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Abstract— Current networking integrates common “Things” to 
the Web, creating the Internet of Things (IoT). The 
considerable number of heterogeneous Things that can be part 
of an IoT network demands an efficient management of 
resources. With the advent of Fog computing, some IoT 
management tasks can be distributed toward the edge of the 
constrained networks, closer to physical devices. Blockchain 
protocols hosted on Fog networks can handle IoT management 
tasks such as communication, storage, and authentication. This 
research goes beyond the current definition of Things and 
presents the Internet of “Smart Things.” Smart Things are 
provisioned with Artificial Intelligence (AI) features based on 
CLIPS programming language to become self-inferenceable 
and self-monitorable. This work uses the permission-based 
blockchain protocol Multichain to communicate many Smart 
Things by reading and writing blocks of information. This 
paper evaluates Smart Things deployed on Edison Arduino 
boards. Also, this work evaluates Multichain hosted on a Fog 
network. 

Keywords- IoT; Management; Blockchain; Multichain; 
Smart Things; Autonomy; Self-inferencing; Self-monitoring; 
Fog; Edge. 

I.�  INTRODUCTION 
The Internet of Things adds sensing and actuating 

capabilities to common Things to capture data from the real 
world [1]. Initially, the Things did not have the 
computational resources to process/analyze data before 
sending it to the Cloud. Typical IoT systems follow a Cloud-
centric approach [2], which considers the Things as static 
collectors of data from the environment. As shown in Figure 
1, Cloud-centric systems (e.g. [3][4]) consist of three 
primary layers:  

 
1.� Things 
2.� Services 
3.� Applications 

 
The Things layer corresponds to the constrained devices (e.g. 
sensor networks). The Applications hosted in the Cloud 
access the data sensed in the Things layer through virtualized 
components hosted in the Services layer. Sensing and 
Actuation as a Service (SAaaS) [5], Data as a Service (DaaS) 
[6], and Sensor Event as a Service (SEaaS) [7] are examples 

of Cloud-centric systems in IoT. The robustness and 
flexibility of the Cloud make the data processing efficient 
and reliable [8]; however, the time data streams take to reach 
the Cloud may affect the accurate decision-making over that 
data [9]. 
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Figure 1. � The three layers of Cloud-centric IoT systems [10]. 

The obvious drawback of the Cloud-centric design is a 
static sensor and data stream-centric IoT. Enabling more 
advanced IoT systems requires the possibility of processing 
data in the Things layer. This, in turn, introduces the need to 
include concepts for autonomy support in IoT.  

The enhancement of the computing capabilities of IoT 
devices makes it possible to perform autonomous tasks. This 
work implements autonomic computing at the Things layer 
by creating Smart Things with self-inferencing and self-
monitoring capabilities.  

In the IoT space, it is mandatory to have low latency 
when managing the geographically distributed Things. 
According to a study by Cortés et al. [11] about IoT in the 
health field, the centralized Cloud storage cannot handle the 
velocity of the data flow generated by sensing devices in 
real-time. Using Fog computing [9], some IoT management 
tasks can be distributed toward the edge of the IoT networks 
improving efficiency and decreasing latency. Many studies 
have proposed virtual solutions hosted on Fog layers to 
manage constrained networks (e.g. virtual sensors [12] and 
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gateways [13]). However, these approaches tend to focus on 
virtualizing individual components avoiding real-time 
communication among Things. Unlike Cloud-centric 
systems, Fog systems enable direct and real-time 
communication with the Things layer. This introduces the 
need to include a decentralized mechanism that manages the 
communication among Things. This paper proposes a 
blockchain cluster configured in a Fog network to support 
the communication management of Smart Things in real 
time. A Fog layer with blockchain introduces the following 
management capabilities: 

 
•� Decentralized communication management 
•� Low latency communication 
•� Real-time communication 
•� Time-effective event management 

 
This paper is organized as follows. Section II discusses 

autonomy in IoT. Section III introduces expert systems in 
IoT. Blockchain protocols are discussed in Section IV. 
Section V explains the Smart Things architecture. Section VI 
presents the experiments and evaluations. Finally, this paper 
concludes with a summary and future work described in 
Section VII. 

