
Internet of Things for Smart Homes:
Lessons Learned from the SPHERE Case Study

Atis Elsts, George Oikonomou, Xenofon Fafoutis, Robert Piechocki
Department of Electrical and Electronic Engineering,

University of Bristol, UK

Abstract—Building large-scale low-power Internet of Things
(IoT) systems remains a challenge, as these systems have to
meet the requirements of reliability, robustness, and energy-
efficiency while running on resource-restricted microcontrollers
without memory protection. In this paper we present the case
study of IoT in SPHERE (Sensor Platform for HEalthcare in a
Residential Environment), a project with the objective to develop
a multipurpose, multi-modal sensor platform for monitoring
people’s health inside their homes. Atypically for academic
projects, in 2017 the SPHERE software is going to be deployed in
a 100-home study in volunteer homes, therefore it has to satisfy
many real-world requirements. We discuss the requirements for
IoT networking in this project, the IoT architecture (built on
top of Contiki OS), software engineering challenges and lessons
learned, as well as some of the general aspects that still make
embedded low-power IoT software development difficult.

I. INTRODUCTION

SPHERE1 (Sensor Platform for HEalthcare in Residential
Environment) is an EPSRC interdisciplinary research collab-
oration with the objective to develop a multipurpose, multi-
modal sensor platform for monitoring people’s health inside
their homes [1]. In 2017 the SPHERE software is going to be
deployed in a 100-home study in volunteer homes, where it is
expected to be working for a period up to one year. Require-
ments such as these are not typical for academic software
projects; as a consequence, the software has many require-
ments common with commercial applications: for instance, it
has to be robust enough to adequately function outside of the
lab for prolonged duration without any maintenance.

Even though there is a proliferation of commercially avail-
able wearable activity trackers and out-of-the box home-
sensing systems, they are not a good fit for an academic project
such as SPHERE. First, they lack flexibility and openness:
these commercial solutions do not typically offer access to
the raw data as required by the project. Second, these systems
tend to store the data in a cloud, which is against the ethics
requirements of SPHERE.

The solution chosen in the SPHERE project is to build a
custom low-power embedded IoT system, based on state-of-
art operating systems, libraries and network stacks. We chose
the Contiki OS as the basis for our system, as it is one of
the leading open-source operating systems in this field. On
top of that, we run a fully standardized and interoperable
IEEE 802.15.4 PHY / IEEE 802.15.4 TSCH / 6LoWPAN /
IPv6 / CoAP network protocol stack. The hardware used is

1http://irc-sphere.ac.uk/

Texas Instruments CC2650 System-on-Chip (SoC), an ARM
Cortex-M3 based Class-1 [2] IoT device with 20 kB RAM and
128 kB of flash memory. We believe that the problems faced in
SPHERE are typical for projects using low-power embedded
IoT systems. The contributions of this paper are:

• enumeration of the requirements for smart-home IoT sys-
tems (Section II);

• architecture of the system: a combined BLE and 6LoWPAN
network of heterogeneous devices (Section III);

• analysis of the challenges to support the requirements and
corresponding lessons learned (Section IV);

• last but not least, the implementation of the system2.

II. REQUIREMENTS

The SPHERE system for environmental and wearable data
collection has to satisfy the following requirements (in approx-
imate order of importance):

• R1: Core functionality. The IoT network has to collect
readings from heterogeneous, spatially separated wireless
sensor nodes, some of which are mobile, and deliver the
readings to a Linux host with cumulative data rate up to
50 kbps.

• R2: Security. The health-related data is confidential and
must be encrypted when transported over the air.

• R3: Energy efficiency for parts of the system. The battery-
powered environmental sensors have to support hard con-
straints on battery lifetime: 1 year minimum, bounded by the
maximal duration of SPHERE data collection experiments.

• R4: Time synchronization. Collected data should be accu-
rately time-stamped with 10 ms or higher granularity and a
comparable maximal network-wide timing error.

