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Abstract—This paper deals with the problem of properly
simulating the Internet of Things (IoT). Simulating an IoT
allows evaluating strategies that can be employed to deploy
smart services over different kinds of territories. However,
the heterogeneity of scenarios seriously complicates this task.
This imposes the use of sophisticated modeling and simulation
techniques. We discuss novel approaches for the provision of
scalable simulation scenarios, that enable the real-time execution
of massively populated IoT environments. Attention is given to
novel hybrid and multi-level simulation techniques that, when
combined with agent-based, adaptive Parallel and Distributed
Simulation (PADS) approaches, can provide means to perform
highly detailed simulations on demand. To support this claim,
we detail a use case concerned with the simulation of vehicular
transportation systems.

Index Terms—Internet of Things; Simulation; Wireless; Par-
allel and Distributed Simulation; Smart Cities

I. INTRODUCTION

The Internet of Things (IoT) is firmly established today.
We are surrounded by a multitude of sensors, devices, people
equipped with mobile terminals, all somehow connected to
the Internet, and the number of these things increases at a fast
pace. Such a growing amount of devices can be employed as
sources of sensed information, computation units, means for
communication. It is thus important to devise strategies to let
them interconnect [8]. These solutions must take into account
that things may have very specific characteristics both in terms
of hardware (in many cases, these devices are equipped with
a very little amount of memory and computational power),
software (specific OSes) and management (little or no admin-
istration utilities, few system updates).

The wide spectrum of possible uses of things makes simu-
lation a central tool for the real deployment of smart services.
The complex networks obtained by the interaction of IoT
devices are hard to design and to manage. IoT simulation
is necessary for both quantitative and qualitative aspects. To
name a few issues: capacity planning, “what-if” simulation and
analysis, proactive management and support for many specific
security-related evaluations. The problem is that modeling a
general IoT environment can be quite difficult [13], [33]. There
is wide a number of different aspects to take into consideration.
Among them, scalability is a main one. Traditional approaches
(that are single CPU-based) are often unable to scale to the
number of nodes (and level of detail) required by the IoT.

This paper introduces the main aspects of the simulation of
IoT, discussing a new combination of techniques to enhance
scalability and to permit the real-time execution of massively
populated IoT environments (e.g., large-scale smart cities).
For example: parallel and distributed simulation (PADS),
adaptive computational and communication load-balancing,
self-clustering. In particular, attention is given to the hybrid
and multi-level modeling and simulation techniques. In few
words, a hybrid simulation is a simulation where multiple
simulation models are glued together [39]. Each simulator has
a specific task, and these simulators are somehow orchestrated
by some simulation coordinator. We also refer to multi-level
simulation when these simulation tools work at a different
level of detail [13], [17]. These solutions allow creating
multiple, interacting instances of different simulations, that
are specifically designed to focus on particular aspects in a
reduced portion of the simulated area, or on a reduced subset
of simulated entities.

To demonstrate the validity of the proposed approach, we
analyze an application scenario related to the simulation of
vehicular transportation systems. The classic ways to analyze
vehicular networks relate to two antithetical approaches. One
is an abstract simulation of vehicles as moving entities, where
these entities are simple agents moving in a constrained
simulated space. Thus, we label the agent as a vehicle and
force it to move in given paths, representing streets. But from
a simulation point of view, the same model might represent
ants moving over tree branches. Thus, no details related
to vehicular systems are considered. The other approach is
to design a detailed simulation, embodying all sophisticated
aspects of the technologies inside a modern vehicle, i.e., motor,
pollution-related aspects, networking technologies to connect
to the Internet, etc. Due to all these details to consider, the
typical simulation can only be composed of few entities, due
to scalability issues concerned with the computational costs
for mimicking a vehicle.

As a matter of fact, there are situations in which the
use of the first approach can introduce errors due to the
oversimplification, while in other situations the latter approach
does not scale due the presence of unnecessary details. Hybrid
and multi-level approaches can solve the problem, since they
allow designing and configuring smart services in large scale
vehicular transportation systems over wide area networks. De-
tailed simulations can be triggered nevertheless. The advantage
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is that the detailed (and thus, more costly) simulation can be
performed only when needed, in a limited simulated area, only
for the needed time interval of the simulation.

