
Internet of Smart Things – IoST
Using Blockchain and CLIPS to make Things Autonomous

Mayra Samaniego
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

mayra.samaniego@usask.ca

Ralph Deters
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada
deters@cs.usask.ca

Abstract— Current networking integrates common “Things” to
the Web, creating the Internet of Things (IoT). The
considerable number of heterogeneous Things that can be part
of an IoT network demands an efficient management of
resources. With the advent of Fog computing, some IoT
management tasks can be distributed toward the edge of the
constrained networks, closer to physical devices. Blockchain
protocols hosted on Fog networks can handle IoT management
tasks such as communication, storage, and authentication. This
research goes beyond the current definition of Things and
presents the Internet of “Smart Things.” Smart Things are
provisioned with Artificial Intelligence (AI) features based on
CLIPS programming language to become self-inferenceable
and self-monitorable. This work uses the permission-based
blockchain protocol Multichain to communicate many Smart
Things by reading and writing blocks of information. This
paper evaluates Smart Things deployed on Edison Arduino
boards. Also, this work evaluates Multichain hosted on a Fog
network.

Keywords- IoT; Management; Blockchain; Multichain;
Smart Things; Autonomy; Self-inferencing; Self-monitoring;
Fog; Edge.

I.� INTRODUCTION
The Internet of Things adds sensing and actuating

capabilities to common Things to capture data from the real
world [1]. Initially, the Things did not have the
computational resources to process/analyze data before
sending it to the Cloud. Typical IoT systems follow a Cloud-
centric approach [2], which considers the Things as static
collectors of data from the environment. As shown in Figure
1, Cloud-centric systems (e.g. [3][4]) consist of three
primary layers:

1.� Things
2.� Services
3.� Applications

The Things layer corresponds to the constrained devices (e.g.
sensor networks). The Applications hosted in the Cloud
access the data sensed in the Things layer through virtualized
components hosted in the Services layer. Sensing and
Actuation as a Service (SAaaS) [5], Data as a Service (DaaS)
[6], and Sensor Event as a Service (SEaaS) [7] are examples

of Cloud-centric systems in IoT. The robustness and
flexibility of the Cloud make the data processing efficient
and reliable [8]; however, the time data streams take to reach
the Cloud may affect the accurate decision-making over that
data [9].

��������

	

����
���

�������	
��
��

�
���
��
�
���
�
��
�����������
���

��
���	
��
��

Figure 1. � The three layers of Cloud-centric IoT systems [10].

The obvious drawback of the Cloud-centric design is a
static sensor and data stream-centric IoT. Enabling more
advanced IoT systems requires the possibility of processing
data in the Things layer. This, in turn, introduces the need to
include concepts for autonomy support in IoT.

The enhancement of the computing capabilities of IoT
devices makes it possible to perform autonomous tasks. This
work implements autonomic computing at the Things layer
by creating Smart Things with self-inferencing and self-
monitoring capabilities.

In the IoT space, it is mandatory to have low latency
when managing the geographically distributed Things.
According to a study by Cortés et al. [11] about IoT in the
health field, the centralized Cloud storage cannot handle the
velocity of the data flow generated by sensing devices in
real-time. Using Fog computing [9], some IoT management
tasks can be distributed toward the edge of the IoT networks
improving efficiency and decreasing latency. Many studies
have proposed virtual solutions hosted on Fog layers to
manage constrained networks (e.g. virtual sensors [12] and

2017 IEEE 1st International Conference on Cognitive Computing

978-1-5386-2008-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IEEE.ICCC.2017.9

9

gateways [13]). However, these approaches tend to focus on
virtualizing individual components avoiding real-time
communication among Things. Unlike Cloud-centric
systems, Fog systems enable direct and real-time
communication with the Things layer. This introduces the
need to include a decentralized mechanism that manages the
communication among Things. This paper proposes a
blockchain cluster configured in a Fog network to support
the communication management of Smart Things in real
time. A Fog layer with blockchain introduces the following
management capabilities:

•� Decentralized communication management
•� Low latency communication
•� Real-time communication
•� Time-effective event management

This paper is organized as follows. Section II discusses

autonomy in IoT. Section III introduces expert systems in
IoT. Blockchain protocols are discussed in Section IV.
Section V explains the Smart Things architecture. Section VI
presents the experiments and evaluations. Finally, this paper
concludes with a summary and future work described in
Section VII.