II.� AUTONOMY & IOT 
Autonomic Computing refers to architectures in which 

computers can monitor and manage themselves [14]. 
Autonomic architectures rely on the capacity of systems to 
perform self-management. Thus, systems can react to 
unknown events without requiring any human participation. 
According to Kephart and Chess [15], autonomic systems 
should fulfill the following “self-management” principles:  

 
1.� Self-configuration and re-configuration  
2.� Self-optimization 
3.� Self-healing 
4.� Self-protection 

 
Table I presents the differences in management between 
current computing and autonomic computing.  

Autonomic systems have been studied in the context of 
traditional Internet networks. IBM has presented a 
hierarchical autonomic computing framework [15] in which 
high-level components act as autonomic managers of either 
individual or groups of low-level components. IBM’s 
framework has two main parts; first, the managed resource, 
which represents a common hardware component like a 
CPU, database, or any other component or group of 
components; second, the autonomic manager, which is an 
entity that monitors the managed resource and analyzes its 
surroundings to execute proper management tasks.  

In the IoT context, autonomic systems are required to 
deal with the characteristics of constrained networks 
[16][17]: 

 
•� Heterogeneous platforms 
•� Large set of devices 

•� Limited computational capabilities 
•� Limited energy consumption 
•� Geographical distribution  
•� Real-time operations  
 

These characteristics make the enabling of autonomy in IoT 
a challenge. Furthermore, the autonomy concept in IoT can 
be focused on supporting specific features depending on the 
context in which resources are working.  

IBM’s autonomic computing framework described above 
has been the basis of many IoT studies (e.g. [18][19][20]).  
Overall, in an IoT network, the managed resource is a 
sensing/actuating device, and the autonomic manager is a 
middleware that monitors the device and performs actions 
based on its current state.  

The Autonomous Decentralized Peer-to-Peer Telemetry 
(ADEPT) Proof of Concept (PoC) [21] is another example of 
autonomic IoT systems. Unlike IBM’s Autonomic 
Framework, ADEPT has a hybrid and decentralized 
architecture. ADEPT integrates Telehash [22] for peer-to-
peer messaging, BitTorrent [23] for distributed file sharing, 
and Ethereum [24] blockchain for autonomous device 
coordination functions such as storing the configuration of 
devices and authentication.  

TABLE I. �DIFFERENCES IN SELF-MANAGEMENT BETWEEN CURRENT 
COMPUTING AND AUTONOMIC COMPUTING [15]. 

Concept Current Computing Autonomic 
Computing 

Self-
configuration 

Corporate data centers 
have multiple vendors 
and platforms. 
Installing, configuring, 
and integrating systems 
is time-consuming and 
error proof 

Automated 
configuration of 
components and 
systems follows high-
level policies. Rest of 
system adjusts 
automatically and 
seamlessly 

Self-
optimization 

Systems have hundreds 
of manually set, 
nonlinear tuning 
parameters, and their 
number increases with 
each release  

Components and 
systems continually 
seek opportunities to 
improve their 
performance and 
efficiency 

Self-healing 

Problem determination 
in large, complex 
systems can take a 
team of programmers 
weeks 

System automatically 
detects, diagnoses, and 
repairs localized 
software and hardware 
problems 

Self-protection 

Detection and recovery 
from attacks and 
cascading failures is 
manual 

System automatically 
defends against 
malicious attacks or 
cascading failures. It 
uses early warning to 
anticipate and prevent 
systemwide failures 

 

III.� EXPERT SYSTEMS & IOT 
An Expert System emulates the decision-making 

behavior of a human being [25]. The C' Language Integrated 
Production System (CLIPS) [26] is a public rule-based 
programming language for developing expert systems. 
CLIPS was developed by NASA. Because CLIPS is written 
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in C, it can be installed on many platforms. CLIPS has been 
the foundation of many hybrid applications (e. g., [27][28]).  

According to Stankovic [29], the development of 
inference techniques is a challenge to creating knowledge 
and intelligent systems in IoT. Also, according to Perera et 
al. [30], intelligence should be a major characteristic of IoT 
systems. More research is necessary to evaluate the potential 
benefits of Expert systems in IoT. 

