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� An intelligent energy management system for Eco-Industrial Park (EIP) is proposed.
� An explicit domain ontology for EIP energy management is designed.
� Ontology-based approach can increase knowledge interoperability within EIP.
� Ontology-based approach can allow self-optimization without human intervention in EIP.
� The proposed system harbours huge potential in the future scenario of Internet of Things.
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An ontology-based approach for Eco-Industrial Park (EIP) knowledge management is proposed in this
paper. The designed ontology in this study is formalized conceptualization of EIP. Based on such an onto-
logical representation, a Knowledge-Based System (KBS) for EIP energy management named J-Park
Simulator (JPS) is developed. By applying JPS to the solution of EIP waste heat utilization problem, the
results of this study show that ontology is a powerful tool for knowledge management of complex sys-
tems such as EIP. The ontology-based approach can increase knowledge interoperability between differ-
ent companies in EIP. The ontology-based approach can also allow intelligent decision making by using
disparate data from remote databases, which implies the possibility of self-optimization without human
intervention scenario of Internet of Things (IoT). It is shown through this study that KBS can bridge the
communication gaps between different companies in EIP, sequentially more potential Industrial
Symbiosis (IS) links can be established to improve the overall energy efficiency of the whole EIP.

Crown Copyright � 2017 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Based on synergy through cooperation between physically
proximate businesses within a certain region, Eco-Industrial Park
(EIP) is becoming a popular form of industry cluster. According
to US Environmental Protection Agency (EPA), EIP is defined as ‘‘a
community of manufacturing and service businesses seeking
enhanced environmental and economic performance through col-
laboration in managing environmental and resource issues includ-
ing energy, water, and materials. By working together, the
community of businesses seeks a collective benefit that is greater
than the sum of the individual benefits each company would real-
ize if it optimized its individual performance only” [1]. The key
concept behind EIP is Industrial Symbiosis (IS), which requires an
industrial system to be viewed not in isolation, but in concert with
it surrounding systems [2]. In EIP, resources, including but not
limited to materials, energy, water and information, can be reused
at different levels through networks, both intra-company and
inter-company, such that collective benefits can be achieved. These
networks, and the processes through which they are generated,
display a complexity and variety that is still poorly understood.
Particularly for the energy networks in EIP, they are quite different
from traditional urban or industrial energy systems [3]; because
many companies in EIP produce and consume energy at the same
-based
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time, this shift from consumer to prosumer blurs the distinction
between supply side and demand side in energy systems, which
brings additional complexity to the design and optimization of
EIP energy systems [4,5]. The typical schematic of EIP energy sys-
tem is shown in Fig. 1. As shown in Fig. 1, in EIP there are usually
multiple companies serving as part of the energy network; sequen-
tially, knowledge management becomes a main barrier for efficient
energy utilization in EIP. Knowledge management refers to the
process of creating, sharing and using knowledge; in the context
of EIP, since there are various companies participating in the IS,
thus there is possibility that one company is not aware that its
waste energy can be utilized by other companies and viceversa.
To overcome such heterogeneity, there must be a bridge linking
all the companies together in terms of knowledge sharing; usually
Knowledge-Based System (KBS) plays such a role.

A Knowledge-Based System (KBS) is defined as ‘‘a computer
program that reasons and uses a knowledge base to solve complex
problems” [6], the complex problem in this paper turns out to be
energy utilization in EIP. In a broader sense, KBS belongs to the
so-called Information and Communication Technologies (ICT). In
fact, in 2008 the European Union (EU) pointed out that ‘‘addressing
the challenge of energy efficiency through information and com-
munication technologies” could significantly improve the energy
efficiency across the whole society [7]. Unsurprisingly, application
of KBS in energy sector has become an active area of research for
the past two decades. James et al. [8] developed KBS for integrated
modelling of urban energy system, the database of this tool con-
tains models of different energy conversion and transportation
technologies; the tool was applied to a case study of a UK eco-
town and it showed its capability to screen the most proper energy
conversion technologies and transport network for the town. Kon-
topoulos et al. [9] presented a KBS approach for optimizing domes-
tic solar hot water system. The main function of the delivered
approach is decision making support. In their research, the KBS
was able to select the optimum system configuration according
to different criteria through a user-friendly online interface.
Ramakumar et al. [10] presented a KBS approach for the design
of integrated renewable energy system. This approach can find
the optimal combination of renewable energy sources and end-
use technologies based on lowest capital cost criteria. The useful-
ness of the proposed approach is proved through an application
case of renewable energy system design. Abbey et al. [11] proposed
a KBS for control of two-level energy storage for wind energy sys-
tem. The knowledge-based management algorithm can better
schedule the power from two levels compared to an alternative
scheduling approach. In such a context, the proposed study aims
to demonstrate the possibility of using KBS to increase energy effi-
ciency of EIP.