• R5: Robustness. The system should be able to self-repair &
self-heal in order to function under limited maintenance, as
the number of visits in people’s homes should be minimized.

• R6: Reliable data delivery. The system should provide
close-to-100 % packet delivery rate, assuming typical wire-
less link qualities for short links in indoor home envi-
ronments (≥50% packet reception rate) and assuming no
hardware and network deployment problems.

• R7: Predictability. The users of the system should be able
to know before actually deploying the system what are the

2We plan to release the SPHERE IoT code at https://github.com/
IRC-SPHERE. Bugfixes are continuously contributed to the mainline Contiki.

978-1-5090-5249-3/17/$31.00 ©2017 IEEE978-1-5090-5873-0/17/$31.00 ©2017 IEEE

SPHERE network

Temperature

Humidity

Pressure

Light level

Presence802.15.4 PHY

TSCH

6LoWPAN

IPv6 / RPL

CoAP

Env. sensor node

802.15.4 PHY

TSCH

6LoWPAN

IPv6 / RPL

CoAP

BLE

Forwarder node

Temperature

Humidity

Pressure802.15.4 PHY

TSCH

6LoWPAN

IPv6 / RPL

CoAP

BLE

Gateway nodeLinux host

SLIP

tun
SLIP over

USB

BLE

BLE

802.15.4
802.15.4

802.15.4

Accelerometer

Gyroscope

SPG-2 SPG-2

S
P
E
S
-2

Wearable node

BLE

SPW-2

Fig. 1: The SPHERE IoT architecture.

minimal link-qualities, maximal component failure rates,
etc., for the system to provide acceptable performance.

• R8: Visibility. The system should provide a continuous
stream of run-time performance statistics.

• R9: Interoperability. If possible, the system should stick to
existing low-power IoT standards and protocols in order
to (1) be amenable to future extensions with third-party
components; (2) reduce the learning time for new personnel.

The requirements are fairly typical for low-power IoT systems.
Note that additional requirements will appear if the SPHERE
system is extended with new applications; for example, having
low latency would become an important requirement if real-
time human pose estimation were added as an application.

III. SYSTEM OVERVIEW

There are two main data sources (R1) in the system:
environmental sensors and on-body sensors (Fig. 1). The
environmental sensors are attached to SPES-2 and SPG-2
nodes [3], the on-body sensors: to SPW-2 wearable nodes [4].
All the nodes are based on TI CC2650 System-on-Chip [5],
selected because its flexibility: it supports both IEEE 802.15.4
and Bluetooth Low Energy (BLE) communication stacks. The
CC2650 also supports AES-128 hardware acceleration, which
the nodes use to encrypt the packets sent over the air (R2).

The network is dual-stack. The stationary part uses open
source 6LoWPAN stack that is based on IEEE 802.15.4 physi-
cal layer and implemented in Contiki, a major open-source IoT
OS. The wearable node code is based on Texas Instruments
RTOS and use BLE, as this communication standard offers
better support for mobility compared to 6LoWPAN / RPL.
The data produced by the wearable nodes is picked up by the
dual-radio SPG-2 nodes and forwarded by the IEEE 802.15.4
network stack, as this standard offers a more mature support
for multihop compared with BLE.

The environmental sensors are battery-powered (R3) low-
rate data sources, sampling with ≤0.2 Hz frequency, while the
wearable nodes produce much more data: they sample the 3-
axis accelerometer with 12.5 or 25 Hz frequency depending
on configuration settings. Project requirements mandate that
all the raw data is collected, leading to a high datarate in the
IEEE 802.15.4 network: up to tens of packets per second.
At the MAC layer, we use Contiki implementation [6] of
the IEEE 802.15.4-2015 TSCH protocol to efficiently manage
the medium access, avoid packet collisions, and synchronize
time (R4). As compared to CSMA-based low-power IoT
MAC protocols, TSCH provides high reliability (R6) and
predictability (R7) through scheduled operation and channel-
hopping [7], exploiting frequency diversity to fight external
interference and multipath fading.