The remainder of this paper is organized as follows. Sec-
tion II describes the background about simulation techniques,
useful to introduce aspects related to the simulation of IoT.
In Section III the state of the art related to IoT simulation is
discussed. An approach based on adaptive parallel/distributed
simulation and multi-level simulation is introduced in Section
IV. In Section V, this approach is applied to a case study on
intelligent transportation systems. Finally, Section VI provides
some concluding remarks.

II. BACKGROUND

A. Simulation and Discrete Event Simulation

In a computer simulation, a process models the behavior
of some other system over time [23]. The system to be
simulated can be already existing or yet to be built. In most
cases, the simulation tools are used to support the design and
implementation of complex systems. In fact, most modern
systems are so complex that their study (i.e. dimensioning and
tuning) can be done only by using simulations.

Among the many simulation paradigms that have been pro-
posed, Discrete Event Simulation (DES) [36] is very popular
for its combination of expressiveness and usability. More
in detail, the main component of a DES is the simulation
model, that is implemented by a set of state variables. These
variables represent the simulated system in a given moment
of its evolution. Such evolution of the simulated model is
obtained processing an ordered sequence of events. Each event
represents a change in the simulated model state and it is
tagged (i.e. timestamped) with a specific simulated time. In
other words, the simulation evolution is obtained computing an
ordered sequence of events that need to be created, stored in a
specific data structure and then processed using the appropriate
processing handlers. As an example, the simulation of a
vehicular ad hoc network is made by events that represent
the different car positions during the simulation and the
transmission of wireless packets.

The implementation of DES is usually made by i) a set
of state variables, that are used to represent the state of the
modeled system, ii) an ordered event list, that are the pending
events waiting to be processed to evolve the simulation, iii) a
global clock, that represent the current time in the simulated
system [36].

B. Sequential DES

When a single CPU core (also called a Physical Execution
Unit, PEU) manages the whole simulated model and its evolu-
tion, the simulation is defined as sequential (i.e. monolithic).
This means that the PEU is in charge of processing all the
events in the correct timestamp order, originating new events
and updating the pending event list. The processing of events
in the correct order is necessary in order to avoid causality
errors in the simulation. The main advantage of the sequential
approach is that it is easy to implement and to debug but there

are also some drawbacks. For example, large systems require
a huge number of events to be stored and processed. Since all
of them are sequentially executed by a single PEU, then the
scalability of this approach is limited and the amount of time
required by the simulation runs is often excessive [18].

C. Parallel DES and PADS

An alternative approach to sequential DES is called Parallel
Discrete Event Simulation (PDES). In this case, a set of
interconnected PEUs (e.g. CPU cores or hosts) is in charge
of the simulation execution [24]. The simulation model is par-
titioned among different PEUs and each of PEU is in charge of
representing and executing only a part of the whole simulation
model. More in detail, each PEU implements a local pending
events list but some events need to be delivered to other PEUs
using a message passing approach. The partitioning of the
simulation model can increase the simulator scalability (thanks
to the parallelization of some tasks) but the set of PEUs needs
to be properly synchronized to prevent causality errors. A
PDES can be faster than the corresponding sequential DES
in simulating the same model, but this happens at the cost
of a more complex implementation and management of the
simulator.

The definition of Parallel and Distributed Simulation
(PADS) provided in [44] is quite simple: “a simulation that
is run on more than one processor”. Reduced time of the
simulation runs (with respect to the sequential approach),
model and simulator scalability, interoperability of simulators
and composability of simulation models are among the many
advantages of PADS with respect to sequential simulators [23].
In the PADS terminology, each PEU implements a model
component (called Logical Process, LP) that is a part of
the whole simulation [15]. In other words, a PADS is made
by the LPs and their interactions (see Figure 1). In fact,
each LP manages the evolution of a part of the simulated
model and communicates with other LPs for the necessary
synchronization and data distribution tasks [23].

The main characteristics of PADS (with respect to sequential
DES) is the lack of a global model state. In other words, in
the PADS execution architecture the single node in which the
whole simulation model is stored (and managed) is missing.
In fact, in this case, the simulation evolution is obtained only
through the coordinated computing and communication of
nodes arranged in a parallel/distributed architecture.

It is not always easy to define what is the difference between
a parallel and a distributed simulation. In this paper, for the
sake of simplicity, we assume that when the PEUs are inter-
connected by shared memory then it is a parallel simulation
and when the PEUs are connected by LAN (or Internet) then
it is distributed. Nowadays, most execution architectures are a
mix of parallel and distributed components [15].