II.� AUTONOMY & IOT
Autonomic Computing refers to architectures in which

computers can monitor and manage themselves [14].
Autonomic architectures rely on the capacity of systems to
perform self-management. Thus, systems can react to
unknown events without requiring any human participation.
According to Kephart and Chess [15], autonomic systems
should fulfill the following “self-management” principles:

1.� Self-configuration and re-configuration
2.� Self-optimization
3.� Self-healing
4.� Self-protection

Table I presents the differences in management between
current computing and autonomic computing.

Autonomic systems have been studied in the context of
traditional Internet networks. IBM has presented a
hierarchical autonomic computing framework [15] in which
high-level components act as autonomic managers of either
individual or groups of low-level components. IBM’s
framework has two main parts; first, the managed resource,
which represents a common hardware component like a
CPU, database, or any other component or group of
components; second, the autonomic manager, which is an
entity that monitors the managed resource and analyzes its
surroundings to execute proper management tasks.

In the IoT context, autonomic systems are required to
deal with the characteristics of constrained networks
[16][17]:

•� Heterogeneous platforms
•� Large set of devices

•� Limited computational capabilities
•� Limited energy consumption
•� Geographical distribution
•� Real-time operations

These characteristics make the enabling of autonomy in IoT
a challenge. Furthermore, the autonomy concept in IoT can
be focused on supporting specific features depending on the
context in which resources are working.

IBM’s autonomic computing framework described above
has been the basis of many IoT studies (e.g. [18][19][20]).
Overall, in an IoT network, the managed resource is a
sensing/actuating device, and the autonomic manager is a
middleware that monitors the device and performs actions
based on its current state.

The Autonomous Decentralized Peer-to-Peer Telemetry
(ADEPT) Proof of Concept (PoC) [21] is another example of
autonomic IoT systems. Unlike IBM’s Autonomic
Framework, ADEPT has a hybrid and decentralized
architecture. ADEPT integrates Telehash [22] for peer-to-
peer messaging, BitTorrent [23] for distributed file sharing,
and Ethereum [24] blockchain for autonomous device
coordination functions such as storing the configuration of
devices and authentication.

TABLE I. �DIFFERENCES IN SELF-MANAGEMENT BETWEEN CURRENT
COMPUTING AND AUTONOMIC COMPUTING [15].

Concept Current Computing Autonomic
Computing

Self-
configuration

Corporate data centers
have multiple vendors
and platforms.
Installing, configuring,
and integrating systems
is time-consuming and
error proof

Automated
configuration of
components and
systems follows high-
level policies. Rest of
system adjusts
automatically and
seamlessly

Self-
optimization

Systems have hundreds
of manually set,
nonlinear tuning
parameters, and their
number increases with
each release

Components and
systems continually
seek opportunities to
improve their
performance and
efficiency

Self-healing

Problem determination
in large, complex
systems can take a
team of programmers
weeks

System automatically
detects, diagnoses, and
repairs localized
software and hardware
problems

Self-protection

Detection and recovery
from attacks and
cascading failures is
manual

System automatically
defends against
malicious attacks or
cascading failures. It
uses early warning to
anticipate and prevent
systemwide failures

III.� EXPERT SYSTEMS & IOT
An Expert System emulates the decision-making

behavior of a human being [25]. The C' Language Integrated
Production System (CLIPS) [26] is a public rule-based
programming language for developing expert systems.
CLIPS was developed by NASA. Because CLIPS is written

10

in C, it can be installed on many platforms. CLIPS has been
the foundation of many hybrid applications (e. g., [27][28]).

According to Stankovic [29], the development of
inference techniques is a challenge to creating knowledge
and intelligent systems in IoT. Also, according to Perera et
al. [30], intelligence should be a major characteristic of IoT
systems. More research is necessary to evaluate the potential
benefits of Expert systems in IoT.

IV.� BLOCKCHAIN & IOT
Introduced by Bitcoin in 2009 [31], blockchain

represents the public ledger that stores Bitcoin transactions in
the form of blocks. Blocks are connected through a hash
value. A blockchain is a peer-to-peer network that allows the
execution of direct transactions without any central
verification authority. Transactions are validated by a
consensus mechanism in which participants must invest
computation to show trustworthiness.