The necessity and benefits of applying KBS in EIP energy man-
agement are also closely related to the emerging trend of Industry
4.0 and Internet of Things (IoT). Industry 4.0 is a newly emerging
conception of industrialization, it creates what has been called a
‘‘smart factory” [12]. Within the modular structured smart facto-
ries, cyber-physical systems monitor physical processes, create a
virtual copy of the physical world and make decentralized deci-
sions. In the future scenario of Industry 4.0, networking and inte-
gration of different companies through consistent integration of
information and communication technology is allowed. IoT is a
key enabler for Industry 4.0. IoT allows to collect and exchange
data through network. However it is expected that during the data
fusion process, great difficulties will emerge: for instance, two
databases from different sources may use different identifiers for
the same concept; or the statistics from one agent can serve as feed
stream for another software agent while the format heterogeneity
between them will hinder the possibility of autonomous commu-
nication. In all these cases, an ontology intermediary to enhance
Please cite this article in press as: Zhang C et al. Knowledge management of e
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the performance of linked data which means that the capability
of KBS to deal with complex and unstructured data, makes it indis-
pensable in knowledge management of complex systems such as
EIP.

In the future scenario of Industry 4.0 and IoT, knowledge man-
agement in EIP could be totally different from what it is now. The
current design and optimization approaches that need large-scale
human intervention will not be suitable in such application con-
texts. Considering the complexity and heterogeneity of processes
and operations occurring in EIP, traditional human-based
approaches may need to deal with large amount of information
every day, which would result in huge human resources to be con-
sumed. Hence developing KBS that can properly handle the com-
plex and unstructured big data from EIP seems to be a promising
trend in the future scenario of Industry 4.0. At least two requisites
must be fulfilled in order to develop such a KBS: firstly, an explicit
knowledge base that contains core concepts as well as the relation-
ships between the concepts within the domain of discourse should
be designed; secondly, the syntax and semantics of knowledge rep-
resentation must be both human-readable and machine-
interpretable to enable effective communication not only between
people, but also between machines. In this context, ontology-based
approach becomes a perfect candidate due to its abilities in tack-
ling these problems.

Based on these background introductions, an ontology-based
approach for knowledge management of EIP is proposed in this
paper. Specifically, firstly a systematic ontology data framework
that can serve as an overall knowledge repository for EIP energy
system is established; secondly, a KBS based on such an ontology,
namely J-Park Simulator (JPS), is described in the paper; finally, the
advantages of KBS based EIP energy management are demon-
strated through a case study. Under such an arrangement, the
reminder of this paper is structured as follows: Section 2 gives a
brief introduction about the fundamentals of ontology, the devel-
opment of EIP energy system domain ontology is also described
in this section; Section 3 describes the ontology-based KBS named
JPS; Section 4 presents the results and discussion of a case study
which demonstrates the system capabilities in reconciling seman-
tic heterogeneity and intelligent decision making; Section 5 sum-
marizes the accomplishments and indicates the roadmap for
future work.
2. State of the art: why ontology?