Clearly, the characteristics of the network that interconnects
the PEUs have a strong effect on the PADS performance.
For example, the latency and bandwidth constraints in LAN-
based communications (or Internet) slow down the simulation
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execution with respect to the low latency and high bandwidth
that can be found in shared-memory multi-processor.

Fig. 1. Model partitioning in the simulation of a smart city.

To summarize, the main characteristics of PADS are:
• the simulated model has to be partitioned in a set of

LPs [51]. The partitioning is a multi-objective optimiza-
tion problem in a dynamic system in which a part of
the information is unknown a priori. More in detail, the
partitioning of the simulated components in the paral-
lel/distributed architecture must be done minimizing the
amount of network communication among the LPs while
load-balancing (i.e. computation and communication) the
execution architecture;

• correctness: the PADS results are correct if and only if
they are the same as those of the corresponding sequential
simulator. Since each PEU has different hardware char-
acteristics and executes a specific part of the simulation
model, it is necessary to coordinate the PEUs using an
appropriate synchronization algorithm;

• since the simulated model is partitioned in different LPs,
some of the updates (i.e. events) that are generated in a
specific LP can be of interest for the components that are
allocated in other LPs. A simplistic solution would be to
broadcast all the updates. This behavior would introduce
a massive communication overhead and therefore it is
not acceptable. Data distribution is about the efficient
delivery of state updates. This can be achieved in many
ways, among them publish-subscribe mechanisms [29].

The implementation of PDES using a PADS approach is
obtained encapsulating the events in timestamped messages.
To obtain a correct execution of the PDES, the delivery and
processing of such messages must be done accordingly to the
causality constraint: “two events are in causal order if one
of them can have some consequences on the other” [35].
In other words, a correct PDES execution is obtained when
the causal order of events is not violated. In the case of a
DES, with a sequential execution (and a single pending event
list), it is easy to avoid causality violations. On the other
hand, in complex parallel and distributed architectures, there
are PEUs with different execution speeds, network delays,
model and execution architecture imbalances. In practice, in a

PADS, a synchronization algorithm is needed for the correct
handling of the simulation execution. In the years, many
different synchronization algorithm have been proposed; in
the following we summarize the main approaches that can
be followed:
• time-stepped: the simulated time is represented as a se-

quence of fixed-size timesteps. The timestamp associated
to events is the timestep in which they have to be pro-
cessed. In other words, the simulation model is updated
at every timestep. A consequence of this approach (that
is also a relevant limitation) is that the timestep size
is the lower bound to the interaction between model
components. In other words, each interaction between
two separate model components is not instantaneous
but requires a certain amount of time to be delivered.
The implementation of the time-stepped synchronization
mechanism can be centralized or distributed. In the dis-
tributed one, when a LP completes the processing of the
current timestep then it broadcasts an End-Of-Step (EOS)
message to all other LPs. Each LP waits to collect all the
EOS messages (from other LPs) before jumping to the
following timestep [48];

• conservative: the main assumption of this approach is
that causality violations must be prevented. This means
that each event must be analyzed before its processing.
If the event is “safe” (in terms of causality violations)
then it can be processed. Otherwise, the LP must stop
the processing of this event and switch to the evaluation
of other events. In the case where all the events are unsafe
then the LP must wait for more information on the safe-
ness of waiting events. Many synchronization algorithms
implement this approach, among them the Chandy-Misra-
Briant [42] and its variants are quite popular;

• optimistic: this approach is about processing the events
in receiving order without assessing their causality con-
straints. This means that causality violations may happen
and so the mechanism must be able to find the violations
and fix them. In the Time Warp algorithm [28] this is
done implementing a roll-back mechanism of the LP state
variables and (if necessary) propagating the roll-back to
all the LPs that have been affected by causality violation.
Such cascade of roll-backs brings the state of the whole
PADS back to the most recent one that is free from
causality violations. This restored state is then used by
the LPs as the new starting point for the processing of
events.