Public blockchain protocols give open access to
transactions and blocks [31]. Any user on the Internet can
interact with a public blockchain. However, a public
blockchain protocol does not trust any participant;
participants must validate their transactions by a proof-of-
work mechanism. The proof-of-work process involves
considerable time and computation.

Private blockchain protocols only trust a set of registered
participants [32]. Even though registered participants do not
have to do proof-of-work, this participation has to be
managed by a consensus mechanism, such as Practical
Byzantine Fault Tolerance (PBFT) [33], Round Robin (RR)
scheduling [34], or other consensus algorithms.

Including blockchain protocols in the IoT space creates
new management possibilities. In this work, a permission-
based blockchain protocol (private blockchain protocol) is
used to manage the real-time communication among Smart
Things. In this study, the use of a blockchain protocol
enables an efficient, secure and economic distributed
communication architecture for Smart Things in a Fog
network.

V.� SMART THINGS ARCHITECTURE

This section introduces the architectural design of Smart
Things. Following the ADEPT PoC idea of building hybrid
and decentralized autonomic solutions, this work seeks to
make Things autonomous by creating a hybrid architecture.
The hybrid architecture proposed by this research has two
main components, Smart Things and blockchain protocol.

1.� Smart Things
A Smart Thing is a software artifact, which can analyze

its current state, infer knowledge and monitor possible
changes.

Please see Samaniego et al. [35] for additional information
about the definition and implementation of Software-defined IoT
components.

The main goal of a Smart Thing is to keep the monitoring
and decision-making in the Things layer by developing
artificial intelligence (AI) features directly onto IoT devices.

Figure 2 shows the design of a Smart Thing. A Smart Thing
has three main components:

1.� A Reader
2.� A Self-inferencing resource
3.� A Self-monitoring resource

Figure 2. � The design of a Smart Thing.

A.� Reader
The Reader senses data from the environment. This work

uses GOBOT [36] to face the physical sensors. The Reader
sends every collected data to the Self-inferencing resource.

B.� Self-inferencing Resource
The Self-inferencing resource integrates a rule-based

expert system built on top of CLIPS. The Self-inferencing
resource performs AI reasoning based on pre-configured
rules. A set of initial rules and facts are asserted when the
Smart Thing starts working. Figure 3 shows an example of a
basic pre-configured rule. This rule evaluates the received
temperature values and assets a new Fact in case the
evaluated condition is true.

Figure 3. � An example of a basic rule defined in CLIPS.

The received data in the Self-inferencing resource is
transformed into facts and asserted into the Facts List of the
system. The inferencing resource analyses the facts and
executes actions. Finally, the results of the analysis are sent
to the Self-monitoring resource.

C.� Self-monitoring Resource
The Self-monitoring resource receives the results from

the Self-inferencing resource and evaluates accepted
standards. The Self-monitoring resource interacts with the
blockchain and when necessary sends data to the blockchain
to be distributed onto the Things layer. The rules and the
inferencing process in the expert system determine whether
there is a need to send data to the Multichain cluster.

All the components of the Smart Things are programmed
using Go language [37]. The three components communicate
via RESTful micro services. All transmitted data is formatted

11

using JSON notation. The integration of an expert system in
the Things layer presents the following benefits:

•� Things can analyze data without forwarding it to any

gateway
•� Things can self-monitor and infer knowledge locally
•� Things can act over data in a time-effective manner

2.� Permission-based blockchain protocol Multichain

This work uses the permission-based blockchain protocol
Multichain [38] to manage the communication among Smart
Things. Multichain is a private blockchain protocol that
manages the access to the blocks using a list of registered
participants. Only participants who have been previously
registered have access to read and write blocks in the chain.
The consensus method that Multichain implements to
approve transactions is the Round Robin (RR) scheduling
algorithm. The RR algorithm states that every block must
have a signature from the participant who intends to create it
[39]. The participant who created the block must wait a
certain time to send a new request to create a new block.

