con-
straints. This is achieved by combining the MILP solver with a
developed network calculation program.

6. The second optimizer is based on an enhanced real-coded (non-
binary) genetic algorithm, which simultaneously solves UC and
ED optimization problems. The main novelty of this method lies
in incorporating the network constraints impacts in the GA
optimization mechanism. In addition, a number of flexible and
case-specific sub-operators have been integrated to guarantee
a fast convergence and a sufficient diversity of the interim
solutions.

7. A comprehensive analysis of different microgrid operation poli-
cies based on the quasi-realistic case studies is done. Further-
more, an extensive comparison between MILP and GA results
is performed, which shows accuracy, flexibility, and speed of
each method. This evaluation focuses on cost-benefit analysis
of different microgrid operation policies such as connected
and islanded operations, cost-optimized, emission-optimized,
and combined modes.

The rest of the paper is organized as follows. Section 2 intro-
duces the technical and economical models of different utilized
DER and operational policies in microgrids. In Section 3, the GA-
based optimization method is described and different flexible
sub-modules and techniques are introduced. MILP-based optimiza-
tion process and structure of sub-optimizers are explained in Sec-
tion 4. Section 5 provides results of different case studies and
evaluates the functionality of GA and MILP optimizers. Finally,
some conclusions are given in Section 6.

Fig. 1.1 illustrates an overview of the developed and discussed
parts in this paper.
2. Models and operational policies

The focus of this paper lies on the development and integration
of CEMS. The upcoming Section 2.1 deals with the technical, eco-
nomical and environmental models of the modeled equipments.

2.1. Component models and assumptions in EMS

One important issue, which has a significant effect on decisions
in an EMS, is the input-output characteristic of the generators. The
technical models are formulated as power input-outputs equations

PðxÞ
DER and the economical models are defined as power-cost equa-

tions CFDERðPDERÞ as well as maintenance, start-up and shut-down
costs. The environmental models are shown as power-
externalities’ costs CEMDERðPDERÞ. For the PV generators, and wind
turbines no economical and environmental issues have been taken
into account; and their operations are assumed to be free of charge
and pollution.

2.1.1. Photovoltaic generator model
Active power output of a PV generator, which depends on the

power density of solar irradiation and ambient temperature at PV
plant [20], can be calculated as following:
ment and economic dispatch in microgrids based on genetic algorithm and
16/j.apenergy.2017.07.007

http://dx.doi.org/10.1016/j.apenergy.2017.07.007


Technical / Economical / Ecological
Models of DDG

Technical Models 
of RES

Technical / Economical
Model of BSS

Historical and Forecasting Data of 
Energy Costs, Loads and Weather

Microgrid Operation 
Policies (MOPs)

Section 2

Optimization of Day-ahead UC & 
ED with GA-based scheduler 

Optimization of Day-ahead UC & 
ED with MILP-based scheduler 

4noitceS3noitceS

Cost-Benefit and Sensitivity Analyses of Optimizers 
Comparison of different optimization approaches

Section 5

Fig. 1.1. Overview of developed parts and process of the paper.

4 M. Nemati et al. / Applied Energy xxx (2017) xxx–xxx
PPV ðEMÞ ¼ PSTC � n � EM

ESTC
½1þ k � ðTM � TSTCÞ� ð2:1Þ

where PPV is the output power of PV plant, PSTC is the module max-
imum power under standard test conditions, n is the number of
modules in the plant, EM is the incident irradiance on the modules,
ESTC is the irradiance under standard test conditions (1000 W/m2),
k is the temperature coefficient of the power [%/�C], TM is the tem-
perature of the module [�C] and TSTC is the reference temperature
[�C]. The factor k is derived from the data sheet of the PV module.
The temperature of the module TM can be approximated depending
on Tamb and ESTC as follows:

TM ¼ Tamb þ ePV � EM

ESTC
ð2:2Þ

where Tamb is the ambient temperature [�C] and ePV is a module-
dependent proportionality constant. Typical values for ePV and fur-
ther information about the PV model are given in [21].

2.1.2. Characteristic of the wind turbine model
The power output of a wind turbine depends on aerodynamic

characteristic of the turbine and the wind speed v [m/s] at the
hub height. Power output of wind turbine is calculated as follows:

PðvÞ ¼

0 for v < vci

Pr � v
3�v3

ci
v3
r �v3

ci
for vci < v < v r

Pr for v r < v < vco

0 for v > vco

2
66664 ð2:3Þ

where Pr represents turbine rated power [kW], vci and vco are the
cut-in and cut-out wind velocity, respectively, v and v r are the
actual and rated wind speeds, respectively [22,23].

2.1.3. Diesel generator model
The fuel consumption cost of a DG can be expressed mainly as a

quadratic polynomial [24]. The fuel cost of a diesel generator CFDG

[€/h] is therefore achieved by multiplying the diesel cost cDiesel by
the quadratic function:

CFDGðPDGÞ ¼ cDiesel � ðaP2
DG þ bPDG þ cÞ ð2:4Þ

where PDG [kW] is the output active power of the diesel generator.
The diesel generator cost function parameters, a [l/(kW2 h)], b [l/
(kW h)] and c [l/h], can be obtained from the input/output measure-
ment data taken during ‘‘heat run” tests, when the DG is operated
Please cite this article in press as: Nemati M et al. Optimization of unit commit
mixed integer linear programming. Appl Energy (2017), http://dx.doi.org/10.10
with different output-power between its minimum and maximum
operation range [25,26]. This data is usually available in the manu-
facturer’s data sheet in form of fuel consumption for 25%, 50%, 75%
and full loads.
2.1.4. Fuel cell model
Different technologies of FC operate at maximum. electrical effi-

ciencies from 40% to 60%. According to the studies in [27,28], the
maximum efficiency of fuel cells (e.g. Protone Exchange Membrane
(PEM-FC)) can be achieved around 10–40% of its full load. The fuel
cost CFFCðPFCÞ [€/h] for a fuel cell is calculated as follows:

CFFCðPFCÞ ¼ cGas � PFC

gFC
ð2:5Þ

where cGas is the natural gas price, PFC is the net electrical power
produced at PCC of FC [kW] and gFC is the FC total efficiency [29].

Substituting the FC efficiency curve, given in the data sheet of
the FC, into the Eq. (2.6) results in a quadratic cost function similar
to that of DG but with different quadratic parameters:

CFFCðPFCÞ ¼ cGas � ðaP2
FC þ bPFC þ cÞ ð2:6Þ

where, a [l/(kW2 h)], b [l/(kW h)] and c [l/h], are the quadratic func-
tion parameters.
2.1.5. Micro gas turbine model
Micro turbine (MT) model is similar to DG and FC models. How-

ever, the operation cost function parameters and the curves are
adopted in order to model the efficiency and performance of a
MT unit [30,31]. Usually, the maximum accessible efficiency of a
MT is limited up to 32%. Table 2.1 gives the Parameters of the
quadratic operation cost functions of the modeled DDG in this
paper and Fig. 2.1 shows the operation cost curves of the units.
The natural gas price is assumed equals to 0.09 €/kW h, and the
diesel cost is defined equals to1.2 €/l in this paper.
2.1.6. Other operation costs of the DDG
In addition to fuel consumption costs, the DDG cause extra costs

like maintenance costs, start-up and shut-down costs, and emis-
sion costs. The following defined equations are applicable for each
kind of DDG (DG, FC, MT) in this paper, therefore is explained only
once here.
ment and economic dispatch in microgrids based on genetic algorithm and
16/j.apenergy.2017.07.007
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1 For interpretation of color in Figs. 2.2, 5.3 and 5.12, the reader is referred to the
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Fig. 2.1. Quadratic operation cost curves of the DDGs.