A key concept in the proposed KBS is ontology. Ontology, philo-
sophically representing ‘‘theory of existence”, is defined as explicit
description of domain conceptions and their relationships in engi-
neering science. While ontology has been an active tool in the com-
munity of artificial intelligence for several years, only recently is
gaining popularity in many other disciplines, such as gene infor-
matics, medicine and energy [13–15]. Three basic components of
ontology are: classes which correspond to concepts in natural lan-
guage, slots which correspond to attributes of concepts, instances
which correspond to examples of certain concepts. More complex
ontology may also have object properties which describe the rela-
tionship between different classes as well as rules and axioms [16].
Since ontology is formalized conceptualization, it needs to be pop-
ulated with instances. A simple example of ontology is given here
to facilitate the understanding of it. In this example, the knowledge
‘‘water has boiling point of 100 �C” is meant to be shared. So, firstly
classes (i.e. material, property and value) need to be defined; for
then slots (i.e. magnitude and unit) are defined; also, the relation-
ship between slots and classes needs to be defined (i.e. ‘‘material
has property, property has value”); and finally, ‘‘water”, ‘‘boiling
point” and ‘‘100 �C” are assigned as instances of material, property
co-industrial park for efficient energy utilization through ontology-based
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Fig. 1. Schematic of EIP energy network.
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and value respectively. The visualization of such an ontology in
human readable format is shown in Fig. 2.

However, a machine-readable format of ontology is also needed
to make it accessible to computers, the most common modelling
language in such forms is Web Ontology Language (OWL) [17]. In
this case an OWL ontology is a Resource Description Framework
(RDF) graph. RDF is a metadata model in the form of subject–predi
cate–object expressions, which is usually referred to as a ‘‘triple”.
So essentially an ontology defined with OWL is no more than a col-
lection of triples. More in particular the machine-readable format
of the example ontology scheme complying with RDF/XML syntax
is shown in Fig. 3: headers specify an ontology about water boiling
point as well as Uniform Resource Identifiers (URI) for different
concepts; object properties and data properties specify the knowl-
edge ‘‘material has property, property has value”; classes and indi-
viduals specify the knowledge ‘‘water is an example of material
which has property of boiling point”.

Back to the specific area of EIP energy management, the task is
to develop an ontology framework that contains the codification of
tacit knowledge in this domain so that the developer’s understand-
ing of this domain can be reused [18]. Regarding ontology develop-
ment, several rules have been specified but it can be stated that
there is no single correct way to design ontology, as long as an
ontology can satisfy the application’s requirements. In develop-
ment of ontology, it is always favourable to consider reusing exist-
ing ontologies. Some ontologies can always be reused in all
knowledge bases, such ontologies are usually called upper ontology
(e.g. the ontology defining very general concepts such as things,
actions etc). The next level of detail is classified as domain ontology,
for example EIP energy system ontology can be treated as a domain
ontology [19]. The last level of detail is application ontology which
is specifically oriented for certain tasks, for example the ontology
of waste heat utilization through Organic Rankine Cycle (ORC)
can be treated as an application ontology under domain ontology
of EIP energy system.

By our investigation, there are several existing ontologies that
can be referred to during the development of EIP energy system
ontology. The first one is OntoCAPE, which is a large-scale ontology
for the domain of Computer Aided Process Engineering (CAPE), it
aims to ‘‘represent all concepts that are related to materials pro-
cessing and the corresponding operating devices” [18]. There are
five different layers in OntoCAPE, namely meta layer, upper layer,
Please cite this article in press as: Zhang C et al. Knowledge management of e
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conceptual layer, application-oriented layer and application-specific
layer. Generally, the reusability of these layers become lower as
they go more specific, so ideally the classes and relationships
defined in meta layer and upper layer can be reused in other
domains, conceptual layer is specifically for chemical engineering
community, the application-oriented layer and the application-
specific layer (collectively referred to as ‘application layers’) extend
the ontology towards concrete applications. Another important
ontology that would be helpful for EIP thermal energy system
ontology development is the e-symbiosis ontology [20]. E-
symbiosis ontology aims to describe the main conception related
to IS , which is the pillar of EIP. This ontology treats all things in
EIP belonging to three classes, namely resource, technology and role.
Each class is further divided into different subclasses by their type,
input and characteristics. The relationships between each one of
them are defined in this ontology; for instance technology can pro-
cess resource, solution provider can provide resource, solution con-
sumer can provide resource, etc. A web platform has been
developed based on this ontology; this platform enables processing
technologies participation in IS due to the benefits of information
sharing and technology provided by the ontology and it is claimed
that this platform has helped to save 4.4 million tons of CO2 emis-
sion, 9.22 million tons of water waste and 0.22 million tons of haz-
ardous gases emission [21]. Based on these references, the domain
ontology for EIP energy system is developed as shown in Fig. 4.