At the network layer, we use IPv6 on top of TSCH as
described in the emerging 6TiSCH standards [8]. This allows
to reuse (R9) RPL for routing and 6LoWPAN for IPv6
header compression. The application layer in turn is based
on CoAP, which supports both the client/server traffic pattern
through client-initiated queries for server resources, and the

TABLE I: SPHERE code size (w/o comments & empty lines).

Component Lines of code Language

CoAP resources 2436 C
Other application code 1059 C
Newly-developed sensor drivers 946 C
Newly-developed SoC drivers 633 C
802.15.4 / BLE bridging code 342 C
Additions to TSCH 1374 C
Additions to SLIP 265 C
The gateway script 3199 Python

subscribe/notify traffic pattern through the “observe” feature.
While each observation of a resource must be similarly initi-
ated by a query from a client, subsequent data coming from
that resource is autonomously published by the server, either in
event-driver or periodic fashion. The sensors supported by the
nodes as well as monitoring data are all exported as observable
CoAP resources with remotely controllable reading period and
other settings. We opted for CoAP as opposed to MQTT or
HTTP because CoAP uses UDP as the transport protocol,
while the latter two require TCP, which is known to suffer
from performance problems in low-power wireless networks.

SPES-2 and SPG-2 nodes have two hardware watchdog
timers, capable of rebooting the system in case of a software
failure (R5): one that part of the CC2650 SoC, and one that
is a dedicated chip mounted on the printed circuit board.

Table I illustrates the approximate development effort for
the SPHERE IoT software components. Using a SoC already
supported by the Contiki OS reduced our total effort signifi-
cantly; several existing TI SensorTag sensor drivers were also
reused. Using an existing network stack was an even bigger
gain; while the application level code for CoAP resources is
high is size, it is low in complexity. The main effort here was
to port TSCH to the CC2650 hardware platform, and extend
TSCH to support our scheduling requirements and to collect
more performance metrics (R8).

The data coming from the sensor network is received by
the SPHERE gateway script running on a Linux host. The
script implements a reliable version (R6) of the SLIP protocol,
CoAP client & server, bidirectional CoAP / MQTT translation,
and an HTTP server as an alternative option for data access
and node control. We use aiocoap, a CoAP library based
on Python 3 asynchronous I/O. It has coroutine-based API
and consequently offers the simplicity of thread-like syntax
without the complexities of locking; a design and benefits
similar to those of the Contiki protothread API.

Any changes in the system are first prototyped using a
mock-up platform called Z1x in the Cooja simulator, which
is also used for regression tests (R5) of the full IoT system.

IV. LESSONS LEARNED

A. Energy efficiency

1) Partitioned Power Management: Older chips tradition-
ally had preset “power modes” (or profiles) that were built
into the chip. For example, the TI CC2538 SoC [9] has
6 power consumption profiles: “Active”, “Sleep mode” and
four additional modes called “Power Mode 0” (PM0), . . . ,
PM3. In all PMs 0-3 the MCU is in deep sleep. Each mode
offers incremental power savings by turning off additional
chip peripherals, but also adds limitations in terms of wake-
up sources. For example, in PM0 it is possible to leave some
clocks running, whereas in PM1 all system clock sources are
powered-down. PM3 is the mode that achieves the lowest
power consumption, but the chip can only be woken up by
an externally triggered GPIO interrupt. To enter a low power
mode, a developer has to follow these steps:

1) shut down / configure peripherals (LEDs, sensors, etc.);

0.0 0.5 1.0 1.5 2.0 2.5
Radio duty cycle, %

0
200
400
600
800

1000
1200
1400

Li
fe

ti
m

e
,
d
a
y
s

0 1 2 3 4 5
MCU duty cycle, %

0
200
400
600
800

1000
1200
1400

Li
fe

ti
m

e
,
d
a
y
s

Fig. 2: Estimated node lifetime, assuming a 2600 mAh
battery from which 90 % of power can be. Left: variable radio
duty cycle, MCU duty cycle fixed to 2.0 %. Right: variable
MCU duty cycle, radio duty cycle fixed to 1.0 %.