Table 2.1
Parameters of the quadratic operation cost functions of the modeled DDG.

Unit Prated [kW] a [ml/(kW2 h)] b [l/(kW h)] c [l/h]

DG1 ‘‘C55” 40 2 0.194 1.85
DG2 ‘‘C90” 70 1.115 0.2232 1.75
FC 50 9.864 2.061 1.152
MT1 ‘‘C90” 200 1.924 2.232 82.33
MT2 ‘‘C65” 65 – 2.965 32.2
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Maintenance cost: The maintenance cost is usually related
directly to the power output. It is assumed to have a proportional
relationship with the produced power [PDDG]:

CMDDGðPDDGÞ ¼ cDDGMaint � PDDG ð2:7Þ
where the proportionally constant (cDDGMaintÞ for each distributed
generator is different. The cost of FC maintaining is assumed to be
in the range of 0.004–0.01 €/kW h. The maintenance cost estimation
of microturbine units is assumed to be ranging from 0.004 up to
0.015 €/kW h. The maintenance costs of diesel generators vary also
in the range of 0.004–0.02 €/kW h [32,33].

Startup and shutdown costs: Using the following simplified
equation, the constant SUC and SDC can be defined for the small-
scaled DDG:

SUCðDDGÞ ¼ ksu � tsu � cfuel � Pmin

gDDG;min

SDCðDDGÞ ¼ 0:5 � SUCðDDGÞ ð2:8Þ
where SUCðDDGÞ and SDCðDDGÞ are the startup and shutdown costs
of the DDG [€], ksu is the startup consumption factor, tsu is startup
duration, cfuel is the cost of fuel (diesel or gas) [€], Pmin is the minimal
power output of the unit [kW], and gDDG;min is the efficiency of unit
by minimum power.

Emission costs: The cost of the environmental externalities
(CO2, SO2, NOx) is assumed to be as a linear function of output
power (Eq. (2.9)):

CEMDDG ¼
XNem
k¼1

XNgen
i¼1

ak � bik � PiðtÞ ð2:9Þ

where Nem is the number of emission types, ak is externality costs
of emission type k [€/kg], Ngen is the number of DDG, bik is the emis-
sion factor of generating unit i and the emission type k [kg/kW h],
PiðtÞ is the power output from generator i [kW]. Externality costs
of main grid generation, FC, MT, and DG units stated in [30,33,34]
have been summarized in Table 2.2.

2.1.7. Energy storage system
The Lithium-Ion battery storage system (BSS) has been modeled

as the required storage unit for the purposes of economic load
shifting, more reliable islanding, peak power shedding and reactive
Please cite this article in press as: Nemati M et al. Optimization of unit commit
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power control. This new model (in microgrid UC/ED field) includes
some physical and security limits, dispatching assumptions and
policies, operation losses, and aging model parameters (also see
[35,36]).

The maximum charge and discharge power of BSS must be lim-
ited in the range of loading capacity of the inverter. Furthermore,
battery state of charge should be limited between SOCMin and
SOCMax, which are fixed as 10% and 90% of the total BSS capacity
(Ah capacity).

It is also assumed that the initial SOC of the BSS at the beginning
of the dispatching horizon SOCStart is the minimum value (i.e.
SOCmin), since it results in the best BSS dispatching performance
and minimum total operation costs. Moreover, in order to prepare
the battery SOC for the next optimization horizon (e.g. next day)
and to generalize the optimal dispatching of the system, the final
SOC value SOCEnd should be equal to the starting SOC value SOCStart .

In many works related to the UC and ED of the power systems
(e.g. microgrids), the aging of BSS have been neglected or strongly
simplified [25,37]. In this work, a new BSS model is integrated into
the dispatching model library, which considers aging behavior of
the lithium-Ion battery more accurately. The cycle life aging of a
battery depends on temperature, depth of discharge (DOD), the
number of cycles, and the charging/discharging currents [35].

In the developed BSS model, the following issues are
considered:

� The full and partial cycles (events) are counted and weighted to
determine the lifetime loss of the battery considering a prede-
fined stress-number (SN) curve. This SN-curve (or Woehler
curve [38]), which is given by some manufacturers in the data
sheet, shows the possible number of (partial) cycles of a BSS
as a function of DOD until the end of lifetime (EOL) (e.g. 80%
state of health).

� Two types of partial cycles, namely micro-cycles and macro-
cycles can be taken into account.

� A micro-cycle is started and terminated by local minimum or
maximum SOC values during a charging or discharging process.

� A macro-cycle is considered here as a combination of some
micro-cycles (at least three) and represents the process
between the global extremes of the SOC trend curve.

For each partial (micro/macro) cycle, the number of expected
cycles in BSS life time and consequently lifetime loss (LL) is calcu-
lated (Eq. (2.10)) using the following Woehler curve [36,39], illus-
trated in Fig. 2.2. The blue1 curve shows the number of expected
cycles (NPOS) in battery life time depending on DOD and the red
curve shows equivalent full cycles in BSS operation.

If NEvk;max is the maximum number of events (micro- and macro-
cycles) k that can happen during the lifetime of a BSS until EOL
(assuming that only events of type k occur) and NEvk is the number
of events k, that have occurred during the operation period, then
the loss of lifetime associated with event k is:

LLk ¼ NEvk

NEvk;max
LL ¼

X
k

LLk ð2:10Þ

The EOL is reached when LL is equal to 1. Also the cost of events
can be calculated as follows:

CEvðtÞ ¼ 0:5 � LLðtÞ � CapBSS � Cinv ð2:11Þ

where CapBSS represents the capacity of BSS [kW h], Cinv is the
investment cost for battery bank.
ment and economic dispatch in microgrids based on genetic algorithm and
16/j.apenergy.2017.07.007
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Table 2.2
Parameters of the externality costs and the emission factors of the main grid generation, FC, MT and DG units.

Emission Type External Costs [€/kg] DG [kg/MW h] FC [kg/MW h] MT [kg/MW h] Main Grid [kg/MW h]

CO2 0.0275 0.6495 0.4889 0.7239 0.8891
SO2 1.9475 0.2059 0.0027 0.0036 1.8016
NOx 8.2625 9.8883 0.0136 0.1995 1.6021
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Moreover, the SOC of the battery also has a major influence on
the aging process. Gerschler has proved in [35], that the lifetime
loss of an event (micro/macro cycle) rises non-linearly with an
increasing SOC because higher SOC causes more interior stress in
the battery cells. Fig. 2.3, which is calculated and adopted curve
from [35], illustrates the SOC aging factor curve (KAg) for a
Lithium-Ion battery.

With considering both of SN-curve and SOC aging factor curve,
the battery aging cost in total observation time can be calculated as
(2.12):

CBSS ¼ 0:5 � CapBSS � CInv �
XN
i¼1

KAg;iðSOCÞ
NPos;iðDODÞ ð2:12Þ

where CBSS is the battery aging cost, N is the number of considered
micro- and macro-cycles (events) in battery operation period, KAg is
SOC aging factor for each partial cycle dependent on average SOC of
each event, and NPos is maximum number of possible cycles in BSS
life time.

Related to the BSS aging costs in microgrid dispatching, differ-
ent settings for level of aging cost consideration will be used. Level
1 means consideration of operation costs of microgrid without
regarding any aging cost. Level 2 refers to the cost of micro-
cycles added to costs of the level 1. Aging level 3 means that the
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Fig. 2.3. SOC Aging Factor for a lithium-ion battery, considered in lifetime loss of
events.
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cost of macro-cycles are added to the costs of the level 2, and
finally level 4 means that all operation costs and aging factors
and costs (inclusive SOC-factor) will be considered in BSS aging
model.