In this study we only focus on the case of process integration of
ORCs as an illustrative example of how the proposed KBS works.
So, a detailed application ontology for process integration of ORCs
is further developed in this study as shown in Fig. 5. In this appli-
cation ontology, waste steam is described as resource whereas
ORCs are described as technology. The relationships between them
are defined through object properties (e.g. technology can process
resource). In Section 4, this application ontology would be used to
facilitate the screening of proper ORCs from ORCs products data-
base so that the proper ORCs can be screened to integrate to certain
processes in EIP. Finally, it has to be pointed out that the applica-
tion ontology for process integration of ORCs is just a small portion
of the EIP energy system domain ontology (refer to Fig. 6). Literally
various application ontologies can be developed based on the
domain ontology with moderate efforts in the future so that the
proposed approach can be applied to more problems. The proposed
ontology is realized in Protégé which is an open-source ontology
co-industrial park for efficient energy utilization through ontology-based
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Fig. 2. An example of ontology in human-readable format.

Fig. 3. The example ontology schema in RDF/XML format.
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editor together with the embedded Hermit reasoner, which can
conduct reasonability inference based on ontology definition.
3. J-Park Simulator: an ontology-based EIP knowledge
management system

In Section 2, the domain ontology of EIP energy system and the
application ontology for process integration of ORCs are success-
fully established. However, ontology is not equal to KBS although
it is the core part of a typical KBS. The process of how a typical
Please cite this article in press as: Zhang C et al. Knowledge management of e
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KBS works is shown in Fig. 7, through the analogy between the
proposed KBS and human decision making process; ontology is
the counterpart of brain in human decision making process which
serves the role of knowledge base in the system. Ideally all domain
human expert’s knowledge should be covered in the KBS so that
relevant information can be called when it is needed. Semantic
query plays the role of communication in the proposed KBS as
opposed to the role of nerve system in human being; semantic
query can facilitate the communication between ontology-based
knowledge and sensor network. Finally, the sensor and actuators
in the sensor network layer can implement the signals sent
co-industrial park for efficient energy utilization through ontology-based
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Fig. 4. Domain ontology for EIP energy system.
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through query, then control and optimize the corresponding phys-
ical entities in EIP energy system. In summary, the developed
ontology should be integrated with corresponding user interfaces
to make a systematic KBS. In this study, the KBS we developed
for EIP energy system knowledge management is named J-Park
Simulator (JPS); a further detailed discussion of the functionality
of the JPS can be found in the official website [22].

The system architecture of JPS is also shown in Fig. 8. It can be
seen from Fig. 8 that in JPS, ontology plays the role of database.
Various kinds of raw data from EIP is stored into the ontology.
There is a simulator applet which can help users to query data from
the ontology as a user interface. Once the ontology receives orders
from the user, it can manipulate the embedded solvers to solve the
problem. Then the solution of the problem can be updated into the
ontology, sequentially communicated to the user through the sim-
ulator applet. In such a manner, the proposed KBS is able to inter-
act with users.
4. Results and discussions

In this section, the capabilities of the proposed KBS through two
case studies will be demonstrated. It is worth noting that these two
case studies are not exhaustive of what the proposed KBS could
handle, indeed it can do muchmore in various aspects such as opti-
mal synthesis, predictive control which have been proved in liter-
ature [23]. However, understanding how the proposed KBS works
in these two cases can facilitate the understanding of how the sys-
tem works in more complicated cases.
4.1. Ontology-based information integration