D. Adaptive PADS

As described above, the model partitioning is one of the
main problems of PADS. Most of the approaches that can
be found in the literature rely on a static partitioning (and
clustering) of the simulated model components in the available
LPs. To overcome the limitations of a static approach, in [15]
we proposed a dynamic mechanism that is based on the self-
clustering of model components. More in detail, the model
is partitioned in a large set of small-sized model components
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that are called Simulated Entities (SEs). In this case, the model
evolution happens through the interactions among SEs. It is
easy to see that this approach is very similar to a multi-
agent system. In an adaptive PADS, the LPs are containers
of SEs and then it is possible to manage the migration of
SEs from one LP to another. The adaptive reallocation of SEs
allows the reduction of the communication overhead in the
parallel/distributed architecture (e.g. clustering the simulated
components that interact with high frequency in the same
LP) while load-balancing the execution architecture. In many
simulated models (and execution architectures), this approach
can lead to a speedup of the execution runs and a better
scalability.

The GAIA/ARTÌS simulator [7] implements the adaptive
PADS mechanism described above on top of the time-stepped
synchronization. In our previous work [17] we have demon-
strated that this approach can be integrated in a multi-level
simulation. In the following of this paper we will see that even
a hybrid simulation approach can be used in combination with
the adaptive PADS.

E. Hybrid Modeling and Simulation

The scientific literature is missing a clear and cohesive
definition of hybrid simulation [19]. Despite this, the mixing
of analytic and simulation models is not new [46]. In fact,
in the past this approach has been already implemented in
a few simulators [43]. In this paper, we consider hybrid
models all the solutions in which there is interoperability of
simulation models that follow different simulation approaches,
For example, linking discrete event simulation (DES) with
either system dynamics (SD) or agent based (ABS) [19] but
also analytical models (e.g. continuous simulation).

III. STATE OF THE ART

A. Simulation of the Internet of Things

The design, setup and tuning of large scale IoT sys-
tems requires the availability of either testbeds or simulation
tools [31]. In many cases, the cost and complexity of such
testbeds is so high that simulation is the only option. The
simulator used for the performance evaluation must be able to
deal with massively populated IoT environments and a high
level of detail in the interactions among the simulated compo-
nents. Both these aspects are fundamental for the scalability
of the simulation tools and must be properly considered when
reviewing the state of the art.

In [26], the authors consider both the aspects discussed
above, in fact they identify the main requirements for the
experimental facilities needed for the design and evaluation of
future IoT deployments. A discussion of the main drawbacks
of simulation-based approaches is followed by a survey of
existing IoT testbeds. The authors show that an approach based
on the federation of testbeds is feasible but with drawbacks.
It is worth noting that some testbeds are able to support an
approach that integrates simulation components, a solution is
often referred to co-simulation. One of the conclusions of this
paper is that the existing network simulators are unable to

support the scale and the level of detail required by future IoT
systems.

To improve the simulator scalability, SimIoT [47] uses a
cloud environment for the execution of back-end operations.
In [47], an use case is described, based on a health monitoring
system for emergency situations. The performance evaluation
considers 160 identical jobs that have been submitted by 16
IoT devices. More complex setups are needed to assess the
scalability of the proposed approach.

The problem of the large number of devices that must be
considered in IoT deployments is discussed in [37]. In this
paper, the authors firstly overview the available large-scale
simulators and emulators. Secondly, they propose MAMMotH,
a software architecture based on emulation. This approach is
promising, but the development of MAMMotH seems to have
stopped in 2013.

The integration of a general-purpose discrete event simula-
tion (e.g. DEUS) with domain specific simulators (e.g. Cooja
and ns-3) is pursued in [11] for assessing large-scale IoT
setups in urban environments. In this case, the authors consider
6 scenarios of medium complexity (i.e. 200.000 sensors, 400
hubs and 25.000 vehicles). The performance evaluation of the
integrated simulator shows a good scalability even if DEUS is
Java-based and with a monolithic architecture.

The integration of different simulators is part of the ap-
proach proposed in [33], in which Cooja-based simulations
(i.e. system level) are binded with a domain specific network
simulator (i.e. OMNeT++) to obtain a hybrid simulation
environment.

In [50], the OMNeT++ simulation framework is used to
model an IoT network infrastructure composed of sensors,
actuators, and even processors. This approach, that is again
based on a domain specific simulator, permits the simulation of
components (that are not yet available) and even the presence
of hardware in the loop.

[40] proposes what the authors call an Internet of Simulation
(IoS) that is a set of interconnected simulations in which all
the models and simulations are exposed to the Internet and
can be accessed on an “as-a-service” basis (i.e.“simulation as
a service”).

An interesting solution is proposed in [12]. In this case,
the SDL language is used to model the IoT scenario. In
the following, an automatic code generation is in charge of
translating the SDL description in a ns-3 simulator model.
The clear limitation of this approach is the scalability of ns-3.