Figure 4 shows the architecture of Smart Things working
with the Multichain cluster. The Multichain cluster is hosted
in a Fog network, closer to the Things layer. The multichain
cluster interacts with the self-monitoring resource of the
Smart Thing. Multichain receives the data, stores it, and
distributes it to all the nodes in the cluster so that the nodes
can communicate the results of the decision-making process
to the Smart Things in real time.

Figure 4. � The architecture of a Smart Thing including Multichain.

VI.� EXPERIMENTS & EVALUATIONS
This section evaluates the Smart Things and Multichain

blockchain.

A.� Evaluation of the Smart Things
To evaluate the performance of the Smart Things an

Edison Arduino board (Figure 5) has been used. Table II
details the characteristics of the Edison board.

Figure 5. � Edison Arduino board [40].

TABLE II. � SPECIFICATION OF EDISON BOARD

Edison Board�
Operating System Linux Yocto

CPU
500 MHz dual-core, dual threaded Intel
Atom and a 100 MHz 32-bit Intel Quark

microcontroller
RAM 4GB LPDDR2 SDRAM

The Edison board runs the three components of the Smart

Thing; the Reader, the Self-inferencing resource, and the
Self-monitoring resource. 1000 temperature values are read
from the environment and sent to the expert system.

The payload of each request is encrypted using a
synchronous AES encryption method with a key of 16 bytes.
The total payload size is 36 bytes. The expert system
decrypts the data, transforms it into a fact, asserts the fact in
the rule engine, makes inferencing processes and analysis,
and sends the results to the Self-monitoring resource.

Different delay intervals have been added to the
experiment to test the performance of the Smart Things
under different request levels.

Figures 6 to 9 show the performance of the Smart Thing.
The X axis in the graphs represents the requests sent to the
expert system. The Y axis represents the response times from
the expert system measured in milliseconds (ms).

Overall, the graphs show some picks. Because there is a
minimal difference between the response times, those picks
can be attributed to the noise of the network (university
wireless connection), memory allocation or background
processes of the device. That is why some response values
increase up to almost 3.7 ms.

Adding delay intervals to the emissions of data does not
affect the performance of the Smart Things. The average
response time of the Smart Thing is 1.7 ms. In all the
experiments, the response times are greater than 1.2 ms.
This means that no matter the concurrency of requests, the
response time will not be less than 1.2 ms.

12

It is very important to note that the time for encrypting
and decrypting the transmitted data is included in the
experiments, which evidences a good performance of the
design of Smart Things presented in this study.

�
���
���
���
���
�

���
���
���
���
�

���
���
���
���
�

���
���
���
���
�

� ��� ��� ��� ��� ��� ��� ��� ��� ���

��
��
��

��
��	

��
�

��

��
�����	���	
����������������

�	
����
Figure 6. � Evaluation of the Smart Thing. 0 delay.

�
���
���
���
���
�

���
���
���
���
�

���
���
���
���
�

���
���
���
���
�

� ��� ��� ��� ��� ��� ��� ��� ��� ���

��
��
��

��
��	

��
�

��

��
�����	���	
����������������

�	
����� �	
������
Figure 7. � Evaluation of the Smart Thing. 50 ms and 100 ms delay.

�
���
���
���
���
�

���
���
���
���
�

���
���
���
���
�

���
���
���
���
�

� ��� ��� ��� ��� ��� ��� ��� ��� ���

��
��
��

��
��	

��
�

��

��
�����	���	
����������������

�	
������ �	
������
Figure 8. � Evaluation of the Smart Thing 150 ms and 200 ms delay.

�
���
���
���
���
�

���
���
���
���
�

���
���
���
���
�

���
���
���
���
�

� ��� ��� ��� ��� ��� ��� ��� ��� ���

��
��
��

��
��	

��
�

��

��
�����	���	
����������������

�	
������ �	
������
Figure 9. � Evaluation of the Smart Thing. 250 ms and 300 ms delay.

B.� Evaluation of Multichain
The performance of a Multichain cluster hosted in a Fog

network is evaluated. Figure 10 shows the setup for these
experiments. A cluster with three nodes has been
configured. The characteristics of the Multichain nodes are
described in Table III.

Figure 10. �Setup of the evaluation of the Multichain cluster.