2.2. Microgrid operation policies

Five main operation policies (MOPs) are defined and subse-
quently considered in the optimization process (see Fig. 2.4)
[40,41].

Cost-effective operation (MOP 1): The objective function is the
minimization of the operation and the aging costs of the microgrid
components. Due to the main focus on the optimization of MG
costs, power flow quality (voltages improvement and congestion
management) and emission reduction will be neglected here.

Min CMOP1 ¼
Xn
t¼1

XNgen
i¼1

½CFDDG;i;t þ CMDDG;i;t þ SUCDDG;i;t þ SDCDDG;i;t � þ CBSS;t þ CEx;t

( )

ð2:13Þ
where CMOP1 is the total MG cost for n hours under MOP1, Ngen is
the number of DDG, CFDDG;i;t is DDG fuel consumption costs,
CMDG;i;t is DDG maintenance costs, SUCDG;i;t and SDCDG;i;t are startup
and shutdown costs, CBSS;t is total battery aging costs (including
micro/macro cycles and SOC-factor), and CEx;t is costs/revenues of
purchasing/selling energy.
Fig. 2.4. Overview of the defined microgrid operation policies.
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Grid supporting mode (MOP 2): In grid-supporting operation,
the optimizer conducts many load flow calculations in order to find
the possible optimal power flow (OPF) in the MG. Because of higher
power quality expectations or critical situation of the microgrid or
main grid, controllable units should participate actively in different
ancillary services like minimization of grid losses, enhancement of
voltage quality (maintaining voltage limits), and elimination of
system congestion either inside microgrid or at connection points
with external grids. DDG aging constraints (ramp rates and mini-
mum Up/Down times) will be neglected and battery costs CBSS;t will
be diminished to level 1.

Maximum islanding degree (MOP 3): In this case, either there
is no physical connection (e.g. opened connection switch) with
macro-grid, or no power will be exchanged, or only a fixed and pre-
defined power profile may be considered as exchange power. For-
mulation of the objective function is again similar to MOP1
objective function, but only the term CEx;t is fixed (0 or fixed).
The aging costs (DDG and BSS) will be neglected (like MOP2),
and power flow quality issues will be ignored (similar to MOP1)
because there is no focus on the aging cost minimization.

Eco-friendly operation (MOP 4): In this mode, the objective
function can be formulated as the minimization of the pollutant
treatment costs as follows:

Min CMOP4 ¼ CEMsystem ¼
XNem
k¼1

ak � bGrid;k � PGridðtÞ þ
XNgen
i¼1

bik � PiðtÞ
 !( )

ð2:14Þ
where CEMsystem is the total emission costs of the system (MG and
main grid), Nem is the number of emission types, ak is externality
costs of emission type k [€/kg], bGrid;k is the emission factor of main
grid [kg/kW h], PGrid is the injected power from main grid [kW],
Ngen is the number of DDG, bik is the emission factor of the gener-
ating unit i and the emission type k [kg/kW h].

Multifunctional policy (MOP 5): In multi-objective concept,
the operation strategies of the previous four MOPs will be com-
bined in order to partly satisfy different stakeholders and to
achieve a moderate operation. Top priority is given to reliability,
supporting the grid and unit constraints, i.e. power balance
(islanded mode), avoiding voltage violations and congestions and
all the limitations of the DDG/BSS.

MinfCMOP5 ¼ j � Rsum=MOP1 � CMOP1 þ c � Rsum=MOP4 � CMOP4g

jþ c ¼ 1 j; c 2 ½01�

Rsum=MOP1 ¼ CFDDG;i;t þ CEx;t þ CEMsystem

CFDG;i;t þ CEx;t
ð2:15Þ

Rsum=MOP4 ¼ CFDDG;i;t þ CEx;t þ CEMsystem

CEMsystem

where CMOP5 is the combined operation, aging and emission costs, j
and c are weighting factors for CMOP1 and CMOP4 combination.
Rsum=MOP1 and Rsum=MOP4 RatioCostDiversity are constant parameters,
which are calculated in rated power of all generators and applied
to level the operation and emission costs. CFDDGs is sum of the
DDG operational cost, CEx is the sum of cost of the imported energy
from main grid, and CEMsystem is the sum of system emission costs.

Reference mode (REF): In this mode, some DDG constraints
related to aging (ramp rates and min. Up/Down times) will be
neglected and considered battery costs CBSS;t will be diminished
to level 1 (without aging costs). In addition, no voltage and loading
constraints are considered in this mode. Also microgrid operates in
a normal connected mode. The objective function is only the min-
imization of operation costs of the microgrid components. The
Please cite this article in press as: Nemati M et al. Optimization of unit commit
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formulation of the objective function remains the same as the
MOP1 objective function without including any aging costs.
3. Optimization of the microgrids’ UC and ED with genetic
algorithm

3.1. Genetic algorithm process for UC & ED

In this work a real coded GA (RCGA) is developed and modified
for optimization of the UC and ED of the microgrid units (see also
author’s publications [42–44]). In this way, the structure of a GA
(genes, chromosomes, generation’s process, evaluations, etc.) is
adjusted to this problem. Each gene contains the information about
status of a unit and the value of its active and reactive powers for a
certain time step, while each chromosome includes the active and
reactive power of a unit for the whole optimization horizon. Fur-
thermore, each individual representing the characteristics of its
chromosomes contains the information about all units in the
microgrid in the entire optimization horizon. Fig. 3.1 shows an
overview of the GA optimization process in this work. The opti-
mization process consists of three major sections:

1. Input data and initial preparations: Firstly, the inputs are pre-
pared and imported containing the settings and parameteriza-
tions of the algorithm, component models information and
the microgrid’s fixed inputs like load curves, etc. These data
are processed and encoded in the RCGA language. Then, the first
population is created and first power flow calculation based on
first population is executed.

2. Population reproduction: The populations are reproduced
(genotype-part). The first generation is initialized based on an
adopted priority list method. Through ranking and selection of
some individuals from the last population and the recombina-
tion and the mutation of these candidates, the populations of
the next generations are produced.

3. Population evaluation: Afterwards, the individuals are trans-
formed to real-world values (decoded to kW and kvar), simu-
lated (with one power flow calculation per each individual)
and evaluated (phenotype-part) during assigning the values of
objective function, and fitness function. Best solutions are sent
further to stop-criterion in order to build the next generation
components or stop the algorithm.

In the coming sections, a closer look will be taken at the func-
tionality of each of the above-mentioned steps and the sub-
functions of the algorithm.
3.2. First population initialization based on priority list method

In this new initialization method, the population is not gener-
ated fully random; on the contrary, the population is adjusted to
the UC/ED problem without (too much) limiting the search space.
The aim of this method is assigning a reasonable probability to
each DDG to be online in a time step and a time span based on pri-
ority list method [45]. The major challenge is due to considering
minimum on- and off- time of the DDG. With random initialization
of GA too many constraint-violations may occurr, which cannot be
solved until the last generations in GA process.

First of all, the microgrid units are listed in relation to their
energy costs and rated powers. For calculation of the utilization
(ON status) probability of the units, three possible criteria can be
taken into consideration. The first criterion is the satisfaction of
the microgrid demand. The second one is the export electricity
price (cheaper DDG may sell energy to macro-grid) and the last
one is the maximum possible exchange power of microgrid. In this
ment and economic dispatch in microgrids based on genetic algorithm and
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Fig. 3.1. The optimization process of developed genetic algorithm for microgrids’ UC & ED.
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manner, two groups of DDG can be defined, namely the high prior-
ity and the low priority, which get a discrete spectrum of activation
probabilities. Because of the minimum up/down-time constraints,
not only the probabilities in single time step should be assigned,
but also the probabilities for the following time steps should be
considered.