Overcoming data heterogeneity both structurally and semanti-
cally is a feature of ontology which is illustrated in Fig. 9. In this
scenario, data from different sources, namely A to E in Fig. 9, will
enter the data processing layers through different gateways; then
these datasets will be reorganized in the ontology-based data
warehouse, this is described as ontology based data fusion in
Fig. 9; sequentially the data quality will be enhanced, then the
Please cite this article in press as: Zhang C et al. Knowledge management of e
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fused data can be communicated to either software agents or
human interface for further usage as shown in application layer
in Fig. 9.

In order to better understand how ontology can overcome data
heterogeneity, the following example is given: there are two differ-
ent resources, namely WasteSteam and Exhaust defined in Table 1,
as well as some objective properties and data properties related to
them. In other words, WasteSteam is a resource that has five objec-
tive properties and three data properties; Exhaust is another
resource that has two objective properties and three data proper-
ties. In the proposed ontology, it is also defined that WasteSteam
belongs to the category of heating utility, gas state and waste heat
as shown in Fig. 10(a); whereas Exhaust is a resource of which
we do not know the category it belongs to, as shown in Fig. 10
(a). The coming question is: could the ontology-based KBS tell us
which kind of resource Exhaust exactly is? Is Exhaust cooling utility
or heating utility? Does Exhaust belongs to power or thermal
energy? The engineering problem behind this could be: there are
two entities in an EIP, they are using different terminologies for
describing the same object. If they want to share information
between them totally through computers without human partici-
pation, can the computers be smart enough to figure out the differ-
ent terminologies refer to same object? In our case, can computers
be smart enough to figure out WasteSteam and Exhaust are indeed
the same thing?

In this case, the reasoning ability of ontology works like this:
since Exhaust has data property of Temperature as shown in Table 1,
while Information and Materials do not have such properties, so it
cannot belong to the category of Information or Materials; since
Power has data property of Voltage, while Exhaust does not have
such property, so it cannot belong to the category of Power. It
means Exhaust must belong to the category of ThermalEnergy
because there are only four mutually exclusive classes under the
category of ResourseByType, if Exhaust belongs to none of the
above-mentioned three categories (e.g. Information, Materials,
Power), it must belong to the fourth category (e.g. ThermalEnergy)
as shown in Fig. 10(b). In similar ways, the reasoner of ontology
is smart enough to finally figure out that Exhaust and WasteSteam
are equivalent as shown in Fig. 10(b). In practice, it means the KBS
co-industrial park for efficient energy utilization through ontology-based
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Fig. 5. Ontology for process integration of ORCs.

Fig. 6. Application ontology (i.e. process integration of ORCs) and domain ontology (i.e. EIP energy system).
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Fig. 7. Analogy between human being and knowledge-based system.

Fig. 8. System architecture of J-Park Simulator.

1 It needs to be noted here that the integration of ORC and plants is purely based on
temperature comparison in this paper, this is an oversimplification which serves well
to explain the decision-making process because much more conditions need to be
satisfied to integrate them together in real application. Yet ideally the proposed
intelligent system can tackle all these issues in a similar way that it does temperature
comparison.
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can successfully figure out synonyms through its own reasoning
ability, which is critical for increasing knowledge interoperability
between different businesses in EIP.

4.2. Ontology-based intelligent decision making

The second feature of ontology-based approach is its ability in
intelligent decision making. In particular, it is assumed a case in
which there are five different plants in an EIP that has waste heat
with different available temperatures; meanwhile there are five
different ORCs with different evaporation temperature
Please cite this article in press as: Zhang C et al. Knowledge management of e
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requirements as listed in Table 2 [24]. In such a context, the
ontology-based approach will provide the options for different
plants to match different ORCs based on temperature comparison1.
The task of matching ORCs and plants in Table 2 is very easy for
co-industrial park for efficient energy utilization through ontology-based
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Fig. 9. Ontology-based data integration in the proposed KBS.