2) select one of the pre-defined power modes by writing
some in a hardware register;

3) configure wakeup sources;
4) enter this power mode.

This approach is relatively simple to support in software, but
does not allow the developer to power on/off individual chip
peripherals.

Compared to their predecessors, chips of the TI CC26xx
and CC13xx family have a much more sophisticated power
management module [10]. Power profiles are no longer pre-
determined. Instead, the chip is partitioned into Voltage Do-
mains (VDs): MCU and Always-On (AON). Within each VD
reside Power Domains (PDs) and within each PD reside digital
modules. The clock to each module can be gated individually.
For example, the UART module resides within the “SERIAL”
PD, which is within the MCU VD. The radio module resides
on a separate domain that can also be controlled individually.

This design gives very fine-grained flexibility to the de-
veloper: it is possible to gate clocks to digital modules, or
power-down digital modules and PDs on an individual basis.
Additionally, some digital modules have retention that can be
disabled by the developer.

Contiki’s port for MCUs of the CC13xx/CC26xx fam-
ily takes full advantage of the chip’s fine-grained power-
management capabilities. Depending on requirements, it is
possible to enter a state of extremely low energy leakage,
or to sacrifice some energy consumption in order to keep a
peripheral powered on (e.g., to use it as a wakeup source).
The SPHERE code uses Contiki’s low-power module (LPM)
and achieves as little as 3µA power-down current on SPES-2
nodes (while retaining RAM and keeping some sensors, such
as the PIR, active), leading to a high system lifetime (Fig. 2).

However, CC26xx’s extremely low power consumption
comes at a cost. Powering-off peripherals and PDs results in
an increase of the time required to wake-up. Of particular im-
portance is the state of the 24 MHz crystal oscillator (XOSC),
which is required for radio operation. The chip will not enter
deep sleep unless the XOSC is powered-down, but the XOSC
has a relatively long startup time. A trade-off can therefore
be made when the anticipated duration of low-power state is
short. Leaving the XOSC powered will have a negative conse-
quence on power consumption, but the wake-up sequence can
be sped-up by an order of milliseconds. Conversely, for longer

periods of low-power operation, it makes sense to power the
XOSC off in order to achieve lowest possible consumption.
Contiki’s wake-up sequence takes into consideration the long
XOSC startup time. The sequence requests a XOSC power-up
immediately after a wake-up event occurs. The sequence then
continues with powering-up and initializing other modules,
while the XOSC is powering-up in parallel. It is only required
to block waiting for the XOSC before calibration of the radio’s
frequency synthesizer. By parallelizing XOSC power-up and
the chip’s startup sequence, the total wake-up time is reduced.

2) Asynchronous Sensor Drivers: Many platforms currently
distributed as part of the Contiki release use synchronous sen-
sor drivers. To summarize, when the user application requests
a sensor reading, the driver will power-on the sensing element
(e.g., a light sensor) and will block waiting for a reading to
become available. This is adequate for sensing elements that
have a very small startup time, for example in the order of µs.

However, the SPHERE platform uses a number of sensors
with long startup times. In the example of the light sensor, a
Texas Instruments OPT3001 [11], the time between the power-
on and the availability of a reading can be up to 880 ms. A
synchronous sensor driver will therefore block waiting for up
to this time interval waiting for a reading to become available.
This has a number of disadvantages:
• All other operating system tasks will be delayed until the

driver has finished sampling the sensor for a reading. This
can delay, for instance, the transmission of a network packet.