For defining the reactive power of the DDG and BSS in the initial
population, the reactive power of the loads and the potential volt-
age violations must be taken into consideration. As a first step, the
average power factor of the loads of each time step is calculated
and the power factors of units (DER and BSS) are regulated with
the increased probabilities to compensate the reactive power
demand of the loads. If a voltage violation is probable the reactive
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Fig. 3.2. The process of violation rate (penalty) during the first 100 generations for
five successful tests for the randomly initialization vs. the priority list initialization.
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power output of the units at the node and neighboring nodes is
adjusted.

Fig. 3.2 shows the process of the violation rate (penalty) during
the first 100 generations for five successful tests for GA with ran-
domly initialization and with priority list initialization methods.
The initial violation rate in randomly initialization is almost three
times higher than the other case.

After about 70 generations the violations in priority method
converge to zero, but about 20% of violations of random initializa-
tion method (all 10 tests) still exist.
3.3. Ranking and selection of the individuals

After evaluating the population of the last generation, a new
population should be produced by different GA-operators. First of
all, the individuals are sorted according to their fitness values.
The selection probability is assigned to the individuals depending
on their ranks. Once the individuals were ranked, the appropriate
ones will be chosen in a semi-randomly manner. For producing
the new offspring, these candidates will either be permeated
directly to the next generation with elitism selection or will be
used in the next GA-operators via tournament selection. In the
context of GA, elitism is referred to finding the best solutions
through the population which is able to survive to the next gener-
ation. In tournament selection, in each generation k individuals are
picked randomly from the population and compared with each
other in a tournament. The winner of this competition will then
enter the mating pool. This process is repeated until the mating
pool is complete and ready for GA-operators (crossover and
mutation).
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3.4. Crossover methods

After completing the mating pool by means of the tournament
and elitism selections, the crossover operator starts to recombine
the individuals in the pool and generates a new population. The
information of an individual is represented by chromosomes con-
sisting of genes. The crossover rate determines which proportion
of the parental chromosomes should be recombined.

Simulated Binary Crossover (SBX): In the SBX method [46],
values going beyond the space (values) between the parental val-
ues are produced. A probability distribution centering the parent
solutions is considered and two children solutions are created on
this probability distribution. At the beginning of GA-process, par-
ent solutions are expected to be very diverse and the solutions
may be very distantly. But in last generations, the search converges
towards a solution and parents become similar and children solu-
tions also become more similar to the parent solutions.

In UC/ED problems, SBX defines only the values of the active/
reactive powers but not the status of the DDG. The DDG-status
(on/off) of the children is determined by the status of the parents,
through a binary single or two point crossover (SPX and TPX)
[24,26]. If the status of a unit is on, the value of the SBX is used;
otherwise the unit stays off.

Dynamic-Type crossover (DTX): While the SPX and TPX cross-
overs are simple and more reliable and focus on parents’ values
[24,26], the SBX crossover ensures more diversity and searching
ability in GA-process. The feature of SBX has a major effect on
the results in the first generations; also the advantages of SPX (or
TPX) can be utilized in finishing generations. In DTX, the GA starts
with SBX method and after some generations (e.g. 70%) changes to
use simple methods, so it can focus on the best individuals at final
generations.

3.5. Mutation process

This GA-operator is used to alter the individuals randomly and
maintain a genetic diversity through the generations. A user-
defined factor determines the probability of mutation occurrence.
The setting of the mutation rate is more critical than that of the
crossover rate. If it is set too high, the search will turn into a prim-
itive random search, and if it is set too low the diversity of the
search will be worsened. In the usual mutation method a portion
of the individuals is randomly selected considering mutation rate
and are altered in a bounded range (e.g. active power between
max./min. constraints). Since the mutations of different genes hap-
pen without considering the other genes, it easily leads to a high
mismatch in power balance in islanded grid and to minimum
up/down time constraints violations. As a consequence of these
violations, the GA stays too long in the unfeasible area. Fig. 3.3
shows the violation rate process of five tests in the reference
microgrid using random mutation.
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Fig. 3.3. Violation rate (penalties) process in five optimization tests using random
mutation.
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In this paper, two methods are introduced and tested. The first
method introduces a Semi-Probabilistic Mutation (SPM) process
adjusted to this problem in MG, and the second method is an adop
tive-semi-probabilistic-mutation method based on the first
method.

Semi-Probabilistic Mutation Method (SPM): In the procedure
of the SPM, through consideration of some critical constraints of
microgrids, such as the minimum up/down time of DDG, the power
balance, and the voltage violations, the mutation process is (selec-
tively) limited and regulated. This mutation operator contains two
modules:

SPM status: The initial idea of SPM status has been inspired from
[47]. In this generic module, many status-mutation cases, which
can lead to minimum up/down time violations, are prevented. Sev-
eral different mechanisms (rules) are applied for the possible cases,
which are dependent on the minimum up/down time constraint
value (e.g. 2, 3, 4 h) as well as on the initial state of DDG before
the status-mutation process. The developed cases and restrictions
in SPM become more essential at the advanced generations, where
the false status of mutations can affect the feasibility and conver-
gence of the solutions severely. It is very important to categorize
and consider all occurring cases in SPM properly, since an incom-
prehensive (e.g. with missing occurring cases in UC of DDG) SPM
can confine the GA search process unnecessarily and lead to high
distance from the global optimum space.

SPM power: The SPM status can cause other violations like
microgrid power exchange or balance violations and voltage
violations. For this reason, another module has been developed,
in order to mutate the dispatching of the online DDG and to
compensate the active and reactive powers of the mutated units
in SPM status.

In the first step, considering the mutation rate for dispatching, a
portion of individuals is randomly selected to be mutated. In next
step, the active power and the reactive power of the online units in
selected individuals are mutated as follows.

XAfter ¼ XBefore � 0:5þ GenNum

GenMax
� 0:3þ 1� GenNum

GenMax
� 0:6

� �
� rand

� �
ð3:1Þ

where XBefore and XAfter are the power values before and after the
mutation, GenNum is the current generation number, GenMax is the
maximum number of generations and rand is a random number
between zero and one. Also, the parameters 0.5, 0.3 and 0.6 are
tuned empirically. By this means, each gene (active and reactive
power of an online unit in a certain time step) of the selected indi-
viduals is mutated between 20% and 50% of its original value con-
sidering active and reactive powers capabilities of the unit. The
exact mutation value is dependent on the random factor and the
number of current generation. That means, the mutation range will
be narrowed in last generations, since the convergence should be
guaranteed at the final generations.

In the third step, a power compensation process should be con-
ducted for the individuals, which are selected and mutated in
SPMstatus. When a unit becomes online, a random power value is
assigned to it firstly. This change in the UC and the power balance
in a time step can cause a mismatch of power in the microgrid
(especially in islanded mode). Therefore, the generated power of
this unit is compensated with a randomly selected online unit. If
the power reduction of the selected unit is not sufficient enough
to keep the balance between generation and demand, the next
online unit is selected randomly and adjusted in order to compen-
sate the remained power unbalance. In the case of UC mutation
from online to offline status, a similar process is executed, where
the power of other online units are increased to compensate the
power deficit.
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In the last mechanism, the RES units should be curtailed in case
of overvoltages in the microgrid. So that the mutation rate for the
units in critical nodes or neighboring nodes is increased. Having
performed the necessary corrections of the voltage violations, the
RES mutation rate stays high for some generations (e.g. 30 genera-
tions), in order to find a technical and economical optimal state.
Afterwards, it will be reduced again to reduce the likelihood of
the mutation of the good individuals and to keep the best individ-
ual (without voltage violation).