Table 1
Properties of WasteSteam and Exhaust defined in ontology.

WasteSteam Exhaust

Objective properties CanBeConsumedBy CanBeUsedBy
CanBeProcessedBy CanBeConsumedBy
CanBeProvidedBy
CanBeUsedBy
CanBeProvidedBy2

Data properties Temperature Temperature
Pressure Pressure
Enthalpy Enthalpy
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humans but not necessarily for machines, because: firstly, the
machine should be aware that ORCs can recover waste heat; in this
way, the connection between ORCs and plants can be built. Secondly
the information about ORCs and plants may be stored in two sepa-
rate databases; thus, the ontology-based approach should be able
to retrieve information from both sources, make use of the retrieved
data, and then facilitate the decision-making process.
Fig. 10. Class hierarchy of resource (a) b

Please cite this article in press as: Zhang C et al. Knowledge management of e
approach. Appl Energy (2017), http://dx.doi.org/10.1016/j.apenergy.2017.03.13
In order to facilitate the ontology-based decision making, an
application ontology for process integration of ORCs needs to be
specified (refer to Fig. 5). In this ontology, ORC is defined as sub-
class of PowerGeneration and RankineCycle, while WasteSteam is
defined as subclass of HeatingUtility, WasteHeat and GasState. The
objective property CanProcess gives the relationship between ORC
and WasteSteam. Another objective property CanBeProcessedBy is
defined as the reverse of CanProcess, which is shown in Fig. 5 as
well.

The ontology of Fig. 5 can then be published in the web and
choose a Uniform Resource Identifier (URI) so that people can
always find it when they want to reuse it. In this paper, a domain
name for putting the URI is currently not available, so the URI is
stored locally. For the server side, Apache Jena Fuseki is used as a
local host. The query language is SPARQL Protocol and RDF Query
Language, which can retrieve data from RDF format database.
Three queries are designed to demonstrate the decision-making
ability of ontology as shown in Table 3, the compact URI definition
is shown in Table 3 as well. In Table 3, the different problems these
queries are targeting are:
efore reasoning; (b) after reasoning.

co-industrial park for efficient energy utilization through ontology-based
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Table 2
Information of ORCs and plant for process integration.

ORC evaporation temperature/oC Plant waste heat temperature/oC

ORC 1: 120 Plant 1: 130
ORC 2: 90 Plant 2: 110
ORC 3: 140 Plant 3: 100
ORC 4: 80 Plant 4: 90
ORC 5: 180 Plant 5: 170

Table 3
Semantic query in the proposed intelligent system (PREFIX whr: <http://www.
semanticweb.org/administrator/ontologies/organicrankinecycle#>PREFIX rdfs:
<http://www.w3.org/2000/01/rdf-schema#>).

Query Result

select *{?OrganicRankineCycle whr:
CanProcess whr:
WasteSteamFromPlant5}

whr: ORC1 whr: ORC2whr: ORC3
whr: ORC4

select *{?WasteSteam whr:
CanBeProcessedBy whr:ORC1}

whr:
WasteSteamFromPlant1whr:
WasteSteamFromPlant5

C. Zhang et al. / Applied Energy xxx (2017) xxx–xxx 9
� The first query aims to find out all ORCs that can process waste
steam from plant 5. URIs for plants and ORCs are used in this
semantic query to accurately refer to the corresponding entities.
The result of this query is ORCs 1, 2, 3, 4, which means theoret-
ically integration of plant 5 and ORCs 1, 2, 3, 4 is possible.

� Similarly, the second query successfully finds out the waste
steam that can be processed by ORC 1 coming from Plant 1
and Plant 5.