• While the driver is waiting for the reading to become
available, the MCU is powered on and operating at full
speed, wasting energy.

To overcome this, SPHERE’s sensor drivers are asynchronous
and have been built-on Contiki’s event-driven design. Sam-
pling a sensor is undertaken by following the procedure below:

1) The application requests a sensor value.
2) The driver triggers the sensor’s power-up sequence and

returns immediately.
3) The driver monitors the sensor for availability of a new

reading. When a new reading is available, the driver
latches it and powers down the sensor.

4) The driver uses a broadcast event to notify all processes
that a new reading is available.

5) The user application receives this event and retrieves the
reading from the driver.

This design allows other tasks to execute or even the chip
to enter a low-power state while the sensor is powering-up,
therefore saving considerable energy.

B. Memory management
TI CC2650 does not have a memory mapping unit (MMU)

or a memory protection unit (MPU), therefore the operating
system is not able to recognize memory access violation or to
isolate different components from each another. While some
of ARM Cortex-M3 based microcontrollers have an MPU,
CC2650 is not one of them [5], citing “cost constraints”.
Furthermore, Contiki and other state-of-art IoT OS do not have
software support for this feature.

.data segment

g
ro

w
th

Stack

_end

Pattern-filled
region

Fig. 3: Stack and .data segment layout on sensor nodes.

CC2650 has 20 kB RAM, which is not a large amount for a
32-bit system, taking into account the Contiki OS footprint and
the large RAM requirements for network neighbor and routing
tables [12]. Not having a neighbor or a routing table entry for
an active neighbor can severely reduce the performance and
stability of the network [13]; consequently, it is optimal to
reserve as many entries as possible, aiming for an entry for
each device in the network.

Contiki does not use dynamic memory allocation; the end of
the allocated memory (.data and .bss segments) on many
platforms is marked by a linker symbol named _end (Fig. 3).
However, at the end of the physical memory space there is a
stack region that “grows” in the direction of lower addresses.
Therefore there is a real possibility of the stack region over-
lapping with the .data/.bss segments, which due to the
lack of MPU cannot be detected in hardware. Nevertheless,
most Contiki HW platform drivers do not include software-
based stack overflow protection. The sole precaution CC2650
platform offers is “reserving” 256 bytes for the stack during
the linking stage.

As a result, during the testing the system experienced stack
overflow on the gateway node, which manifested itself in a
cryptic fashion: as random reboots due to the the watchdog
timer expiring. The real cause of that was memory corruption,
and it was fixed by reducing static memory usage. We found
that 256 bytes are not sufficient for the stack: using a pattern-
fill technique (Fig. 3), we were able to measure the real
stack usage of the SPHERE networking stack during a pilot
deployment and found it to be as high as 1820 bytes on
one node; in particular, the Contiki CoAP implementation is
characterized by heavy stack usage. Our stack usage estimate
is now one of the stats periodically collected from the network.

C. Robustness and self-repair

The deployed system has to survive occasional software,
hardware, and power problems by reliably coming back to a
good state. Contiki has support for a watchdog timer, which
reboots the system when software becomes stuck in a loop.
However, we faced several problems with this functionality.

Firstly, this watchdog timer is necessarily disabled during
the so-called deep-sleep mode of CC2650, in which the MCU
is not active. The CC2650 port of the Contiki was known to
suffer from occasional “deep freezes” when the system does
not wake up from deep sleep. After code changes in the power-
management module, this bug has not been observed anymore.
Nevertheless, there was not a sufficient number of devices or
time to verify that with high certainty before the final hardware

revision of SPHERE device. Even a low-frequency failure (for
example, once per 2-3 years on each node) would still lead
to unacceptably high number of maintenance visits in a 100-
home, 1000+ node deployment. Secondly, the watchdog reboot
of the system did not always bring the system back to a good
state. In particular, if just one MCU rebooted from the two
MCU present on SPG-2 nodes, software initialization of the
SPI connection between the two sometimes would fail.