Adoptive semi probabilistic mutation (ASPM): In the SPM, the
mutation rate (occurrence probability) does not change during the
whole optimization time. As another promising approach, the
mutation rate can be regulated during generations by using a fuzzy
rule mechanism [48]. The mutation probability should be
increased when the constraint violations are too high or when
the diversity of the population is too low.

3.6. Penalty function

In the concept of penalty assignment method a constrained-
optimization problem is transformed into an unconstrained prob-
lem by adding a certain value to the objective function based on
the constraint violations in a certain individual. The penalty func-
tion here contains seven parts:

Penalty ¼ ½WPVioP þWQVioQ þWSVioS� þWSw:VioSw

þWRVioR þWVVioV þWIVioI ð3:2Þ
where W and Vio represent weightings of different violation types
(sum of violations in an individual), respectively. P, Q and S are
the exchanged active, reactive and apparent powers within the
main grid, respectively. Sw is derived from switching and is related
to minimum up/down time constraints. R, V and I are ramp rates,
voltage and current constraints.

If the penalty weighting factors are set too high and the opti-
mum lies at the boundary of the feasible region, the GA will be
pushed deep inside the feasible region very quickly. On the other
hand, if the weighting factors are too low, most of the search time
will be spent deep in infeasible region because the penalty values
are negligible in comparison with value of objective function.

If the number of a certain violation type (e.g. switch) in the fit-
test individual does not decrease with the progress of the genera-
tions, the weighting factor is raised to enforce the reduction of the
violations. On the other hand, if it decreases significantly the factor
is also reduced to promote the search at the borders to infeasible
areas in the search space. Different functions can be implemented
to adjust the penalty weighting factors. A continuous adoption
function is used to adjust the weighting factors:

Wkþ5 ¼ Wk
Vkþ5

0:95 � Vk þ 0:01

� �
þ 0:3þ Vkþ5

1þ Vkþ5
ð3:3Þ

where Vk and Vkþ5 are the violations values in generation k and in
generation kþ 5, and Wk and Wkþ5 are weighting factors in gener-
ation k and generation kþ 5.

3.7. Similarity function

Based on the fitness sharing method, the similarity of an indi-
vidual to the rest of the population is calculated and, individuals
with different UC solutions are favored and supported. In this pro-
cedure, an array called similarity degree is defined, which counts
the number of individuals with the same online DDG in a certain
time step. The function computes the similarity degree of each
individual by adding all values from this array together, when
the individual itself is on. It means that the similarity rate of an
individual will be high if its units are active at the time steps in
Please cite this article in press as: Nemati M et al. Optimization of unit commit
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which many other individuals have same online units. The same
process is conducted for offline DDG.

3.8. Fitness function assignment

The fitness function that should be minimized in the optimiza-
tion process, consists of three important mentioned functions,
namely objective, penalty and similarity functions. A combination
of these functions as fitness function evaluates the quality of solu-
tions (individuals):

Fitness ¼ Objectiveþ ROb=Pen �WPen � Penalty
þ ROb=Sim �WSim � Similarity ð3:4Þ

where WPen and WSim are the weighting factors of the penalty and
similarity functions. The ratios ROb=Pen and ROb=Sim are used to weight
the values of these three functions. The objective function is depen-
dent on the selected MOP (see Section 2.2). In each generation, the
mean values of these three functions are calculated for the whole
population. Afterwards, ROb=Pen and ROb=Sim are calculated as follows
in order to level the values of the functions:

ROb=Pen ¼ meanðObjectiveÞ
meanðPenaltyÞ

ROb=Sim ¼ meanðObjectiveÞ
meanðSimilarityÞ ð3:5Þ

After evaluation of the fitness values, the adjusted stop criteria
must be checked. Depending on the analysis type, different stop
criteria such as number of generations, maximum optimization
time, solution enhancement rate, and unsuccessful tries numbers
can be considered.

4. MILP-based optimizer for microgrid EMS

In this paper, an effective method is used to deal with the lim-
itations of the MILP algorithm for handling the topology con-
straints. This is achieved by the decomposition of the MINLP
problem into a MILP-based UC/ED problem and a non-linear net-
work optimization problem. The overall optimization approach is
illustrated in Fig. 4.1.

All the inputs, constraints and strategies are formulated firstly
as a MILP problem with user-defined algorithm settings and subse-
quently interfaced to the CPLEX optimizer.

The key to formulate this problem into a MILP form is to lin-
earize the non-linear cost functions in a piecewise manner. Many
previous works [17–19] deal with the formulation and simplifica-
tion of the UC and ED problems to a mixed integer linear program-
ming problem. The initial UC and ED without any network
constraints considerations will be performed in this context.

Then the temporary P-set points are imported into power flow
calculation (PFC) module using MATPOWER. As an initial result of
PFC module output, the calculated network losses will be returned
back into the MILP module to initiate a new P-dispatch considering
the losses. In the PFC module, the Q-dispatch of the DER units is
carried out based on a Q-V droop control considering the power
factor limitations. In the default case, all voltage set points of Q-
dispatchable generators are adjusted to 1.0. Afterwards, resulting
power flow as well as the voltage and loading conditions will be
checked. If no violations are detected these P-Q-set points will be
accepted as the optimal dispatch results.

If grid voltages in certain nodes deviate from the predefined
limits, the voltage set points of the DER with higher Q-injecting-
capability will be changed to solve the problem initially with reac-
tive power control (VSO). The DDG voltage set point variation band
and the number of DDG can also be predetermined for the Q-
optimization
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Fig. 4.1. Detailed framework of different optimization modules in MILP-based optimizer.
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If the voltage violations in the grid persist despite the VSO
adjustment, a P-Redispatching module (PR) will come into effect
in order to modify the active power outputs of the DDG units
located close to the node with the voltage violation issue. The mod-
ified DDG active power outputs will be returned to the MILP mod-
ule as a fixed and enforced value to be integrated in a new round of
UC and ED calculation. This iterative process will be executed up to
Please cite this article in press as: Nemati M et al. Optimization of unit commit
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a point in which either the violation issue is resolved, or the P-
limits of DDG are reached.

If the voltage set point variation and the P-Redispatching of
already active (ON) DDG are still not sufficient for solving the volt-
age problem, the unit recommitment module (URC) will be called
to switch on a new (offline) generator in the microgrid to meet
the network constraints. A set of DDG close to the node with the
ment and economic dispatch in microgrids based on genetic algorithm and
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minimum voltage value will be consecutively started up and go
through the URC process until the problem is solved. Among all
of the feasible results, the cheapest solution as the optimal URC
decision will be adopted. Apparently, the forced start-up of a
new generator in MILP leads to a whole new round of UC, ED
and PFC.

If an overvoltage event cannot be resolved via all the pre-
mentioned methods, it will eventually be fixed by RES (PV or
Wind) curtailment (RESC) implementation for the units located
close to the node with the highest voltage.

4.1. Linear optimization core

The mixed integer linear programming problem is formulated
in four main parts. On the one hand, the linearized objective func-
tion as follows:

Maximize or Minimizeðf T � xÞ ð4:1Þ

where x is the solution vector (e.g. active power of the units) and f T

is the constants to define the MILP objective function. Also three
constraint categories for the problem must be formulated:

Aeq � x ¼ Beq lb 6 x 6 ub A � x 6 B ð4:2Þ
where Aeq and Beq are the matrixes for formulation of the equality
constraints; lb and ub are define the minimum and maximum
active powers of the units, respectively; and the matrixes A and B
formulate the inequality constraints for the MILP optimizer which
are the more important boundaries These are constraints regarding
the maximal exchange power with the upstream network, opera-
tion constraints like maximum and minimum active powers, maxi-
mum ramp up and ramp down rates, minimum up- and down-
times and also some constraints for storage devices.