TABLE III. � SPECIFICATION OF THE MULTICHAIN BLOCKCHAIN NODES
Hardware Details

Operating System Linux Debian 8.5 (Jessie)

CPU Intel(R) Core(TM) i7-6700 CPU @
3.40GHz

RAM 14 GB

The Edison board hosts a Smart Thing, which after doing

the inferencing and analysis process, sends 1000 results to
the blockchain. The payload of each request includes the
participant identification information. The payloads are
encrypted using a synchronous AES encryption method
with a key of 16 bytes. The total payload size is 148 bytes.
The time for encrypting and decrypting the payload is

13

included in the experiments.
Figures 11 to 14 show the performance of the Multichain

cluster. The X axis represents the number of requests sent to
Multichain. The Y axis represents the response times of the
Multichain cluster in milliseconds. This experiment also
includes different delay intervals to test the performance of
the Multichain cluster under different request levels.

���

���

���

���

����

����

����

� ��� ��� ��� ��� 	�� ���
�� ��� ���

��
��
��

��
��	

��
�

��

��
�����	���	
������
��	���	�

�
�����
Figure 11. �Evaluation of Multichain. 0 delay.

�

���

���

���

���

����

����

����

����

����

����

����

����

� ��� ��� ��� ��� 	�� ���
�� ��� ���

��
��
��

��
��	

��
�

��

��
�����	���	
������
��	���	�

�
����	� �
�������
Figure 12. �Evaluation of Multichain. 50 ms and 100 ms delay.

�
���
���
���
���
����
����
����
����
����
����
����
����
����
����
����
����
����
����

� ��� ��� ��� ��� 	�� ���
�� ��� ���

��
��
��

��
��	

��
�

��

��
�����	���	
������
��	���	�

�
�����	� �
�������
Figure 13. �Evaluation of Multichain. 150 ms and 200 ms delay.

�

���

���

���

���

����

����

����

����

����

����

� ��� ��� ��� ��� 	�� ���
�� ��� ���

��
��
��

��
��	

��
�

��

��
�����	���	
������
��	���	�

�
�����	� �
�������
Figure 14. �Evaluation of Multichain. 250 ms and 300 ms delay.

The graphs show that the average response time of
Multichain is 389 ms. The delay intervals introduced in the
experiments do not alter the performance of the Multichain
cluster. In the series with no delay intervals, the average
response time is 391 ms. In the series with a delay interval
of 50 ms the average response time is 387 ms. In the series
with a delay interval of 100 ms the average response time is
383 ms. In the series with a delay interval of 150 ms the
average response time is 343 ms. In the series with a delay
interval of 200 ms the average response time is 358 ms. In
the series with a delay interval of 250 ms the average
response time is 407 ms. Finally, In the series with a delay
interval of 300 ms the average response time is 457 ms.

The previous graphs evidence very high picks in all
delay intervals. Some of the observed picks are the result of
the timeout responses received from the Multichain cluster.
The other picks can be attributed to the noise in the network.

These experiments show that Blockchain can store IoT
data and distribute it among all the nodes of the chain.

Figure 15 shows the percentage of successful
transactions processed in the blockchain cluster. The
average throughput of the Multichain cluster is 98.47%.
Overall, the average of unprocessed requests is 98 requests
in all the experiments.

Figure 15. �Processed transactions in Multichain.

14

VII.� CONCLUSIONS AND FUTURE WORK
This paper presented Smart Things as a means of

enabling autonomy in IoT networks. Smart Things are
formed by three main components, the reader, the self-
inferencing resource, and the self-monitoring resource. By
integrating a CLIPS-based expert system in the self-
inferencing resource, the IoT focus is shifted away from
centralized architectures to individual Smart Things capable
of doing self-inferencing and self-monitoring in real time,
which means that Things become autonomous. Smart Things
communicate with other resources via permission-based
blockchain protocol Multichain. In general, the
communication cost via Multichain was low.

The entire development of Smart Things and the
integration of the CLIPS system has been done using
RESTful micro services programmed in Go language.

The results of the evaluations showed that hybrid
solutions are a good option to enable autonomous features in
IoT networks. The resources of the Smart Things
demonstrated a satisfactory performance analyzing and
inferring knowledge from every data received.

Overall, this research made the following contributions to
IoT systems:

•� Designed and developed Smart Things, which are

software artifacts that can perform self-inferencing
and self-monitoring tasks in real time.