In [22] is discussed the integration between an agent-
based methodology and a domain specific simulator (i.e. OM-
NeT++). Differently from the approach described in this paper,
the agent-based methodology is used for the modeling while
OMNeT++ implements the simulations.

B. Internet of Things and Smart-Cities

Concerning the use of IoT to build efficient services for
making “smarter” territories, from a simulation point of view
there are many requirements that the simulation tool must
provide. There are several parameters involved that should be
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considered and possibly varied in order to perform a what-
if analysis. These parameters might force the IoT set-up and
deployment. For instance, assume that you need to create
a Wireless Sensor Network (WSN) of interacting in a IoT,
employed to build a smart service. In this case, a parameter
might be the wireless transmission ranges of communicating
devices. This parameter is influenced by the geographical
location where the WSN has to be deployed, and in turn
the transmission range influences the amount of sensors to
be deployed in the area.

Above all, the main issue is scalability, both in terms of
amount of modeled entities and granularity of events. An IoT
will be composed by thousands of interconnected devices.
Many of them will be mobile and each with very specific
behavior and technical characteristics [13], [20]. Then, in
certain scenarios, (almost) real-time simulations are required.
This is the case when proactive approaches are utilized to
perform “what-if analyses”.

Hybrid and multi-level simulation enable the simulation of
smart territories based on the use of the IoT. In fact, running
a complex, massively populated model at the highest level of
detail is unfeasible. A more profitable solution is to organize
the simulation as an orchestration of multiple simulators.
Each single simulator focuses on a specific level of detail,
with specific characteristics of the domain to be simulated
(e.g. mobility models, wireless/wired communications and so
on).

Agent-based simulation is the typical tool employed to
mimic urban systems, smart cities and transportation sys-
tems [30]. Agent-based simulation, together with land-use
transport interaction model and cellular automata are applica-
ble in planning support systems. Different time scales can be
modeled; for instance, one can perform short-term simulations
to model diurnal patterns in cities, while longer term models
can be exploited for strategic planning purposes. MASON [38]
and SUMO [34] are examples of simulation tools for the
simulation of moving (e.g. mobile users, vehicles) or static
entities. These tools have been successfully exploited to study
intelligent traffic control systems [9], [32], [49], [52], mobile
applications that resort to crowdsensed data [45] and so on.
While the implementation of models is quite simple for a
generic programmer, these approaches do not allow creating
massive scenarios, with many interconnected things.

CupCarbon is a multi-agent and discrete event simulator,
thought to simulate smart-cities and IoT WSN [41]. In partic-
ular, its purpose is to enable distributed algorithms validation.
This tool employs OpenStreetMap to simulate sensors deploy-
ment on a map. The main goal of this tool is to help trainers to
explain the basic concepts and how sensor networks work and
it can help scientists to test their wireless topologies, protocols,
etc. The main problem of scalability remains.

We conclude this section mentioning simulators that are
more prone to image and 3D based representations of smart
cities. Examples are CanVis, Second Life, Suicidator City
Generator, Blended Cities. In particular, it is worth mentioning
UrbanSim, that provides tools for examining the interplay

between land use, transportation, and policy in urban areas [6].
It is intended for use by Metropolitan Planning Organizations
and others needing to interface existing travel models with
new land use forecasting and analysis capabilities. UrbanSim
does not focus on scenario development, as most of these
tools do, but rather on understanding the consequences of
certain scenarios on urban communities. However, such a
kind of tools do not usually cope with issues concerned with
wireless communications and pervasive computing, which are
the keywords related to the IoT world.

IV. MULTI-LEVEL HYBRID SIMULATION

The fine grained simulation models needed for the accurate
assessment of IoT have scalability problems in presence of
a large number of nodes, as typical in IoT systems. In other
words, the time required by a monolithic simulator to obtain
statistically correct results is excessive. Furthermore, we need
simulation tools that can be used for the real-time assessment
and “what-if analysis” of complex IoT setups.