Since the MILP problem formulation only supports linear objec-
tive functions, this cost function is piecewise linearized into seg-
ments with linear slopes (see Fig. 4.2). The number of segments
has a major influence on the optimization time and a minor effect
on the accuracy of the calculations in this case. Fig. 4.2 illustrates
the trend of calculation time and accuracy for twelve segments
in the CPLEX solver. The results of this test case are related to UC
and ED of a test microgrid introduced in Section 5.

As can be seen, the computing time stays in a reasonable scale
up to seven segments, whereas the optimal cost is not reduced
considerably. As a compromise, four segments are used here.

4.2. Initial power flow calculation module (PFC)

Having done the P-optimization by MILP, the P-set points of the
units are imported to the PFC module, in order to calculate the
voltage, current, optimal Q-Dispatching, and network losses. The
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PFC module deploys the MATPOWER tool to calculate the power
flow based on Newton-Raphson method.

In default mode, the voltage set point is 1.0 p.u., which should
be readjusted under critical cases. One of the important aims of
the PFC is the network loss calculation. Calculated losses are
returned back to MILP where they are regarded as an extra load.
Afterwards a new optimal P-Dispatching is conducted. The differ-
ence between the P-dispatching in MILP and MATPOWER is only
an active power difference at the slack bus.

4.3. Voltage set point optimization (VSO) and Q-redispatching

If any voltage violations occur after the initial PFC, the Q-
dispatching should be readjusted to enhance the voltage quality.
VSO has been prioritized as the first voltage improvement issue
in this optimizer, since the Q-redispatching increases the opera-
tional cost less than other options and does not change the optimal
P-dispatching significantly. Q-V droops with voltage set points are
defined for all types of DER (Fig. 4.3). In order to optimize the Q-
dispatch of the DER, the V-Q is shifted up or down in a stepwise
manner. In order to redispatch the reactive power of the units,
the predefined voltage set points (1:0 pu) must be readjusted. As
the first approach, a ranking of the DER according to their Q-
potential in a descending order is made. Then, considering a prede-
fined voltage set point band and set point step sizes in inputs, the
possible DER voltage set points will be prepared.

For example, a voltage set point band of 0:98 pu to 1:02 pu with
a step size of 0:01 pu leads to the possible set point vector of
½0:98;0:99;1:00;1:01;1:02�. Now the set points of DER can be var-
ied through defined vector, which lead to different combinations of
DER voltage set points. The slope of the units can be set dependent
on the voltage set points’ space and maximum possible inductive
and capacitive powers. For each combination of the set points a
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PFC will be performed. After executing all PFCs, the voltage results
are saved in a PFC evaluator unit, where the best set point combi-
nation with minimal voltage deviation will be selected.

4.4. P-Redispatching module (PR)

The PR manipulates the P-dispatching of the certain DDG opti-
mized by the MILP, which can be effective for the voltage of the
microgrid at critical area. First of all, the voltage outputs from
VSO are evaluated and the bus with the maximum voltage viola-
tion is determined. Then, the PR searches for the nearest active
DDG to this critical bus, using the Dijkstra algorithm. Then, the
iterations go further with a predefined step size (based on hill
climbing method). If the minimum point is exceeded the algorithm
downsizes the steps for more accuracy and continues the iterations
until the desired minimum point is achieved.

In each step of the hill climbing iteration, the new active power
value (the old value plus the step size) of the DDG is sent to the
CPLEX as a fixed (enforced) value. Then, the CPLEX conducts a
new P-optimization for all other flexible units. In order to guaran-
tee the convergence of the algorithm, the CPLEX is only allowed to
change the UC & ED for all the time steps (hours) ahead and not the
antecedent time steps. After the MILP calculation is performed, PFC
and VSO update the Q-dispatching and power flow results consid-
ering the changed P-dispatching.

4.5. Unit recommitment (URC)

In some severe cases, especially in weak dimensioned micro-
grids, the previously mentioned optimization modules cannot
solve the voltage problems totally, since the default unit commit-
ment proposed by MILP is not appropriate for the problem. If any
undervoltage violation remains after performing the PR-
optimization, the URC will be activated, which leads to the test-
wise variation of the UC and start-up of certain DDG(s). At first,
the busses with the minimal voltages (after PR) are detected and
then some nearest DDG (e.g. 3 DDG) are sorted using the Dijkstra
algorithm, where the URC should be executed for them.

After enforcing a DDG in CPLEX to be online via URC, all opti-
mization submodules should be refreshed. It means that the MILP
conducts a new UC/ED (with considering the enforcement). After-
wards, the PFC examines the voltages under the new condition
and if required, the next modules (VSO and then PR) will be acti-
vated. This process is repeated for all the DDG in the sorting list
and finally the results of the different cases (different DDG) are
evaluated.

4.6. RES curtailment (RESC) by overvoltages

If the enhancements resulted by the VSO and PR are not suffi-
cient enough to meet the voltage limitations, the RESC module
reduces the power injection of some RES units. The nearest RES
to the violated bus is selected according to the Dijkstra method
and then the curtailment occurs either in a continuous manner
or stepwise based on the user predefined settings.

4.7. Current correction module for overloadings

In current correction a combination of the adjusted PR, URC and
RESC has been utilized. Here PR finds two online DDG near both
ends of the overloaded line, and redispatches the active power
with hill climbing method, and evaluates the loading enhancement
after each step. If one DDG is not enough, the next DDG can be
redispatched. If the effect of already online DDG is not enough
for solving the overvoltages, new DDGs will be activated by URC.
In case of a huge integration of RES at the end of the branch, the
Please cite this article in press as: Nemati M et al. Optimization of unit commit
mixed integer linear programming. Appl Energy (2017), http://dx.doi.org/10.10
PR cannot be effective anymore; thus, RESC reduces the active
power injection of the units.

As can be seen, in contrast to GA, MILP-based optimizer starts
from one solution point (the simplified linearized problem) and
goes further with consideration of more different non-linear sub-
problems (constraints) and solves them iterativly. In GA-based
method, in each generation many solutions (number of popula-
tion), which consider all possible constraints, are presented that
leads to longer optimization time.
5. Analysis of EMS performance for a test microgrid

The tested radial LV (400 V line to line) microgrid with a MV/
LV transformer (SrG = 283 kVA) connected to upstream network
via PCC is shown in Fig. 5.1. It has 22 busses, which are
connected through 20 typical LV cables such as NA2XY
3x300sm with R/X � 1 (between 2–3, 3–12, and 2–17), NA2XY
3x150sm with R/X � 3 (between 12–14, 17–20, and 3–4),
NFA2X 4x70sm with R/X � 5 (between 4–6, 12–15), and NA2XY
3x50sm with R/X � 9 (the rest of lines). The test system contains
altogether 12 DER (6 PVs, 1 small wind turbine, 2 micro gas
turbines, 1 fuel cell and 2 diesel gensets) and 1 battery storage
system (200 kW/400 kW h). The total installed dispatchable
power is approximately 425 kW, and the amount of non-
dispatchable (only curtailable) RES power is 427 kW. 16 loads
are distributed in the grid, which demand approximately
492 kW peak power and 8.2 MW h energy per day according to
standard load profile (e.g. Germany H0) [49].