We solved the issues by adding an external, very low-power
watchdog (Texas Instruments TPL 5010, 35 nA operating
current) to the system that operates independently of the
MCU and reboots both MCUs on the SPG-2 nodes. This
shows that real-world IoT systems can immensely benefit from
software/hardware co-design: in this case, rather than spending
hundreds of hours verifying that the software bugs have been
fixed for good, we introduced a fail-safe that would restore
the operation even if the software is not perfect.

D. Reliability

The Contiki implementation of the IPv6-over-TSCH stack
[6] is known to provide high end-to-end packet delivery rate
(PDR): 99.99 % and more, even in challenging conditions [7].
Nevertheless, in our first testbed experiments in the SPHERE
house [1], a little-interfered environment we only received
99.9 % PDR, i.e., had a ten times higher proportion of dropped
packets. Upon inspection, the problem was even worse on the
gateway node which did not use wireless connections at all,
but only managed to deliver 99.7 % of packets. The issue was
caused by packet loss on the wire, on the serial-over-USB
interface and only showed up in real-world conditions.

Contiki does not offer any reliability features for the SLIP
protocol. Besides the packet loss, this might occasionally lead
to corrupt data being collected, which would have adverse
impact on the main results and goals (e.g., human activity anal-
ysis) of SPHERE. We ameliorated the issue by (1) appending
16-bit CRC and 8-bit sequence number for packets sent over
serial line and (2) requesting that packets with invalid CRC are
retransmitted by sending a NACK upon their reception. Our
experiments show that buffering 4 most recently transmitted
packets is sufficient to achieve 100 % PDR over the SLIP.

We faced an additional serial port related problem during
the integration testing phase, when an unrelated Node-RED (a
popular visual programming tool for IoT) based component
running on the Linux host would occasionally try to read data
from the gateway node’s serial connection, corrupting the data
received by the gateway script.

Recently, connecting IoT to a LAN through an Ethernet
connection has become a more popular option. Ethernet of-
fers reliable, high-speed connectivity, a very-well understood
multiple-access MAC level (instead of the point-to-point RS-
232), and due to latching RJ45 connectors, safety from acci-
dental physical disconnections. In retrospect, connecting the
border router through Ethernet would have been a better idea,
as it would not only make the system more robust, but also
save a week or more of the development time.

E. Other issues

Security The Contiki OS offers IEEE 802.15.4 compati-
ble link-layer security; however, a key distribution scheme
is missing. In the SPHERE project, we have a centralized
database of pre-shared keys, which are manually programmed
(“flashed”) in the sensor nodes. This adds some administrative
overhead, as a single project wide binary image cannot be
used. Instead, each device has to be separately prepared before
its deployment. This scheme is also much more limited, when
compared to e.g., the dynamic establishment of session keys
in the WirelessHART industrial standard.
Time scheduling In line with the very limited API that
Contiki offers for memory management and energy manage-
ment between components, there is no system-level API to
reserve blocks of time or even to disable interrupts in a
platform-independent way. One issue we faced was related to a
water flow sensor driver developed by an undergraduate intern.
Initially, the driver blocked for 400 ms to count rising edges
on the GPIO pin. With high rate TSCH and BLE traffic in the
network, this would lead to either (1) many missed packets (if
the driver disabled interrupts) or (2) invalid sensor readings (if
system interrupts were able to pre-empt the operation of the
driver). We reduced the time-to-read to 20 ms, ending up with
a lower-granularity, but more accurate sensor.
Visibility Contiki is mainly used as a research OS, and
shaped primarily by the expectations and assumptions of the
research community. For example, one frequent assumption
is that over-the-serial logging is available, which is not the
case in real deployments. Even this logging is limited and
not enabled by default – for example, oversized packets are
silently dropped by the stack without any indication.