An approach based on PADS can enhance the simulator
scalability but with some significant limitations, in fact mas-
sively populated IoT would still be difficult to handle. The
common solution to the simulators scalability problem is to
reduce the level of detail in the simulation model. In our view,
this solution might turn out to be very dangerous, in terms
of simulation outcomes. In fact, it often leads to misleading
(or wrong) results. An alternative solution, that we have
proposed in the past [17], is based on multi-level modeling
and simulation [25]. In the approach that we propose, multiple
simulation models (and simulators) are the components of a
new combined simulator [39]. More in detail, each component
is able to handle a specific task and to work at a different level
of detail (i.e. multi-level simulator). In addition, each simu-
lator can follow a different simulation paradigm (i.e. hybrid
simulator).

As an example, a “high level” adaptive PADS simulator
(i.e. GAIA/ARTÌS) can be used to coordinate the execution of
some domain specific simulators (e.g. OMNeT++ [4], ns-3 [3],
SUMO [5]). The “high level” works at a coarse grained level
of detail, while the “low level” simulators are used for the fine
grained of some specific parts of the simulated system. The
switch between “high level” and “low level” can be automatic
(e.g. based on specific locations in the simulated area) or
triggered by the simulation modeler (e.g. for the detailed
analysis of specific behaviors observed during the simulation).
For example, the presence of hotspots of wireless devices in
a simulated area can cause network capacity and congestions
problems that need to be analyzed with specific simulation
tools.

The main issues to cope with, when dealing with
hybrid/multi-level approaches, are the interoperability among
the simulators and the design of the inter-model interactions.
In fact, such interactions impose synchronization and runtime
communication of state exchanges among model components.

Figure 2 shows an example of a hybrid/multi-level simula-
tion scenario. At the simulation bootstrap, the whole simula-
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Fig. 2. Multi-level hybrid simulation scheme, the level 0 and 1 simulators are time-stepped while the level 2 is continuous. Each simulator works at a different
level of abstraction.

tion is performed at level 0 (hence, with minimal details). This
means that the high level simulator is in charge of all the model
components and their interactions. As said before, the level
0 simulator implements time-stepped synchronization [14].
When a specific portion of the simulated area needs to be
simulated with a higher level of detail (i.e. at timestep t2),
then another simulation level is triggered (only for that specific
simulation area). This means that the state of a specific group
of simulation components needs to be transfered from level 0
to level 1. The result is that a part of the simulated area is still
simulated at level 0 while a specific zone is implemented at
level 1. Following this approach, different simulation areas
can be simulated at different levels of detail, concurrently.
It is clear that different simulation tools (following different
modeling approaches) can be used for the different areas. If
needed, then a sub-portion of level 1 simulation might be
simulated at level 2 (that is an even higher level of detail).
In this specific case, the simulator at level 2 does not follow
a time-stepped approach; that is, it implements a continuous
simulation.

To simplify, we will detail this description considering
only the first two levels (i.e. level 0 and 1). All the model
components managed by the level 0 simulator are synchro-
nized with t-sized timesteps and all level 1 components with
t′-sized timesteps. Timestep t2 (i.e. t′1 at level 1) is when
there is the switch of some model components from the
coarse grained simulator to the finer one. Going on with
the simulation execution, the level 0 components will jump
from t2 to t3 while the level 1 components will update their
state t′2, t′3 and t′4. It is worth noticing that t′4 at level 1 is
the same of t3 at level 0. At t′4, the execution of the level
1 simulator is terminated and all its simulation components
must be migrated back to the higher layer (i.e. level 0). All
that procedure needs to be arranged under the constraints of
the time-stepped synchronization mechanism. This means that
all the interactions among level 0 components must happen
only at coarse grained timestep while the interactions at level

1 happen at fine grained timestep. Finally, the interaction
between components managed at different levels need to be
arranged at the coarse grained timesteps, that is when there is
a match between the timesteps at the different levels.

During a hybrid/multi-level simulation, the total number of
simulated entities might not change; what changes is the level
of detail used to perform the analysis. This clearly increases
the scalability of the whole simulation system, since in-depth
simulations are performed only when needed and for a subset
of entities. It should also be clear that higher level simulations
might introduce some errors, due to the lack of detail. Thus,
the trade-off here becomes when (in the simulated time)
and where (in the simulated area) triggering more detailed
simulations (higher simulation costs), rather than keeping a
simplified simulation model (larger approximation errors). As
in every simulation, appropriate verification and validation
techniques need to be used.

V. A CASE STUDY WITH INTELLIGENT TRANSPORTATION
SYSTEMS

An important use case for the IoT lies in the smart
cities domain and relates to transportation systems. Numerous
examples exist of startups, services and technologies being
developed. Just to mention a few, BestMile is a cloud platform
to manage autonomous vehicle fleets.