One of the decisive inputs for the microgrid dispatching is the
energy exchange price. According to the data obtained from BDEW
[50] dynamic import/export prices are defined for exchanged
power with the interconnected grid. Fig. 5.2 illustrates the energy
price profiles.
5.1. Microgrid operation in reference case study

Fig. 5.3 shows the cumulative overview of the P-dispatch of MG
optimized with MILP in reference mode (REF). The red profile
shows the sum of total loads and losses in the grid, which equals
to the sum of all 9 generating units (considering main grid and
BSS). The exchanged power profile between MG and main grid is
not shown in this figure. The optimized BSS trend is clarified with
black dotted profile. Since the operation of RES units is free of
charge, their active power is always excluded from the EMS dis-
patching decided by MILP, as long as they do not violate system
constraints, like maximum exchange power limit.

As expected before, due to low energy cost of FC, it is the most
active DDG in this case study. In the peak load time and peak
exchange price time (e.g. 8–10th h and 19–24th h), the FC works
with full power and in other time intervals it operates at a working
point, where it produces cheaper energy in comparison with main
grid. The MT1 becomes online only in the time, when the demand
is very high and the purchased energy cost may be higher than
27 € cent/kW h. It happens in the time interval of 20–23th hour
in this case, where the MT1 works at its maximum efficiency point
(200 kW). The BSS starts with SOCstart of 10% and is charged at 3–
5th hour (lowest energy price) and discharged at 8th and 9th hours
due to maximum import energy price. The same energy shifting
process is occurred between 15–16th hour and 19–21th hour time
intervals.

The optimal unit commitment (online and offline DDG in differ-
ent time steps) obtained from GA as the best test between 10 tests
is exactly the same as the MILP results, but due to randomness
used in the GA process, minor differences can be found between
dispatching of MILP and GA. Fig. 5.4 shows the operation cost trend
ment and economic dispatch in microgrids based on genetic algorithm and
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of 10 tests in GA in 200 generations that is compared with optimal
operation cost found by MILP. The near optimal results of GA after
200 generations spread from 924 € to 930 €, which differ from
MILP result (921 €) only 0.3%. The optimization time of the GA in
this case is almost two times longer than MILP.
Please cite this article in press as: Nemati M et al. Optimization of unit commit
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5.2. Sensitivity analysis of BSS aging in MOP1

Fig. 5.5 illustrates a sensitivity analysis of BSS dispatching con-
ducted with GA under considering different aging levels in the
objective function. Under ‘‘Aging level 1” (cost L1) the BSS has
ment and economic dispatch in microgrids based on genetic algorithm and
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the maximum activity in order to shift the energy from low-cost
periods to high-cost periods. This active BSS dispatch requires
more than two full cycles (one cycle is 320 kW h). In ‘‘Aging level
2”, (cost L2) the optimizer tries to find a compromise between load
shifting and BSS aging minimization. It can be understood from the
Fig. 5.5 that the length of microcycles is regulated and big microcy-
cles, which can be seen in ‘‘Aging level 1”, are prevented in this dis-
patching. With this dispatching strategy, the activity of the BSS is
reduced to overall 414 kW h that equals 1.3 full cycles per day.
In the case ‘‘Aging level 3” (cost L3), the extra impact of macrocy-
cles is also considered. The overall energy exchange of BSS in this
configuration is reduced further to 327 kW h (almost 1 full-
cycle), which equals 53% activity reduction in a day ahead dis-
patching. In ‘‘Aging level 4” (cost L4) the microcycles, macrocycles
and also SOC-factor are considered in CBSS;t . As a result, beside
reduction of partial cycles lengths, the average SOC in a day ahead
dispatching of BSS is decreased to 37% (in REF: 42.7%).

Table 5.1 shows an overview of the important results under
considering different BSS aging levels. In the table, total daily cost
of the microgrid can be compared with daily aging cost of the BSS
under consideration of different aging levels. Based on daily BSS
aging, the whole life time of the BSS is calculated.

Fig. 5.6 shows the results of 50 (5 cases and 10 tests for each
case) feasible tests of GA in 400 generations with different BSS con-
siderations. The operational cost without utilization of any BSS is
about 1005 € and comparable with total operational and aging
Table 5.1
Overview of sensitivity analysis results for BSS aging costs optimized with GA.

Aging Level MG Daily Operation cost [€] BSS daily Aging cost [€]

Aging-Level-1 924.48 82.03
Aging-Level-2 947.62 18.10
Aging-Level-3 957.9 15.75
Aging-Level-4 958.02 12.95

Please cite this article in press as: Nemati M et al. Optimization of unit commit
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costs in the reference case. In the other 3 cases, the total costs
extend between 965 and 981 €.

It is assumed that the BSS is utilized only for day-ahead dis-
patching. With these assumptions and analyzing the Table 5.1
and Fig. 5.6, it can be recognized that the consideration of the
BSS aging (from level 1 to level 4) can be a reasonable way to
reduce the total cost defined in the objective function of MOP1
up to 4%. Moreover, the life time of the BSS can be extended to
more than 25 years if it operates under considering the aging
level 4.

5.3. Consideration of network constraints under MOP2

As analyzed in reference mode, some units like FC and the main
grid act as the main suppliers to minimize the MG operation costs.
With the resulted power flow, maximum voltage violations may
occur at the end of the cables especially in the right branch, where
no local DDG are online at the peak load periods. Furthermore, the
overloading in this branch is very likely to happen. Under MOP2
the permitted voltage constraints are narrowed to 1.05 pu and
0.95 pu.

5.3.1. Analysis of GA performance with voltage and current constraints
The first noticeable point in MOP2 is the change in the unit

commitment, so that the DG2 at the end of the right branch
becomes online in order to keep the voltage limits of the branch.
BSS Life time [years] Capacity usage (Cycles) [kW h] Mean SOC

4.00 691.75 0.427
18.16 414.10 0.560
20.87 326.86 0.415
25.39 321.51 0.371
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Fig. 5.6. Analysis of microgrid total daily operation costs vs. BSS daily aging costs with different aging levels (5 cases/10 GA-tests for each case).
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On the other hand, the MT1 operates with maximum power to
reduce the voltage drop through line 2–3. Since MT2 is far from
the critical busses, it stays offline. The DG1 has a maximum power
of 40 kW which is not enough for solving voltage violation in this
area. The efficiency of DG2 in this power spectrum (30–40 kW) is
better than DG1. Table 5.2 overviews the P/Q dispatching in critical
hours. In this case, due to overloading problem in cables between
node 2 and node 7, both diesel gensets are activated in some time
steps to supply the loads locally, and the main grid and MT1 reduce
their power outputs. In the 8th hour, only DG1 goes online (unit
recommitment), because with 25 kW, the problem can be solved.
Table 5.2
P-Q-dispatch in MOP2 with consideration of voltage and current constraints in GA (green

Fig. 5.7. GA results – Min and Max voltag
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The DG1 has a better efficiency in this operation point. Because
of an overloading in line 17–20 in hour 21 the MT2 is activated.

With the dispatch manipulations in MOP2, the voltages are
properly improved as illustrated in Fig. 5.7. The minimum voltages,
which often are related to node 11, exceed the voltage limit
between 19th hour and 24th hour in the reference mode.

5.4. Microgrid operation in islanded mode (MOP3)

In island mode, MILP utilizes often the fuel cell for the base load,
while MT1 helps in the semi-peak load time and MT2 is activated
: unit recommitment, orange: considerable dispatch change, white: no change).

Improvement

es in the grid in Ref mode vs. MOP2.
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in peak load time. In addition, the DG2 must be activated in time
steps 20–23 in order to meet the demand in this period. In the
islanded mode, the BSS, as a grid forming unit, must meet the
energy balance between generation and demand. Fig. 5.8 shows
the optimal P-dispatch of the microgrid in islanded mode.

5.5. Reduction of greenhouse gases production under MOP4

The objective functions of two modes are mixed considering a
leveling and a weighting factor.