IV.� BLOCKCHAIN & IOT 
Introduced by Bitcoin in 2009 [31], blockchain 

represents the public ledger that stores Bitcoin transactions in 
the form of blocks. Blocks are connected through a hash 
value. A blockchain is a peer-to-peer network that allows the 
execution of direct transactions without any central 
verification authority. Transactions are validated by a 
consensus mechanism in which participants must invest 
computation to show trustworthiness. 

Public blockchain protocols give open access to 
transactions and blocks [31]. Any user on the Internet can 
interact with a public blockchain. However, a public 
blockchain protocol does not trust any participant; 
participants must validate their transactions by a proof-of-
work mechanism. The proof-of-work process involves 
considerable time and computation.  

Private blockchain protocols only trust a set of registered 
participants [32]. Even though registered participants do not 
have to do proof-of-work, this participation has to be 
managed by a consensus mechanism, such as Practical 
Byzantine Fault Tolerance (PBFT) [33], Round Robin (RR) 
scheduling [34], or other consensus algorithms.  

Including blockchain protocols in the IoT space creates 
new management possibilities. In this work, a permission-
based blockchain protocol (private blockchain protocol) is 
used to manage the real-time communication among Smart 
Things. In this study, the use of a blockchain protocol 
enables an efficient, secure and economic distributed 
communication architecture for Smart Things in a Fog 
network. 

 
V.� SMART THINGS ARCHITECTURE 

This section introduces the architectural design of Smart 
Things. Following the ADEPT PoC idea of building hybrid 
and decentralized autonomic solutions, this work seeks to 
make Things autonomous by creating a hybrid architecture. 
The hybrid architecture proposed by this research has two 
main components, Smart Things and blockchain protocol. 

 

1.� Smart Things 
A Smart Thing is a software artifact, which can analyze 

its current state, infer knowledge and monitor possible 
changes.  

Please see Samaniego et al. [35] for additional information 
about the definition and implementation of Software-defined IoT 
components. 

The main goal of a Smart Thing is to keep the monitoring 
and decision-making in the Things layer by developing 
artificial intelligence (AI) features directly onto IoT devices. 

Figure 2 shows the design of a Smart Thing.  A Smart Thing 
has three main components: 

 
1.� A Reader 
2.� A Self-inferencing resource 
3.� A Self-monitoring resource  

 

 
Figure 2. � The design of a Smart Thing. 

A.� Reader 
The Reader senses data from the environment. This work 

uses GOBOT [36] to face the physical sensors. The Reader 
sends every collected data to the Self-inferencing resource. 

B.� Self-inferencing Resource 
The Self-inferencing resource integrates a rule-based 

expert system built on top of CLIPS. The Self-inferencing 
resource performs AI reasoning based on pre-configured 
rules. A set of initial rules and facts are asserted when the 
Smart Thing starts working. Figure 3 shows an example of a 
basic pre-configured rule.  This rule evaluates the received 
temperature values and assets a new Fact in case the 
evaluated condition is true. 

 

 
Figure 3. � An example of a basic rule defined in CLIPS. 

The received data in the Self-inferencing resource is 
transformed into facts and asserted into the Facts List of the 
system.  The inferencing resource analyses the facts and 
executes actions. Finally, the results of the analysis are sent 
to the Self-monitoring resource. 

C.� Self-monitoring Resource 
The Self-monitoring resource receives the results from 

the Self-inferencing resource and evaluates accepted 
standards. The Self-monitoring resource interacts with the 
blockchain and when necessary sends data to the blockchain 
to be distributed onto the Things layer. The rules and the 
inferencing process in the expert system determine whether 
there is a need to send data to the Multichain cluster. 