Kiunsys is developing solutions to deal with all aspects of
parking, ranging from analytics software to sensors manage-
ment. Based on this solution, the city of La Spezia (Italy) has
deployed more than 1000 parking spot sensors to communicate
free parking spots in real time.

Hi-Park is another example of parking application.
Anagog has recently built a platform enabling mobile

applications developers to collect and analyze in real-time
raw signals from multiple smart-phone sensors, in order to
determine and predict the user mobility status. Thus, for
instance, data coming from a smart-phone can be used to
determine whether a user is driving a car. Based on this
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information, it is possible to deliver assistive services and
information, or stop those that could distract drivers.

The Array of Things is a more general urban sensing
project, which has some strong implications on transportation
systems. It builds a network of interactive, modular sensor
boxes to collect real-time data on the city environment, infras-
tructure and activity for research and public use. It has been
installed in the city of Chicago (USA). The goal is to use
this technology as a “fitness tracker” for the city, measuring
factors that impact on livability in Chicago such as climate,
air quality, noise and to use it to regulate traffic.

The modeling and simulation of an urban (or rural) scenario,
equipped with a large amount of sensors, devices and mobile
nodes that produce data to be used in intelligent transportation
systems, requires taking into account several issues. These
range from data gathering and distribution, communication
and interaction among vehicles, up to path planning strategies
and pollution issues. It is thus evident that the use of a
multilevel/hybrid simulation approach may introduce serious
advantages. In fact, assuming the need to consider traffic
conditions of a geographical area, it is necessary to take into
account the street map, identify the critical points and under-
stand if it is possible to tune or modify the traffic circulation of
the area, also considering polluting emissions. While it might
seem prohibitive to take all such issues in a single simulator,
the composition and properly tuned interaction of different
simulators can solve the problem. To devise a solution, we
will use a top-down approach, starting from a higher level
of abstraction that models the whole general area, and then
describing more detailed solutions for specific problems, to
be simulated in smaller regions of the simulated area.

A. Level 0: Modeling the urban area

The urban street area can be viewed as a complex network.
This, through a mathematical analysis, allows the analysis of
the whole road network and the identification of the network
characteristics, the shortest-path routes, the diameter of the
net, the critical points (e.g., those intersection points that
have high centrality measures). Moreover it allows to find the
presence of cul-de-sacs, calculate statistics like intersection
density, average node connectivity, etc.

A tool that can be used to obtain this is OSMnx [10].
OSMnx is a Python package that is able to retrieve admin-
istrative boundary shapes and street networks from Open-
StreetMap, and export it using a typical representation em-
ployed by complex network software tools, such as NetworkX
or Gephi.

Figure 3 shows a visual representation of the street map
of the city of Fano (Italy). In the map, gray lines represent
two-way streets, while red lines are one-way streets. Nodes
are crossroads, traffic circles, semaphore crossings; these are
colored based on their betweenness centrality level (the darker
the higher value). Nodes which are bigger in size represent
crossroads (or traffic circles) with highest betweenness.

Betweenness is a measure of centrality based on shortest
paths. In particular, given a node n, the betweenness centrality

of n measures the amount of shortest paths among all pairs
of network nodes (x, y), passing through n, with respect to
all shorted paths from x to y. In other words, betweenness
centrality represents the degree of which nodes stand between
each other. Hence, it is a measure that helps identifying the
critical points in a network.

Based on this preliminary analysis, the modeling tool iden-
tifies critical points and triggers more specific traffic related
simulations.

B. Level 1: Simulation of the urban area

The step described above is useful to properly understand
which are the places that the hybrid simulation tool has to
monitor in detail. In case of a large urban area to monitor, the
focus on specific critical points allows reducing the computa-
tional costs to perform the whole analysis. In order to perform
a simulation of the whole urban area, several simulators can
be exploited. Agent-based simulators can be of real help in
this case [13]. In particular, one can employ the well known
SUMO as a tool for the road traffic simulation [5], or some
properly network assessment tools built over an agent-based
simulation with PADS capabilities [16].