The SPHERE deployment requires continuous monitoring
for alerts, debugging, as well as performance analysis and
replication of interesting situations in the lab based on the real-
world network performance traces. We spent significant effort
to introduce additional network performance statistics (for
example TSCH per-channel statistics) and to make them avail-
able as CoAP resources. These resources are queried every
30 min by the SPHERE gateway script and provide statistics
about per-channel per-neighbor packet reception rates, TSCH
time synchronization performance, background noise RSSI
levels, node energy usage estimates, stack usage, etc.

V. DISCUSSION

What has (and what has not) changed? Software engi-
neering for wireless sensor networks (and hence low-power
IoT) is difficult as this field has both the complexity of em-
bedded system programming and the complexity of distributed
system programming, areas considered difficult on their own.
In a well-known paper from 2006, Langendoen et al. talk about
the practical difficulties in deploying a sensor network [14].
Similarly to this work, they used what at the time was a state-
of-art operating system and protocol stack.

It is fair to say the research community has made large
progress on solving some of the problems. In particular,
compared to the low-power CSMA used by Langendoen et

al., the MAC layer we’re using (TSCH) is: (1) low-power
(<1 % [7] vs. 11 % radio duty cycle [14]), (2) highly reliable
(has >99.99 % PDR [7]) in varied environments thanks to the
channel hopping feature, (3) collision-free if required, more
predictable, and supporting higher data rates due to its TDMA
scheduled nature, (4) standardized [15] and interoperable.

On the other hand, many of the problems have not been
solved. Similarly to Langendoen et al., our system experienced
random, difficult-to-debug watchdog reboots due to various
reasons. Although routing protocols have advanced a lot,
for example, in terms of standardization, the reliability of
the modern 6LoWPAN / RPL network stack is still badly
affected by the limited number of neighbor and routing table
entries [13]. This paper once again raises the issue of the
scarcity of easily available statistics and tha lack of visibilty
of the network state. Finally, we are still lacking component
sandboxing in the state-of-art IoT operating systems.

Everything is connected. One overreaching theme in
Section IV is the lack of component isolation. Unwanted
interactions between components have negative impact on
energy consumption, cause random failures because of mem-
ory overflows, initialization failures after reboot, and resource
scheduling problems. The unavoidable high coupling between
components puts a very high requirement on the developers of
the system. Since the components cannot be safely sandboxed,
for each of the components used by the system, a person with
expertise in the internals of that component must either be part
of the team or easily available for consultations. Furthermore,
some bugs only became obvious when an expert in several,
functionally unrelated parts of the system was involved.

Going higher? During the last decade, a lot of research in
software development for low-power IoT has proposed new,
higher-level software development abstractions, languages,
and tools [16] [17] [18]. Their main promise is to reduce the
risk for the developers to “shoot themselves in the foot”, and
their approach is to reduce the number of unsafe, low-level
operations they need to perform, or to prohibit some operations
altogether (often implicitily, by restricting API capabilities).

However, while the approaches and tools are helpful, it is
clear that at the moment they cannot solve all of the problems
discussed in this paper. Typically they do not attempt and
often cannot deal with problems that arise at the OS level,
e.g., lack of API for resource management, or due to hardware
restrictions, e.g., lack of MPU. (It is interesting to note that
there has been some regress in terms of the API offered by C-
based operating systems such as Contiki, compared to the API
of the component-oriented TinyOS [19].) Therefore the user of
these high-level abstractions cannot be reliably shielded from
problems appearing at the lower-levels, resulting in so-called
“leaky abstractions”. Furthermore, some of the approaches
can have a detrimental effect: for example, because of the
additional memory usage required to support some of the high-
level abstractions the stack overflow issue would become more
likely if they were used.