All the components of the Smart Things are programmed 
using Go language [37]. The three components communicate 
via RESTful micro services. All transmitted data is formatted 
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using JSON notation. The integration of an expert system in 
the Things layer presents the following benefits: 

 
•� Things can analyze data without forwarding it to any 

gateway  
•� Things can self-monitor and infer knowledge locally 
•� Things can act over data in a time-effective manner 
 

2.� Permission-based blockchain protocol Multichain 

This work uses the permission-based blockchain protocol 
Multichain [38] to manage the communication among Smart 
Things. Multichain is a private blockchain protocol that 
manages the access to the blocks using a list of registered 
participants. Only participants who have been previously 
registered have access to read and write blocks in the chain. 
The consensus method that Multichain implements to 
approve transactions is the Round Robin (RR) scheduling 
algorithm. The RR algorithm states that every block must 
have a signature from the participant who intends to create it 
[39]. The participant who created the block must wait a 
certain time to send a new request to create a new block.  

Figure 4 shows the architecture of Smart Things working 
with the Multichain cluster. The Multichain cluster is hosted 
in a Fog network, closer to the Things layer. The multichain 
cluster interacts with the self-monitoring resource of the 
Smart Thing. Multichain receives the data, stores it, and 
distributes it to all the nodes in the cluster so that the nodes 
can communicate the results of the decision-making process 
to the Smart Things in real time. 

 

 
Figure 4. � The architecture of a Smart Thing including Multichain. 

 

VI.� EXPERIMENTS & EVALUATIONS 
This section evaluates the Smart Things and Multichain 

blockchain. 

A.� Evaluation of the Smart Things 
To evaluate the performance of the Smart Things an 

Edison Arduino board (Figure 5) has been used. Table II 
details the characteristics of the Edison board.  
 
 

 
Figure 5. � Edison Arduino board [40]. 

TABLE II. � SPECIFICATION OF EDISON BOARD  

Edison Board�
Operating System Linux Yocto 

CPU 
500 MHz dual-core, dual threaded Intel 
Atom and a 100 MHz 32-bit Intel Quark 

microcontroller  
RAM 4GB LPDDR2 SDRAM 

 
The Edison board runs the three components of the Smart 

Thing; the Reader, the Self-inferencing resource, and the 
Self-monitoring resource. 1000 temperature values are read 
from the environment and sent to the expert system.  

The payload of each request is encrypted using a 
synchronous AES encryption method with a key of 16 bytes. 
The total payload size is 36 bytes. The expert system 
decrypts the data, transforms it into a fact, asserts the fact in 
the rule engine, makes inferencing processes and analysis, 
and sends the results to the Self-monitoring resource. 

Different delay intervals have been added to the 
experiment to test the performance of the Smart Things 
under different request levels. 

Figures 6 to 9 show the performance of the Smart Thing. 
The X axis in the graphs represents the requests sent to the 
expert system. The Y axis represents the response times from 
the expert system measured in milliseconds (ms).  

Overall, the graphs show some picks. Because there is a 
minimal difference between the response times, those picks 
can be attributed to the noise of the network (university 
wireless connection), memory allocation or background 
processes of the device. That is why some response values 
increase up to almost 3.7 ms.  

Adding delay intervals to the emissions of data does not 
affect the performance of the Smart Things. The average 
response time of the Smart Thing is 1.7 ms. In all the 
experiments, the response times are greater than 1.2 ms. 
This means that no matter the concurrency of requests, the 
response time will not be less than 1.2 ms.  

12



It is very important to note that the time for encrypting 
and decrypting the transmitted data is included in the 
experiments, which evidences a good performance of the 
design of Smart Things presented in this study. 
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Figure 6. � Evaluation of the Smart Thing. 0 delay. 
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Figure 7. � Evaluation of the Smart Thing. 50 ms and 100 ms delay. 
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Figure 8. � Evaluation of the Smart Thing 150 ms and 200 ms delay. 
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Figure 9. � Evaluation of the Smart Thing. 250 ms and 300 ms delay. 

B.� Evaluation of Multichain 
The performance of a Multichain cluster hosted in a Fog 

network is evaluated. Figure 10 shows the setup for these 
experiments. A cluster with three nodes has been 
configured. The characteristics of the Multichain nodes are 
described in Table III.  

 

 
Figure 10. �Setup of the evaluation of the Multichain cluster. 