This level is thought to control and validate the road network
and to perform what-if analyses by varying the amount of
vehicles, assessing traffic circulation when introducing barri-
ers, removing roads or adding novel ones. The simulator at
this level will be in charge of coordinating the execution of
a number of lower level simulators, to study the goodness of
transportation solutions. Regarding the specific traffic analysis,
it might be possible to trigger a more detailed simulation, still
based on a SUMO-like solution, for instance. Moreover, it is
possible to trigger simulations, on smaller portions of the area,
assessing tailpipe emissions and pollution problems in general.
Communication issues in infrastructured and infrastructure-
less wireless networks can be simulated through specific
simulation tools, e.g., Omnet++ based. Finally, in order to
properly simulate smart cities’ services, it might be possible
to resort to some cloud simulator (see Section V-E).

C. Level 2a: Environmental simulator

All the issues concerning the impact of the vehicular
traffic on the general environment can be simulated by re-
sorting to tools such as the ADvanced VehIcle SimulatOR
(ADVISOR) [1]. ADVISOR is a MATLAB/Simulink based
simulation tool for the analysis of the performance and fuel
economy of conventional (gasoline/diesel), electric, and hybrid
vehicles. It allows interchanging a variety of components,
vehicle configurations, and control strategies. The goal of the
simulator is to allow testing efficiency of automobiles, espe-
cially in terms of tailpipe emissions, fuel economy, accelera-
tion and grade sustainability. To this aim, the simulator works
using a component-based approach, where components are
typically modeled through a set of equations and quasi-steady
approximations. While the typical use of the tool is based
on a graphical interface, it provides means to perform batch
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Fig. 3. Street Map of Fano (Italy). Gray lines represent two-way streets, red lines one-way streets. Crossroads are colored based on their betweenness centrality
level, the darker the higher. Nodes bigger in size represent the crossroads with highest betweenness (i.e., critical points).

simulations. This eases the interaction with other components
of a hybrid simulation software.

Using ADVISOR, it is possible to build a simulator that,
based on the vehicles present on a given portion of the con-
sidered geographical area, measures the amount of emissions.
These results would be passed to the higher level simulator.

D. Level 2b: VANETs and Vehicular communications

Vehicular communication networks might be based on some
general networking infrastructure, or on some ad-hoc solution.
Tools such as VANET Omnet++ implement an intelligent
transportation system and allow utilizing various types of
vehicle communication, such as Vehicle-to-Vehicle (V2V)
communication and Vehicle-to-Infrastructure (V2I) wireless
communications. Such a tool allows generating a topology of
vehicles equipped with one (or more) network interface card
and using some communication protocols.

At this level, it is possible to study all problems con-
cerned with the deployment of a networking infrastructure
for supporting vehicular communications, as well as more
sophisticated solutions. For instance, in case of intermittent
connections, seamless communication strategies that employ
multi-homing mechanisms might be tested [21].

E. Level x: Simulating the cloud

As said above, most of the IoT architectures that will be
deployed in the next years will be cloud-based. This means

that a comprehensive modeling and simulation approach must
consider the problems involved with the simulation of complex
cloud services. In other words, it will not be acceptable to
simulate only the low-level part of the IoT software architec-
ture (e.g. devices, sensors and communication networks). In
fact, most of the performance (and scalability) of IoT services
will depend on the cloud services that will provide essential
coordination and communication services. For this reason, we
are working to integrate simulators such as CloudSim [2] in
our multi-layer/hybrid simulation architecture. In the follow-
ing, this will permit to consider emerging testbeds such as
edge and fog computing environments [27].

VI. CONCLUSIONS

This paper presented the main issues that arise in the
simulation of the Internet of Things and in the deployment of
smart services on smart territories. The two main issues are the
need for scalability and high level of detail in the simulation.
However, these two requirements lead to technical solutions
that are counterposed. In other words, you typically have to
trade the high level of details for scalability. We also provided
an overview of the existing simulation techniques, reaching
the conclusion that a good strategy relies on the use of adap-
tive, agent-based, Parallel and Distributed Simulation (PADS),
coupled with multi-level and hybrid simulation approaches.

To clarify the advantages of a hybrid, multi-level simula-
tion approach, we presented a use case related to intelligent
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transportation systems. In this case, wide geographical areas,
with a multitude of simulation entities, can be simulated with
agent-based PADS. However, when needed it is possible to
trigger a more detailed, fine grained simulation, so as to
consider aspects which could not be simulated otherwise.
The interesting aspect of this approach is that the detailed
(and more costly) simulation can be performed in a specific,
limited simulated area, only for the needed time interval of
the simulation.
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