The query results themselves might not be exciting, yet given
the condition that all these queries are based on machine-
readable language, it will enable completely contemporary com-
munication between machines without human intervention if
Fig. 11. Intelligent process integration of ORC in t
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proper cyber-infrastructure is set up as shown in Fig. 11. Ideally
what would happen in the scenario described by Fig. 11 is: the sen-
sors embedded in chemical plants can monitor the temperature of
waste steam, then the sensor output flows into the ontological rep-
resentation of plants; meanwhile the ontological representation of
ORCs is stored at another remote database. By using the semantic
queries designed in Table 3, the information from both databases
can be retrieved. Based on the query results, some decision-
making can be made and sent to some intelligent agents. The intel-
ligent agents can further implement the queries by communicating
with the actuators. In such a manner, the intelligent process inte-
gration of ORC can be fulfilled. It also has to be underlined that
since there are only five ORCs in the ORC databases in the given
example, the power of the proposed KBS is not fully unleashed. If
more ORCs (i.e. serval thousands) are included in the database,
the advantages of KBS overall human becomes then clear because
literally human based approach would not even find the most
approximate matches between ORC and waste heat, let alone allow
the possibility of contemporary communication.

Finally, it should be noted that the success of such a contempo-
rary automation also depends on well-designed cyberinfrastruc-
ture as well as complex sensor network, yet as the digitalization
development for modern industrial processes [25,26], it is not
something impossible, on the contrary, the authors see it as a great
opportunity in the future scenario of Industry 4.0.
5. Conclusion

A Knowledge-Based System (KBS) for Eco-Industrial Park (EIP)
knowledge management was proposed in this study. Knowledge
management, which means the process of creating, sharing and
using knowledge, is important in EIP because it can increase
knowledge interoperability within different companies in EIP.
Ontology is the core conception of the proposed KBS, ontology is
he future scenario of Internet of Things (IoT).
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the formalized conceptualization of related entities in EIP. By
deploying ontological representation of EIP, a virtual EIP can be
constructed in the cyber space as counterpart of real EIP in physical
world. Since there are so many conceptions related with EIP, thus it
is neither possible nor desirable to cover all EIP related conceptions
in one study; for this reason, the paper only focusses on the energy
systems in EIP as ontology modelling object in this paper. The
domain ontology for EIP energy system is established in this study.
More specifically, the application ontology for EIP waste heat uti-
lization through ORC is also detailed in the paper. The relationship
between these two ontologies are: domain ontology includes
application ontology; application ontology is part of domain
ontology.

Based on the developed domain ontology and application ontol-
ogy, a KBS for EIP energy system, namely J-Park Simulator (JPS), is
proposed in this study. In the system architecture of JPS, there are
three key components: ontology, query and sensor. Interaction of
JPS with users is realized through a Java-based Applet. In order
to demonstrate the capabilities of the ontology-based approach,
two case studies are discussed in the paper. In the first case study,
two different resources (e.g. Waste Steam and Exhaust) together
with their related properties are defined. Then ontology can suc-
cessfully understand synonyms through its own reasoning ability,
which is critical for increasing knowledge interoperability between
different companies in EIP. This functionality of overcoming data
heterogeneity is of vital importance in EIP knowledge management
because typically data from different companies in EIP are hetero-
geneous either structurally or semantically. In the second case
study, two databases about ORCs and process waste heats are
given, the ontology is expected to select appropriate ORCs from
the ORCs database to match the process waste heat profile.
Through the designed SPARQL query, the ontology-based
decision-making is done by using two disparate databases from
different sources (e.g. one from ORCs, the other from process waste
heat profiles). The query results can be further sent to intelligent
agents to be implemented. In such a manner, intelligent control
of process integration can be fulfilled.

Through the case studies covered in the paper, it can be con-
cluded that ontology is an effective tool for knowledge manage-
ment of complex systems such as EIP. By applying KBS such as
JPS to EIPs, more efficient energy utilization can be achieved
because KBS can bridge the communication gaps between different
companies in EIP, sequentially more potential links can be estab-
lished to improve the overall energy efficiency of the whole EIP.
Further work will be done in expanding the domain ontology, val-
idating the usefulness of this ontology-based approach through
more applications, or even breaking out of the realm of virtual
world by using properly designed sensors and actuators to see
how ontology can allow the possibility of artificial intelligence in
EIP energy management.
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