MinfCCombined ¼ WOp � COp þWEm � ROp=Em � CEmg WOp þWEm ¼ 1

where CCombined is the mixed operation and emission costs, COp is the
operation cost, and CEm is the emission cost. Also WOp and WEm
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represent weighting factors of each cost, and ROp=Em levels the order
of the costs. By varying the weighting factors between 0 and 1, the
combined optimal solutions known as pareto-optimal set can be
achieved. Fig. 5.9 shows the resulted pareto front of MILP in com-
parison with pareto-optimal set of GA.

The results show the relatively dominance of MILP to GA opti-
mization, especially in combined-objectives cases (e.g. weighting
factors of WOp ¼ 0:7, WEm ¼ 0:3), while in the tests with quasi
absolute objectives, the gap between MILP and GA is insignificant.
It is basically because of leveling factor effect, which pushes the
convergence of algorithm in direction of dominant objective
function.

It is also interesting to observe the reduction trend of each
emission type with descending WOp. In Fig. 5.10 the trends of
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NOx, SO2, and CO2 amounts dependent on the weighting factors are
illustrated, which represent the best performance of GA between
10 tests with each weighting factor.

With varying WOp from 1 to 0, the productions of SO2, NOx and
CO2 are reduced by almost 92%, 80% and 16% respectively. Because
the CO2 production rate of all units is in the same order (Table 2.2),
the reduction of CO2 emission is small.
5.6. Performance of GA in highly constrained multi-objective problem
of MOP5

In this multi-objective operation mode, all aspects of last MOPs
are considered with their priorities as explained in Section 2. The
goal is to obtain a compromise between all quality aspects and
to profit from different MG operation opportunities. The weight-
ings of operation costs and emission costs are same here. In
Fig. 5.11 the optimization processes of the operation cost, fitness
rate and penalty rate have been depicted for the simulated MOP5
case. Due to a highly constrained problem, oscillations occur in
the fitness rate of some generations, which are related to re-
adjustment process of penalty weights.
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Table 5.3
Overview of different system costs under MOP5 in comparison with other MOPs.

Average (MOP5) Minimum (MOP5) Maxim

Operation Costs [€] 1194 1177 1215
Emission Costs [€] 53 44 70
BSS Aging Cost [€] 31.2 19.3 55.7
BSS Life Time [Year] 10.5 5.9 17
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The GA requires about 210 generations to solve all violations
(mainly voltage, current and P-balance); Then the penalty weight-
ings are re-adjusted in a manner that the optimizer searches the
feasible region border because the optimal solutions are normally
located in these areas. The average operation cost in this case
equals 1194 € (an increase of 4.2% in comparison to results of
MOP3). Also average emission cost has been increased by 45 €
compared to results in MOP 4. Fig. 5.12 shows the minimum volt-
ages and the maximum cable loadings (pu) in the microgrid (often
in the right branch of the network). At the early and late peak load
of the day the current limit has been reached but it is not exceeded.
In addition, because of extra power injection (from DG1 and DG2)
for branch 3–7 relief, the voltage has been shifted up (green curve).

Due to the activation of the DGs in 8 time steps, the operation
and emission costs have been highly raised. But in comparison to
MOP2, where no emission is considered at all, the maximum value
of emission costs shows a reduction of 13%. The averaged value of
BSS aging costs (Level 4) is almost doubled compared to average
result of MOP1, while the minimum value of BSS life time
(5.9 years) indicates an improvement of 34% in comparison to ref-
erence mode (3.9 years). Table 5.3 shows an overview of different
costs.
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6. Conclusions

This paper presents two algorithms, which are applied to the
universal microgrid EMS for performing an optimal day-ahead unit
commitment and an economic dispatch. The developed EMS con-
tains a spectrum of new components, different operation policies
and two different optimizers of UC/ED to guaranty and validate
the quality of results. A new Li-Ion battery aging model based on
an event-driven aging behavior has been developed, which consid-
ers the impacts of partial cycles and SOC-rate on the BSS life time.
Different optimization objective functions and constraints under
different microgrid operation policies such as cost-efficient, grid
supporting, maximum islanding degree, eco-friendly, and multi-
functional operations are pre-defined in EMS.

As the first UC and ED optimizer, a new GA-based optimization
mechanism based on different flexible and case-specific sub-
operators has been developed. With the new developed priority-
based initialization method in GA, minimum constraint violation
can happen at the beginning of the generations, which shift the
solutions near to the border of feasible area. About 40% enhance-
ment in the feasibility of the end results can be seen in comparison
to the random initialization method in this case. Also a new adopt-
able method, namely DTX, for recombination of individuals was
developed for the GA concept, which profits from the searching
ability of SBX and fast convergence of SPX and TPX methods. More-
over, due to inability of usual random mutation method, two new
mutation concepts, namely SPM and ASPM, which can prevent vio-
lations (e.g. min up/down time) in mutation process, are devel-
oped. Different penalty weighting factor adjustment methods are
used in the fitness function, which can adjust the weighting factors
in different manners over the generations. The adjustments are
dependent on the development of the constraints violations of
the fittest individual. The adoptive continuous penalty method
seems to be more robust and fast for finding the global optimum
region in high-constrained problems.

As the second optimizer, a novel method is introduced to deal
with the limitations of the MILP algorithm for handling the
network topology constraints via decomposition of the mixed
integer non-linear problem into a MILP-based economic dispatch
problem and a non-linear OPF problem. Different sub-modules
such as voltage setpoint optimizer for a smart reactive power
adjustment, P-Redispatcher for iterative active power dispatch
correction, unit recommitment via manipulations in CPLEX, RES
curtailment unit and current correction module are integrated
in the non-linear optimizer. The main benefits of this method in
comparison to classical OPF are full consideration of network
constraints, no simplification in power flow calculation, smart
manipulations in CPLEX results and selective activation of differ-
ent optimizer modules.

In the cases without consideration of the network constraints
like REF, MOP3 and MOP4, the calculation time of the GA is compa-
rable with the MILP, but in MOP2, the MILP needs 84% shorter time
to converge than the GA. In all cases except MOP2 and MOP5 the
MILP shows always slightly better results than GA. In high con-
strained cases such as MOP2 and MOP5, the GA shows relatively
better results in comparison to MILP. The voltage and loading vio-
lations are remedied very precisely via GA, while due to the recur-
sive and iterative P/Q optimization process in MILP, less accuracy
in voltage and loading improvement can be seen in some cases.

Under maximum constraints level (MOP5), the GA takes about
210 generations to solve all violations (in reference case almost
10 generations). In this case 22% increase of the operation cost in
comparison to reference case has been resulted.

With consideration of the BSS full economic model, the BSS
(cycle life) aging costs and the total microgrid costs (MOP1) have
been reduced up to 84% and 4%, respectively.
Please cite this article in press as: Nemati M et al. Optimization of unit commit
mixed integer linear programming. Appl Energy (2017), http://dx.doi.org/10.10
In future works some further improvements could be done.
Under highly constrained cases (e.g. MOP2) the manipulation of
the DDGs’ P-dispatching in CPLEX and the iterative extern P/Q cor-
rections, causes a fine mismatch and shifting of working point of
the DGs from optimal points. To solve this problem, either the
whole calculations must be linearized and done via CPLEX or the
whole concept should be replaced with a MIQP (Quadratic MINLP)
concept.

Furthermore, one improvement that can be made to the GA pre-
sented in this paper is to involve more GA parameters in the
searching process, in order to get a more/fully self-adoptive sys-
tem. One idea is to divide the population into some groups
(islands) and use the results of high-ranked islands for other
islands in next generations.
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