TABLE III. � SPECIFICATION OF THE MULTICHAIN BLOCKCHAIN NODES  
Hardware Details 

Operating System Linux Debian 8.5 (Jessie) 

CPU Intel(R) Core(TM) i7-6700 CPU @ 
3.40GHz 

RAM 14 GB 
 
The Edison board hosts a Smart Thing, which after doing 

the inferencing and analysis process, sends 1000 results to 
the blockchain. The payload of each request includes the 
participant identification information. The payloads are 
encrypted using a synchronous AES encryption method 
with a key of 16 bytes. The total payload size is 148 bytes. 
The time for encrypting and decrypting the payload is 
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included in the experiments. 
Figures 11 to 14 show the performance of the Multichain 

cluster. The X axis represents the number of requests sent to 
Multichain. The Y axis represents the response times of the 
Multichain cluster in milliseconds. This experiment also 
includes different delay intervals to test the performance of 
the Multichain cluster under different request levels.  
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Figure 11. �Evaluation of Multichain. 0 delay. 
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Figure 12. �Evaluation of Multichain. 50 ms and 100 ms delay. 

�
���
���
���
���
����
����
����
����
����
����
����
����
����
����
����
����
����
����

� ��� ��� ��� ��� 	�� ��� 
�� ��� ���

��
��
��

��
��	


��
�


��

��
�����	���	
������
��	���	�

�
�����	� �
�������  
Figure 13. �Evaluation of Multichain. 150 ms and 200 ms delay. 
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Figure 14. �Evaluation of Multichain. 250 ms and 300 ms delay. 

The graphs show that the average response time of 
Multichain is 389 ms. The delay intervals introduced in the 
experiments do not alter the performance of the Multichain 
cluster. In the series with no delay intervals, the average 
response time is 391 ms. In the series with a delay interval 
of 50 ms the average response time is 387 ms. In the series 
with a delay interval of 100 ms the average response time is 
383 ms. In the series with a delay interval of 150 ms the 
average response time is 343 ms. In the series with a delay 
interval of 200 ms the average response time is 358 ms. In 
the series with a delay interval of 250 ms the average 
response time is 407 ms. Finally, In the series with a delay 
interval of 300 ms the average response time is 457 ms.  

The previous graphs evidence very high picks in all 
delay intervals. Some of the observed picks are the result of 
the timeout responses received from the Multichain cluster. 
The other picks can be attributed to the noise in the network.  

These experiments show that Blockchain can store IoT 
data and distribute it among all the nodes of the chain.  

Figure 15 shows the percentage of successful 
transactions processed in the blockchain cluster. The 
average throughput of the Multichain cluster is 98.47%. 
Overall, the average of unprocessed requests is 98 requests 
in all the experiments.  

 

 
Figure 15. �Processed transactions in Multichain. 
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VII.� CONCLUSIONS AND FUTURE WORK 
This paper presented Smart Things as a means of 

enabling autonomy in IoT networks. Smart Things are 
formed by three main components, the reader, the self-
inferencing resource, and the self-monitoring resource. By 
integrating a CLIPS-based expert system in the self-
inferencing resource, the IoT focus is shifted away from 
centralized architectures to individual Smart Things capable 
of doing self-inferencing and self-monitoring in real time, 
which means that Things become autonomous. Smart Things 
communicate with other resources via permission-based 
blockchain protocol Multichain. In general, the 
communication cost via Multichain was low. 

The entire development of Smart Things and the 
integration of the CLIPS system has been done using 
RESTful micro services programmed in Go language. 

The results of the evaluations showed that hybrid 
solutions are a good option to enable autonomous features in 
IoT networks. The resources of the Smart Things 
demonstrated a satisfactory performance analyzing and 
inferring knowledge from every data received.  

Overall, this research made the following contributions to 
IoT systems: 

 
•� Designed and developed Smart Things, which are 

software artifacts that can perform self-inferencing 
and self-monitoring tasks in real time. 

•� Designed and developed an expert system on top of 
CLIPS to perform data analysis and self-
inferencing. 

•� Designed and implemented a decentralized Fog 
architecture that integrates permission-based 
blockchain protocols to communicate Smart Things 
in real time and distribute management tasks toward 
the edge of the Things layer. 

 
Future work will focus on evaluating Smart Things on 

different boards.  
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