•� Designed and developed an expert system on top of
CLIPS to perform data analysis and self-
inferencing.

•� Designed and implemented a decentralized Fog
architecture that integrates permission-based
blockchain protocols to communicate Smart Things
in real time and distribute management tasks toward
the edge of the Things layer.

Future work will focus on evaluating Smart Things on

different boards.

REFERENCES
[1] K. Ashton, “That ‘Internet of Things’ Thing - RFID

Journal,” RFiD J., vol. 22, no. 7, pp. 97–114, 2009.
[2] J. Gubbi, R. Buyya, S. Marusic, and M.

Palaniswami, “Internet of Things (IoT): A vision,
architectural elements, and future directions,” Futur.
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660,
2013.

[3] C. Doukas and I. Maglogiannis, “Bringing IoT and
cloud computing towards pervasive healthcare,” in
Proceedings - 6th International Conference on
Innovative Mobile and Internet Services in
Ubiquitous Computing, IMIS 2012, 2012, pp. 922–
926.

[4] A. R. Biswas and R. Giaffreda, “IoT and Cloud
Convergence: Opportunities and Challenges,” 2014
IEEE World Forum Internet Things, pp. 375–376,

2014.
[5] S. Distefano, G. Merlino, and A. Puliafito, “Sensing

and actuation as a service: A new development for
clouds,” Proc. - IEEE 11th Int. Symp. Netw.
Comput. Appl. NCA 2012, vol. 1, pp. 272–275,
2012.

[6] O. Terzo, P. Ruiu, E. Bucci, and F. Xhafa, “Data as
a Service (DaaS) for sharing and processing of large
data collections in the cloud,” Proc. - 2013 7th Int.
Conf. Complex, Intelligent, Softw. Intensive Syst.
CISIS 2013, pp. 475–480, 2013.

[7] S. Alam, M. M. R. Chowdhury, and J. Noll,
“SenaaS: An event-driven sensor virtualization
approach for internet of things cloud,” 2010 IEEE
Int. Conf. Networked Embed. Syst. Enterp. Appl.
NESEA 2010, pp. 1–6, 2010.

[8] P. Parwekar, “From Internet of Things towards
cloud of things,” 2011 2nd Int. Conf. Comput.
Commun. Technol. ICCCT-2011, pp. 329–333,
2011.

[9] Cisco Systems, “Fog Computing and the Internet of
Things: Extend the Cloud to Where the Things
Are,” 2015.

[10] M. Samaniego, “Virtual Resources & Internet of
Things,” University of Saskatchewan, 2016.

[11] R. Cortés, X. Bonnaire, O. Marin, and P. Sens,
“Stream Processing of Healthcare Sensor Data:
Studying User Traces to Identify Challenges from a
Big Data Perspective,” Procedia Comput. Sci., vol.
52, pp. 1004–1009, 2015.

[12] S. Alam, M. M. R. Chowdhury, and J. Noll,
“SenaaS: An event-driven sensor virtualization
approach for internet of things cloud,” in Networked
Embedded Systems for Enterprise Applications
(NESEA), 2010 IEEE International Conference on.,
2010, pp. 1–6.

[13] M. Aazam and E. N. Huh, “Fog computing and
smart gateway based communication for cloud of
things,” Proc. - 2014 Int. Conf. Futur. Internet
Things Cloud, FiCloud 2014, pp. 464–470, 2014.

[14] P. Horn, “Autonomic computing: IBM’s Perspective
on the State of Information Technology,” 2001.

[15] J. O. Kephart and D. M. Chess, “The Vision of
Autonomic Computing,” IEEE Comput., vol. 36, no.
1, pp. 41–50, 2003.

[16] L. Atzori, A. Iera, and G. Morabito, “The Internet of
Things: A survey,” Comput. Networks, vol. 54, no.
15, pp. 2787–2805, 2010.

[17] M. Wu, T. Lu, F.-Y. Ling, L. Sun, and H.-Y. Du,
“Research on the architecture of Internet of Things,”
in 2010 3rd International Conference on Advanced
Computer Theory and Engineering(ICACTE), 2010,
vol. 5, pp. V5-484-V5-487.