VI. CONCLUSION

We have presented the requirements and the architecture
of the SPHERE IoT system. The focus of this paper is on
some of the lessons learned and challenges faced during the
development phase, namely, the challenges to achieve energy
efficient operation in low-power modes, to detect and avoid
stack memory overflows, to recover the system after reboots,
to have reliable data delivery throughout the system, to avoid
time scheduling conflicts, and to have high visibility of the
state of the network in real deployments. We identify high
coupling between unrelated components as the main cause of
several problems, manifested in the form of unpredictable and
undesirable interactions.

ACKNOWLEDGMENTS

This work was performed under the SPHERE IRC funded
by the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC), Grant EP/K031910/1.

REFERENCES

[1] P. Woznowski et al., “SPHERE: A Sensor Platform for Healthcare in
a Residential Environment,” in Designing, Developing, and Facilitating
Smart Cities: Urban Design to IoT Solutions. Springer, 2017.

[2] C. Bormann et al., “RFC 7228: Terminology for Constrained-Node
Networks,” https://tools.ietf.org/html/rfc7228.

[3] X. Fafoutis et al., “Demo: SPES-2 – A Sensing Platform for
Maintenance-Free Residential Monitoring,” in EWSN 2017.

[4] X. Fafoutis, B. Janko et al., “SPW-1: A Low-Maintenance Wearable Ac-
tivity Tracker for Residential Monitoring and Healthcare Applications,”
in Proc. Int. Summit on eHealth (eHealth 360), 2016, pp. 294–305.

[5] “CC2650 SimpleLink Multistandard Wireless MCU,” SWRS158, Texas
Instruments, 2015.

[6] S. Duquennoy, A. Elsts, B. A. Nahas, and G. Oikonomou, “TSCH
and 6TiSCH for Contiki: Challenges, Design and Evaluation,” in IEEE
DCOSS, 2017.

[7] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH,” in
ACM SenSys, 2015, pp. 337–350.

[8] “IPv6 over the TSCH mode of IEEE 802.15.4e IETF working group,”
https://tools.ietf.org/wg/6tisch/.

[9] “CC2538 Powerful Wireless Microcontroller System-On-Chip for
2.4-GHz IEEE 802.15.4, 6LoWPAN, and ZigBee R©Applications,”
SWRS096D, rev. D, Texas Instruments, 2015.

[10] “CC26xx SimpleLinkTM Wireless MCU Technical Reference Manual,”
SWCU117A, rev. F, Texas Instruments, 2016.

[11] “OPT3001 Ambient Light Sensor (ALS),” Texas Instruments, 2014.
[12] G. Oikonomou and I. Phillips, “Experiences from porting the Contiki

operating system to a popular hardware platform,” in IEEE DCOSS,
2011, pp. 1–6.

[13] O. Iova, G. P. Picco, T. Istomin, and C. Kiraly, “RPL, the Routing
Standard for the Internet of Things... Or Is It?” IEEE Communications
Magazine, vol. 17, 2016.

[14] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves potatoes:
Experiences from a pilot sensor network deployment in precision
agriculture,” in IEEE IPDPS, 2006.

[15] “IEEE Standard for Local and metropolitan area networks—Part 15.4,”
IEEE Std 802.15.42015, 2015.

[16] L. Mottola and G. Picco, “Programming wireless sensor networks:
Fundamental concepts and state of the art,” ACM Comput. Surv., vol. 43,
no. 3, pp. 19:1–19:51, Apr. 2011.

[17] A. Elsts, J. Judvaitis, and L. Selavo, “SEAL: a Domain-Specific Lan-
guage for Novice Wireless Sensor Network Programmers,” in EUROMI-
CRO SEAA, 2013, pp. 220–227.

[18] A. Elsts, F. H. Bijarbooneh, M. Jacobsson, and K. Sagonas, “ProFuN
TG: A tool for programming and managing performance-aware sensor
network applications,” in IEEE LCN, 2015, pp. 751–759.

[19] P. Levis et al., “Tinyos: An operating system for sensor networks,” in
Ambient intelligence. Springer, 2005, pp. 115–148.