[18] J. Gombak, “Introducing Autonomy in Internet of
Things,” in Recent Advances in Computer Science,
2015, pp. 215–221.

15

[19] M. A. Rajan, P. Balamuralidhar, K. P. Chethan, and
M. Swarnahpriyaah, “A Self-Reconfigurable Sensor
Network Management System for Internet of Things
Paradigm,” 2011 Int. Conf. Devices Commun., pp.
1–5, 2011.

[20] G. Pujolle, “An Autonomic-oriented Architecture
for the Internet of Things,” Mod. Comput. 2006.
JVA’06. IEEE John Vincent Atanasoff 2006 Int.
Symp., pp. 163–168, 2006.

[21] V. Pureswaran, S. Panikkar, S. Nair, and P. Brody,
“Empowering the Edge: Practical Insights on a
Decentralized Internet of Things,” 2015. [Online].
Available: https://www-
935.ibm.com/services/multimedia/GBE03662USEN
.pdf. [Accessed: 22-Nov-2016].

[22] “https://github.com/telehash/telehash.github.io.” .
[23] “BitTorrent.” [Online]. Available:

http://www.bittorrent.com/. [Accessed: 18-Mar-
2017].

[24] “Ethereum Project.” [Online]. Available:
https://www.ethereum.org/. [Accessed: 18-Mar-
2017].

[25] Jackson and P., “Introduction to expert systems.”
Addison-Wesley Pub. Co.,Reading, MA, 1986.

[26] “About CLIPS | CLIPS.” [Online]. Available:
http://www.clipsrules.net/?q=AboutCLIPS.
[Accessed: 16-Mar-2017].

[27] R. Sárfi and A. Solo, “Development of a hybrid
knowledge-based system for multiobjective
optimization of power distribution system
operations,” Proc. Natl., 2005.

[28] J. Jarmulak, E. J. H. Kerckhoffs, and P. P. Van
Veen, “Hybrid knowledge based system for
automatic classification of B-scan images from
ultrasonic rail inspection,” in AAAI/IAAI, 1998, pp.
1121–1126.

[29] J. A. Stankovic, “Research directions for the
internet of things,” IEEE Internet Things J., vol. 1,
no. 1, pp. 3–9, 2014.

[30] C. Perera, A. Zaslavsky, P. Christen, and D.
Georgakopoulos, “Context aware computing for the

internet of things: A survey,” IEEE Commun. Surv.
Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[31] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic
Cash System,” p. 9, 2008.

[32] K. Christidis and M. Devetsikiotis, “Blockchains
and Smart Contracts for the Internet of Things,”
IEEE Access, vol. 4, pp. 2292–2303, 2016.

[33] M. Castro and B. Liskov, “Practical Byzantine Fault
Tolerance,” Proc. Symp. Oper. Syst. Des.
Implement., no. February, pp. 1–14, 1999.

[34] W. Assumptions, “Scheduling: Introduction.”
[Online]. Available:
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-
sched.pdf. [Accessed: 08-Oct-2016].

[35] M. Samaniego and R. Deters, “Using Blockchain to
push Software-Defined IoT Components onto Edge
Hosts,” in Proceedings of the International
Conference on Big Data and Advanced Wireless
Technologies, 2016, p. 58.

[36] “Gobot - Golang framework for robotics, drones,
and the Internet of Things (IoT).” [Online].
Available: https://gobot.io/. [Accessed: 01-May-
2017].

[37] “The Go Programming Language.” [Online].
Available: https://golang.org/. [Accessed: 19-Mar-
2017].

[38] “MultiChain | Open source private blockchain
platform.” [Online]. Available:
http://www.multichain.com/. [Accessed: 19-Mar-
2017].

[39] A. Lewis, “In a nutshell: MultiChain (Epicenter
Bitcoin interview – Nov 2015) | Bits on blocks,”
2016. [Online]. Available:
https://bitsonblocks.net/2016/03/07/in-a-nutshell-
multichain-epicenter-bitcoin-interview-nov-2015/.
[Accessed: 27-Nov-2016].

[40] “The Intel® Edison Module | IoT | Intel®
Software.” [Online]. Available:
https://software.intel.com/en-
us/iot/hardware/edison. [Accessed: 19-Mar-2017].

16

